Layer-by-layer techniques incorporating upcycled TPEE: from waste to conductive, multi-responsive, self-healable, and highly-stretchable electronics
Upcycling polyethylene terephthalate (PET) waste into multifunctional materials offers a sustainable solution to plastic pollution. In this work, upcycled thermoplastic polyester elastomer (TPEE) films are utilized as substrates to fabricate conductive, stretchable, self-healable, and alkaline-respo...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 13; no. 25; pp. 1985 - 19863 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
25.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 |
DOI | 10.1039/d5ta01392e |
Cover
Abstract | Upcycling polyethylene terephthalate (PET) waste into multifunctional materials offers a sustainable solution to plastic pollution. In this work, upcycled thermoplastic polyester elastomer (TPEE) films are utilized as substrates to fabricate conductive, stretchable, self-healable, and alkaline-responsive multilayered films. A layer-by-layer assembly of poly(ionic liquid-
co
-acrylic acid) (PIL-
co
-PAA) and MXene nanosheets imparts elasticity, conductivity, and environmental responsiveness. Extending this method to commercial fabrics demonstrates self-healing mechanical and electrical properties, broadening application prospects. These findings highlight the potential of TPEE-based multilayer films as advanced materials for wearable and flexible electronics, emphasizing the role of upcycling in creating high-value, sustainable technologies.
Upcycled thermoplastic polyester elastomers, poly(ionic liquid-
co
-acrylic acid), and MXene nanosheets are utilized to fabricate conductive, stretchable, self-healable, and alkaline-responsive multilayered films. |
---|---|
AbstractList | Upcycling polyethylene terephthalate (PET) waste into multifunctional materials offers a sustainable solution to plastic pollution. In this work, upcycled thermoplastic polyester elastomer (TPEE) films are utilized as substrates to fabricate conductive, stretchable, self-healable, and alkaline-responsive multilayered films. A layer-by-layer assembly of poly(ionic liquid-co-acrylic acid) (PIL-co-PAA) and MXene nanosheets imparts elasticity, conductivity, and environmental responsiveness. Extending this method to commercial fabrics demonstrates self-healing mechanical and electrical properties, broadening application prospects. These findings highlight the potential of TPEE-based multilayer films as advanced materials for wearable and flexible electronics, emphasizing the role of upcycling in creating high-value, sustainable technologies. Upcycling polyethylene terephthalate (PET) waste into multifunctional materials offers a sustainable solution to plastic pollution. In this work, upcycled thermoplastic polyester elastomer (TPEE) films are utilized as substrates to fabricate conductive, stretchable, self-healable, and alkaline-responsive multilayered films. A layer-by-layer assembly of poly(ionic liquid- co -acrylic acid) (PIL- co -PAA) and MXene nanosheets imparts elasticity, conductivity, and environmental responsiveness. Extending this method to commercial fabrics demonstrates self-healing mechanical and electrical properties, broadening application prospects. These findings highlight the potential of TPEE-based multilayer films as advanced materials for wearable and flexible electronics, emphasizing the role of upcycling in creating high-value, sustainable technologies. Upcycled thermoplastic polyester elastomers, poly(ionic liquid- co -acrylic acid), and MXene nanosheets are utilized to fabricate conductive, stretchable, self-healable, and alkaline-responsive multilayered films. |
Author | Ciou, Jian-Hua Lin, Huan-Wei Chang, Chun-Ting Tseng, Yu-Hsuan Chen, Yu Lin, Ji Lin, Che-Tseng Wu, Chia-Ti Lo, Tse-Yu Li, Mei-Li Chang, Chia-Wei Chen, Jiun-Tai Kuo, Kai-Chuan |
AuthorAffiliation | Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Department of Performance Materials Synthesis & Application Division of Polymer Research Material and Chemical Research Laboratories Industrial Technology Research Institute Department of Applied Chemistry |
AuthorAffiliation_xml | – name: Department of Applied Chemistry – name: Industrial Technology Research Institute – name: National Yang Ming Chiao Tung University – name: Department of Performance Materials Synthesis & Application Division of Polymer Research Material and Chemical Research Laboratories – name: Center for Emergent Functional Matter Science |
Author_xml | – sequence: 1 givenname: Chia-Wei surname: Chang fullname: Chang, Chia-Wei – sequence: 2 givenname: Chun-Ting surname: Chang fullname: Chang, Chun-Ting – sequence: 3 givenname: Jian-Hua surname: Ciou fullname: Ciou, Jian-Hua – sequence: 4 givenname: Kai-Chuan surname: Kuo fullname: Kuo, Kai-Chuan – sequence: 5 givenname: Chia-Ti surname: Wu fullname: Wu, Chia-Ti – sequence: 6 givenname: Ji surname: Lin fullname: Lin, Ji – sequence: 7 givenname: Tse-Yu surname: Lo fullname: Lo, Tse-Yu – sequence: 8 givenname: Yu surname: Chen fullname: Chen, Yu – sequence: 9 givenname: Huan-Wei surname: Lin fullname: Lin, Huan-Wei – sequence: 10 givenname: Yu-Hsuan surname: Tseng fullname: Tseng, Yu-Hsuan – sequence: 11 givenname: Mei-Li surname: Li fullname: Li, Mei-Li – sequence: 12 givenname: Che-Tseng surname: Lin fullname: Lin, Che-Tseng – sequence: 13 givenname: Jiun-Tai surname: Chen fullname: Chen, Jiun-Tai |
BookMark | eNpFkU1LxDAQhoMo-LUX70LAmxidNk239Sa6fsCCHtZzSZNZW8kmNUmV_g9_sN1d0bnMzMvDDO_MIdm1ziIhJwlcJsDLKy2ihISXKe6QgxQEsGlW5rt_dVHsk0kI7zBGAZCX5QH5nssBPasHZtYFjaga2370GGhrlfOd8zK29o32nRqUQU0XL7PZNV16t6JfMkSk0VHlrO5VbD_xgq56E1vmMXTOho0S0CxZg9LI2oyttJo27VtjBhaix6iatU7RoIre2VaFY7K3lCbg5Dcfkdf72eL2kc2fH55ub-ZMpVkama5xmstSYpbx0bUQohSoIeVSTYsEIdO6rgEBSwEq4cW00KOS55DkSiSF5kfkbDu3825tOVbvrvd2XFnxNM0gL4DDSJ1vKeVdCB6XVefblfRDlUC1Pnx1JxY3m8PPRvh0C_ug_rj_x_AfgF2D-w |
Cites_doi | 10.1002/smll.202400491 10.1016/j.molstruc.2013.11.010 10.1021/acs.chemrev.3c00739 10.1039/D4TA02178A 10.1021/acsami.5c01535 10.1021/acs.chemrev.3c00848 10.1016/j.polymdegradstab.2010.05.026 10.1021/acs.macromol.6b00382 10.1021/acsami.4c08185 10.1007/s00604-007-0865-1 10.1016/j.molstruc.2017.03.036 10.1126/science.abg5433 10.1016/j.cej.2019.123973 10.1007/s10973-013-3563-8 10.1021/jacs.2c11861 10.1126/science.aba3656 10.1021/acs.chemrev.2c00644 10.1016/j.resconrec.2023.107182 10.1103/PhysRevApplied.18.064061 10.1126/sciadv.1700782 10.1021/j150498a012 10.1016/j.ceramint.2021.12.235 10.1021/acsapm.3c01943 10.1038/s41467-024-53984-x 10.1038/s41467-024-45188-0 10.1002/adfm.202000712 10.1002/anie.202204383 10.1038/s41570-022-00411-8 10.1021/acsanm.4c02257 10.1021/acs.nanolett.6b04339 10.1016/j.pecs.2023.101097 10.1021/acsnano.6b08415 10.1016/j.chempr.2020.12.006 10.1126/science.abg4503 10.1016/j.jpowsour.2021.230371 10.1021/ie50301a015 10.1007/BF00319237 10.1002/smll.202402472 10.1016/j.ultramic.2008.05.011 10.1002/sus2.128 10.1038/s41467-022-31028-6 10.1002/advs.201900491 10.1038/s41586-021-04350-0 10.3390/membranes12050504 10.1002/adfm.202009524 10.1002/xrs.2822 10.1016/S0168-583X(99)00225-6 10.1016/j.apcatb.2023.123236 10.1021/acsami.4c14733 10.1016/j.nanoen.2023.108843 10.1016/j.apcatb.2023.123065 10.1016/j.progpolymsci.2019.101148 10.1007/s12274-023-5772-1 10.1002/cssc.202300692 10.1039/D2CS00688J 10.1080/10643389.2023.2259275 10.1021/acsami.4c17701 10.1002/smll.202300283 10.1039/D0RA00016G 10.1016/j.jmst.2020.02.037 10.1016/j.saa.2019.117779 10.1021/acsnano.6b05240 10.1021/acs.chemrev.2c00575 10.1038/s41586-023-06939-z 10.1039/D4MH00203B 10.1002/anie.202300094 10.1039/D2GC00324D 10.1038/s41467-021-25048-x 10.1016/S0924-4247(02)00268-6 10.1021/acs.chemmater.4c01536 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d5ta01392e |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 19863 |
ExternalDocumentID | 10_1039_D5TA01392E d5ta01392e |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c242t-dbe76a9ae44339255595ed023ac781e04ddbb0e0e950c13878dddb66016c518d3 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 07:17:36 EDT 2025 Thu Jul 03 08:35:42 EDT 2025 Thu Jun 26 15:20:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c242t-dbe76a9ae44339255595ed023ac781e04ddbb0e0e950c13878dddb66016c518d3 |
Notes | https://doi.org/10.1039/d5ta01392e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0662-782X |
PQID | 3224068030 |
PQPubID | 2047523 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3224068030 rsc_primary_d5ta01392e crossref_primary_10_1039_D5TA01392E |
PublicationCentury | 2000 |
PublicationDate | 2025-06-25 |
PublicationDateYYYYMMDD | 2025-06-25 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Rupp (D5TA01392E/cit57/1) 2022; 18 Tournier (D5TA01392E/cit8/1) 2023; 123 Li (D5TA01392E/cit35/1) 2022; 24 Li (D5TA01392E/cit47/1) 2017; 11 Chang (D5TA01392E/cit53/1) 2024; 16 Paillot (D5TA01392E/cit66/1) 2023; 16 Hussain (D5TA01392E/cit38/1) 2023; 97 Vidal (D5TA01392E/cit2/1) 2024; 626 Xie (D5TA01392E/cit43/1) 2016; 49 Chen (D5TA01392E/cit67/1) 2014; 1058 Jehanno (D5TA01392E/cit14/1) 2022; 603 Trimble (D5TA01392E/cit40/1) 1935; 27 Plummer (D5TA01392E/cit51/1) 1996; 36 Sundararajan (D5TA01392E/cit60/1) 2002; 101 Manjakkal (D5TA01392E/cit30/1) 2020; 10 Sang (D5TA01392E/cit45/1) 2016; 10 Li (D5TA01392E/cit68/1) 2023; 123 Schawe (D5TA01392E/cit52/1) 2014; 116 Zhang (D5TA01392E/cit18/1) 2024; 340 Martín (D5TA01392E/cit12/1) 2021; 7 Li (D5TA01392E/cit16/1) 2023; 16 Liu (D5TA01392E/cit20/1) 2023; 62 Patinha (D5TA01392E/cit32/1) 2019; 98 Ren (D5TA01392E/cit7/1) 2024; 54 Li (D5TA01392E/cit23/1) 2023; 3 Tanaka (D5TA01392E/cit56/1) 2008; 108 Shi (D5TA01392E/cit10/1) 2024; 124 Terada (D5TA01392E/cit58/1) 2018; 47 Xu (D5TA01392E/cit61/1) 2020; 30 Zhou (D5TA01392E/cit19/1) 2021; 12 Chang (D5TA01392E/cit29/1) 2024; 20 Svadlenak (D5TA01392E/cit26/1) 2023; 338 Kudo (D5TA01392E/cit48/1) 2020; 228 Lai (D5TA01392E/cit65/1) 2023; 19 Sang (D5TA01392E/cit34/1) 2020; 385 Geyer (D5TA01392E/cit4/1) 2017; 3 MacLeod (D5TA01392E/cit6/1) 2021; 373 Teo (D5TA01392E/cit27/1) 2024; 12 Zheng (D5TA01392E/cit5/1) 2023; 52 Lee (D5TA01392E/cit11/1) 2022; 6 Imran (D5TA01392E/cit41/1) 2010; 95 Kannan (D5TA01392E/cit49/1) 2017; 1139 Zhang (D5TA01392E/cit62/1) 2022; 13 Chang (D5TA01392E/cit44/1) 2024; 20 Lin (D5TA01392E/cit46/1) 2024; 15 Yan (D5TA01392E/cit21/1) 2023; 145 Ho (D5TA01392E/cit25/1) 2024; 6 Kim (D5TA01392E/cit28/1) 2024; 11 Guo (D5TA01392E/cit42/1) 2022; 61 Lin (D5TA01392E/cit63/1) 2017; 17 Li (D5TA01392E/cit70/1) 2025; 17 Korley (D5TA01392E/cit15/1) 2021; 373 Bharadwaj (D5TA01392E/cit9/1) 2024; 27 Xu (D5TA01392E/cit64/1) 2022; 48 Wei (D5TA01392E/cit13/1) 2019 Parker (D5TA01392E/cit50/1) 2024; 36 Ma (D5TA01392E/cit37/1) 2021; 31 Borrelle (D5TA01392E/cit3/1) 2020; 369 Tang (D5TA01392E/cit31/1) 2022; 12 Huang (D5TA01392E/cit22/1) 2023; 116 Zhang (D5TA01392E/cit71/1) 2025; 17 van Hoek (D5TA01392E/cit55/1) 2008; 161 Qiu (D5TA01392E/cit24/1) 2024; 15 Clark (D5TA01392E/cit1/1) 2024; 124 Elwan (D5TA01392E/cit33/1) 2021; 510 Iturrondobeitia (D5TA01392E/cit17/1) 2023; 198 Simha (D5TA01392E/cit39/1) 1952; 56 Luo (D5TA01392E/cit69/1) 2024; 16 Kuang (D5TA01392E/cit36/1) 2020; 56 Lin (D5TA01392E/cit54/1) 2024; 7 Raj (D5TA01392E/cit59/1) 1999; 152 |
References_xml | – volume: 20 start-page: 2400491 year: 2024 ident: D5TA01392E/cit29/1 publication-title: Small doi: 10.1002/smll.202400491 – volume: 1058 start-page: 244 year: 2014 ident: D5TA01392E/cit67/1 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2013.11.010 – volume: 124 start-page: 2617 year: 2024 ident: D5TA01392E/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00739 – volume: 12 start-page: 20947 year: 2024 ident: D5TA01392E/cit27/1 publication-title: J. Mater. Chem. A doi: 10.1039/D4TA02178A – volume: 17 start-page: 20307 year: 2025 ident: D5TA01392E/cit70/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5c01535 – volume: 124 start-page: 4393 year: 2024 ident: D5TA01392E/cit10/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00848 – volume: 95 start-page: 1686 year: 2010 ident: D5TA01392E/cit41/1 publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2010.05.026 – volume: 49 start-page: 3845 year: 2016 ident: D5TA01392E/cit43/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.6b00382 – volume: 16 start-page: 43979 year: 2024 ident: D5TA01392E/cit69/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c08185 – volume: 161 start-page: 287 year: 2008 ident: D5TA01392E/cit55/1 publication-title: Microchim. Acta doi: 10.1007/s00604-007-0865-1 – volume: 1139 start-page: 196 year: 2017 ident: D5TA01392E/cit49/1 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2017.03.036 – volume: 373 start-page: 61 year: 2021 ident: D5TA01392E/cit6/1 publication-title: Science doi: 10.1126/science.abg5433 – volume: 385 start-page: 123973 year: 2020 ident: D5TA01392E/cit34/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123973 – volume: 116 start-page: 1165 year: 2014 ident: D5TA01392E/cit52/1 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-013-3563-8 – volume: 145 start-page: 6144 year: 2023 ident: D5TA01392E/cit21/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11861 – volume: 369 start-page: 1515 year: 2020 ident: D5TA01392E/cit3/1 publication-title: Science doi: 10.1126/science.aba3656 – volume: 123 start-page: 5612 year: 2023 ident: D5TA01392E/cit8/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00644 – volume: 198 start-page: 107182 year: 2023 ident: D5TA01392E/cit17/1 publication-title: Resour., Conserv. Recycl. doi: 10.1016/j.resconrec.2023.107182 – volume: 18 start-page: 064061 year: 2022 ident: D5TA01392E/cit57/1 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.18.064061 – volume: 3 start-page: e1700782 year: 2017 ident: D5TA01392E/cit4/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700782 – volume: 56 start-page: 707 year: 1952 ident: D5TA01392E/cit39/1 publication-title: J. Phys. Chem. doi: 10.1021/j150498a012 – volume: 48 start-page: 10220 year: 2022 ident: D5TA01392E/cit64/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.12.235 – volume: 6 start-page: 552 year: 2024 ident: D5TA01392E/cit25/1 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.3c01943 – volume: 15 start-page: 9759 year: 2024 ident: D5TA01392E/cit24/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-53984-x – volume: 15 start-page: 916 year: 2024 ident: D5TA01392E/cit46/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-45188-0 – volume: 30 start-page: 2000712 year: 2020 ident: D5TA01392E/cit61/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000712 – volume: 61 start-page: e202204383 year: 2022 ident: D5TA01392E/cit42/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202204383 – volume: 6 start-page: 635 year: 2022 ident: D5TA01392E/cit11/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-022-00411-8 – volume: 7 start-page: 14707 year: 2024 ident: D5TA01392E/cit54/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.4c02257 – volume: 17 start-page: 384 year: 2017 ident: D5TA01392E/cit63/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04339 – volume: 97 start-page: 101097 year: 2023 ident: D5TA01392E/cit38/1 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2023.101097 – volume: 11 start-page: 3752 year: 2017 ident: D5TA01392E/cit47/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b08415 – volume: 7 start-page: 1487 year: 2021 ident: D5TA01392E/cit12/1 publication-title: Chem doi: 10.1016/j.chempr.2020.12.006 – volume: 373 start-page: 66 year: 2021 ident: D5TA01392E/cit15/1 publication-title: Science doi: 10.1126/science.abg4503 – volume: 510 start-page: 230371 year: 2021 ident: D5TA01392E/cit33/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230371 – volume: 27 start-page: 66 year: 1935 ident: D5TA01392E/cit40/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie50301a015 – volume: 36 start-page: 355 year: 1996 ident: D5TA01392E/cit51/1 publication-title: Polym. Bull. doi: 10.1007/BF00319237 – volume: 20 start-page: 2402472 year: 2024 ident: D5TA01392E/cit44/1 publication-title: Small doi: 10.1002/smll.202402472 – volume: 108 start-page: 1427 year: 2008 ident: D5TA01392E/cit56/1 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2008.05.011 – volume: 3 start-page: 345 year: 2023 ident: D5TA01392E/cit23/1 publication-title: SusMat doi: 10.1002/sus2.128 – volume: 13 start-page: 3315 year: 2022 ident: D5TA01392E/cit62/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31028-6 – start-page: 1900491 year: 2019 ident: D5TA01392E/cit13/1 publication-title: Adv. Sci. doi: 10.1002/advs.201900491 – volume: 603 start-page: 803 year: 2022 ident: D5TA01392E/cit14/1 publication-title: Nature doi: 10.1038/s41586-021-04350-0 – volume: 12 start-page: 504 year: 2022 ident: D5TA01392E/cit31/1 publication-title: Membranes doi: 10.3390/membranes12050504 – volume: 31 start-page: 2009524 year: 2021 ident: D5TA01392E/cit37/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009524 – volume: 47 start-page: 137 year: 2018 ident: D5TA01392E/cit58/1 publication-title: X-Ray Spectrom. doi: 10.1002/xrs.2822 – volume: 152 start-page: 417 year: 1999 ident: D5TA01392E/cit59/1 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/S0168-583X(99)00225-6 – volume: 340 start-page: 123236 year: 2024 ident: D5TA01392E/cit18/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2023.123236 – volume: 16 start-page: 61096 year: 2024 ident: D5TA01392E/cit53/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c14733 – volume: 116 start-page: 108843 year: 2023 ident: D5TA01392E/cit22/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108843 – volume: 338 start-page: 123065 year: 2023 ident: D5TA01392E/cit26/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2023.123065 – volume: 98 start-page: 101148 year: 2019 ident: D5TA01392E/cit32/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2019.101148 – volume: 16 start-page: 12223 year: 2023 ident: D5TA01392E/cit16/1 publication-title: Nano Res. doi: 10.1007/s12274-023-5772-1 – volume: 16 start-page: e202300692 year: 2023 ident: D5TA01392E/cit66/1 publication-title: ChemSusChem doi: 10.1002/cssc.202300692 – volume: 52 start-page: 8 year: 2023 ident: D5TA01392E/cit5/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00688J – volume: 54 start-page: 533 year: 2024 ident: D5TA01392E/cit7/1 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2023.2259275 – volume: 17 start-page: 4165 year: 2025 ident: D5TA01392E/cit71/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c17701 – volume: 19 start-page: 2300283 year: 2023 ident: D5TA01392E/cit65/1 publication-title: Small doi: 10.1002/smll.202300283 – volume: 10 start-page: 8594 year: 2020 ident: D5TA01392E/cit30/1 publication-title: RSC Adv. doi: 10.1039/D0RA00016G – volume: 56 start-page: 18 year: 2020 ident: D5TA01392E/cit36/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.02.037 – volume: 228 start-page: 117779 year: 2020 ident: D5TA01392E/cit48/1 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2019.117779 – volume: 10 start-page: 9193 year: 2016 ident: D5TA01392E/cit45/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b05240 – volume: 123 start-page: 701 year: 2023 ident: D5TA01392E/cit68/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00575 – volume: 626 start-page: 45 year: 2024 ident: D5TA01392E/cit2/1 publication-title: Nature doi: 10.1038/s41586-023-06939-z – volume: 11 start-page: 3548 year: 2024 ident: D5TA01392E/cit28/1 publication-title: Mater. Horiz. doi: 10.1039/D4MH00203B – volume: 62 start-page: e202300094 year: 2023 ident: D5TA01392E/cit20/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202300094 – volume: 24 start-page: 3433 year: 2022 ident: D5TA01392E/cit35/1 publication-title: Green Chem. doi: 10.1039/D2GC00324D – volume: 27 start-page: 100936 year: 2024 ident: D5TA01392E/cit9/1 publication-title: Mater. Today Sustain. – volume: 12 start-page: 4679 year: 2021 ident: D5TA01392E/cit19/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25048-x – volume: 101 start-page: 338 year: 2002 ident: D5TA01392E/cit60/1 publication-title: Sens. Actuators, A doi: 10.1016/S0924-4247(02)00268-6 – volume: 36 start-page: 8437 year: 2024 ident: D5TA01392E/cit50/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.4c01536 |
SSID | ssj0000800699 |
Score | 2.4463034 |
Snippet | Upcycling polyethylene terephthalate (PET) waste into multifunctional materials offers a sustainable solution to plastic pollution. In this work, upcycled... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1985 |
SubjectTerms | Acrylic acid Clean technology Elastomers Electrical properties Flexible components Ionic liquids Multifunctional materials Multilayers Plastic pollution Polyethylene terephthalate Substrates |
Title | Layer-by-layer techniques incorporating upcycled TPEE: from waste to conductive, multi-responsive, self-healable, and highly-stretchable electronics |
URI | https://www.proquest.com/docview/3224068030 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QUeELeJwkCW4K31yM258FaVoAIT4iETe4tix9UqVe3UJkLd79jf479wjh0nKdsk4CVKbTmK_H05_uyeCyHvuD93CiEFi-chbFDmqmCJzwWToogV6H1ck9Db4ls4Ow--XPCLweBXz2uprsSpvL4zruR_UIU2wBWjZP8B2fah0AD3gC9cAWG4_hXGZwUIZiZ2bIk3ozYfK_pYySZFMR4F1FdyB0PLUfY9TfEMQAeV_CwAYdSesCXGrK9g93DCtYsh2zS-s6Ztq5ZzhpoSA62swydmOl7uGEabAPQ6BKsrqrO9R_WCQDYzM5K21NzpaGKihmyPzkJuYhL1sb6N8UI33vYfgKk96Z5eLgr2Qy3u6KhXLLNLM_Ys1rVmLXwSbFa3C9LXem0cSxYMxjSfS3MS4nH02DJR08Zgeg53MDeqseeq32aq5rYW3-8xu3mCsd9uYgoINVoAfhrze2uhcXzM01ryqkAN7aluOW2dHLvOA3LkRRF6ERxN0uzzWXsIiHI91DVO23e3KXT95H33gH3R1O2EDja2TI2WQ9lj8qhBlE4MKZ-QgVo9JQ972S2fkZt9etKOnnSPntTSkyI9P1AkJ9XkpNWaduQc0z-pOaZ7xBxToAu9TUvao-Vzcv4pzaYz1hQBYRLUY8VKoaIQU8gHgQ9TwWEHzFUJSrOQUewqJyhLIRzlqIQ70vXjKC6hJcQsQ5K7cekfk8PVeqVeECpE6QZOGanIDQLpyjiG-XZFocJARNwLh-StneX8yuR6ybWPhp_kH3k20VikQ3JiAcgbW7DNfa2MY1gxh-QYQGnHdxi-vK_jFXnQsfmEHFabWr0GpVuJNw1ffgO_0rFL |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-by-layer+techniques+incorporating+upcycled+TPEE%3A+from+waste+to+conductive%2C+multi-responsive%2C+self-healable%2C+and+highly-stretchable+electronics&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Chang%2C+Chia-Wei&rft.au=Chang%2C+Chun-Ting&rft.au=Ciou%2C+Jian-Hua&rft.au=Kuo%2C+Kai-Chuan&rft.date=2025-06-25&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=13&rft.issue=25&rft.spage=1985&rft.epage=19863&rft_id=info:doi/10.1039%2Fd5ta01392e&rft.externalDocID=d5ta01392e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |