Layer-by-layer techniques incorporating upcycled TPEE: from waste to conductive, multi-responsive, self-healable, and highly-stretchable electronics

Upcycling polyethylene terephthalate (PET) waste into multifunctional materials offers a sustainable solution to plastic pollution. In this work, upcycled thermoplastic polyester elastomer (TPEE) films are utilized as substrates to fabricate conductive, stretchable, self-healable, and alkaline-respo...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 13; no. 25; pp. 1985 - 19863
Main Authors Chang, Chia-Wei, Chang, Chun-Ting, Ciou, Jian-Hua, Kuo, Kai-Chuan, Wu, Chia-Ti, Lin, Ji, Lo, Tse-Yu, Chen, Yu, Lin, Huan-Wei, Tseng, Yu-Hsuan, Li, Mei-Li, Lin, Che-Tseng, Chen, Jiun-Tai
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 25.06.2025
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
DOI10.1039/d5ta01392e

Cover

Abstract Upcycling polyethylene terephthalate (PET) waste into multifunctional materials offers a sustainable solution to plastic pollution. In this work, upcycled thermoplastic polyester elastomer (TPEE) films are utilized as substrates to fabricate conductive, stretchable, self-healable, and alkaline-responsive multilayered films. A layer-by-layer assembly of poly(ionic liquid- co -acrylic acid) (PIL- co -PAA) and MXene nanosheets imparts elasticity, conductivity, and environmental responsiveness. Extending this method to commercial fabrics demonstrates self-healing mechanical and electrical properties, broadening application prospects. These findings highlight the potential of TPEE-based multilayer films as advanced materials for wearable and flexible electronics, emphasizing the role of upcycling in creating high-value, sustainable technologies. Upcycled thermoplastic polyester elastomers, poly(ionic liquid- co -acrylic acid), and MXene nanosheets are utilized to fabricate conductive, stretchable, self-healable, and alkaline-responsive multilayered films.
AbstractList Upcycling polyethylene terephthalate (PET) waste into multifunctional materials offers a sustainable solution to plastic pollution. In this work, upcycled thermoplastic polyester elastomer (TPEE) films are utilized as substrates to fabricate conductive, stretchable, self-healable, and alkaline-responsive multilayered films. A layer-by-layer assembly of poly(ionic liquid-co-acrylic acid) (PIL-co-PAA) and MXene nanosheets imparts elasticity, conductivity, and environmental responsiveness. Extending this method to commercial fabrics demonstrates self-healing mechanical and electrical properties, broadening application prospects. These findings highlight the potential of TPEE-based multilayer films as advanced materials for wearable and flexible electronics, emphasizing the role of upcycling in creating high-value, sustainable technologies.
Upcycling polyethylene terephthalate (PET) waste into multifunctional materials offers a sustainable solution to plastic pollution. In this work, upcycled thermoplastic polyester elastomer (TPEE) films are utilized as substrates to fabricate conductive, stretchable, self-healable, and alkaline-responsive multilayered films. A layer-by-layer assembly of poly(ionic liquid- co -acrylic acid) (PIL- co -PAA) and MXene nanosheets imparts elasticity, conductivity, and environmental responsiveness. Extending this method to commercial fabrics demonstrates self-healing mechanical and electrical properties, broadening application prospects. These findings highlight the potential of TPEE-based multilayer films as advanced materials for wearable and flexible electronics, emphasizing the role of upcycling in creating high-value, sustainable technologies. Upcycled thermoplastic polyester elastomers, poly(ionic liquid- co -acrylic acid), and MXene nanosheets are utilized to fabricate conductive, stretchable, self-healable, and alkaline-responsive multilayered films.
Author Ciou, Jian-Hua
Lin, Huan-Wei
Chang, Chun-Ting
Tseng, Yu-Hsuan
Chen, Yu
Lin, Ji
Lin, Che-Tseng
Wu, Chia-Ti
Lo, Tse-Yu
Li, Mei-Li
Chang, Chia-Wei
Chen, Jiun-Tai
Kuo, Kai-Chuan
AuthorAffiliation Center for Emergent Functional Matter Science
National Yang Ming Chiao Tung University
Department of Performance Materials Synthesis & Application Division of Polymer Research Material and Chemical Research Laboratories
Industrial Technology Research Institute
Department of Applied Chemistry
AuthorAffiliation_xml – name: Department of Applied Chemistry
– name: Industrial Technology Research Institute
– name: National Yang Ming Chiao Tung University
– name: Department of Performance Materials Synthesis & Application Division of Polymer Research Material and Chemical Research Laboratories
– name: Center for Emergent Functional Matter Science
Author_xml – sequence: 1
  givenname: Chia-Wei
  surname: Chang
  fullname: Chang, Chia-Wei
– sequence: 2
  givenname: Chun-Ting
  surname: Chang
  fullname: Chang, Chun-Ting
– sequence: 3
  givenname: Jian-Hua
  surname: Ciou
  fullname: Ciou, Jian-Hua
– sequence: 4
  givenname: Kai-Chuan
  surname: Kuo
  fullname: Kuo, Kai-Chuan
– sequence: 5
  givenname: Chia-Ti
  surname: Wu
  fullname: Wu, Chia-Ti
– sequence: 6
  givenname: Ji
  surname: Lin
  fullname: Lin, Ji
– sequence: 7
  givenname: Tse-Yu
  surname: Lo
  fullname: Lo, Tse-Yu
– sequence: 8
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
– sequence: 9
  givenname: Huan-Wei
  surname: Lin
  fullname: Lin, Huan-Wei
– sequence: 10
  givenname: Yu-Hsuan
  surname: Tseng
  fullname: Tseng, Yu-Hsuan
– sequence: 11
  givenname: Mei-Li
  surname: Li
  fullname: Li, Mei-Li
– sequence: 12
  givenname: Che-Tseng
  surname: Lin
  fullname: Lin, Che-Tseng
– sequence: 13
  givenname: Jiun-Tai
  surname: Chen
  fullname: Chen, Jiun-Tai
BookMark eNpFkU1LxDAQhoMo-LUX70LAmxidNk239Sa6fsCCHtZzSZNZW8kmNUmV_g9_sN1d0bnMzMvDDO_MIdm1ziIhJwlcJsDLKy2ihISXKe6QgxQEsGlW5rt_dVHsk0kI7zBGAZCX5QH5nssBPasHZtYFjaga2370GGhrlfOd8zK29o32nRqUQU0XL7PZNV16t6JfMkSk0VHlrO5VbD_xgq56E1vmMXTOho0S0CxZg9LI2oyttJo27VtjBhaix6iatU7RoIre2VaFY7K3lCbg5Dcfkdf72eL2kc2fH55ub-ZMpVkama5xmstSYpbx0bUQohSoIeVSTYsEIdO6rgEBSwEq4cW00KOS55DkSiSF5kfkbDu3825tOVbvrvd2XFnxNM0gL4DDSJ1vKeVdCB6XVefblfRDlUC1Pnx1JxY3m8PPRvh0C_ug_rj_x_AfgF2D-w
Cites_doi 10.1002/smll.202400491
10.1016/j.molstruc.2013.11.010
10.1021/acs.chemrev.3c00739
10.1039/D4TA02178A
10.1021/acsami.5c01535
10.1021/acs.chemrev.3c00848
10.1016/j.polymdegradstab.2010.05.026
10.1021/acs.macromol.6b00382
10.1021/acsami.4c08185
10.1007/s00604-007-0865-1
10.1016/j.molstruc.2017.03.036
10.1126/science.abg5433
10.1016/j.cej.2019.123973
10.1007/s10973-013-3563-8
10.1021/jacs.2c11861
10.1126/science.aba3656
10.1021/acs.chemrev.2c00644
10.1016/j.resconrec.2023.107182
10.1103/PhysRevApplied.18.064061
10.1126/sciadv.1700782
10.1021/j150498a012
10.1016/j.ceramint.2021.12.235
10.1021/acsapm.3c01943
10.1038/s41467-024-53984-x
10.1038/s41467-024-45188-0
10.1002/adfm.202000712
10.1002/anie.202204383
10.1038/s41570-022-00411-8
10.1021/acsanm.4c02257
10.1021/acs.nanolett.6b04339
10.1016/j.pecs.2023.101097
10.1021/acsnano.6b08415
10.1016/j.chempr.2020.12.006
10.1126/science.abg4503
10.1016/j.jpowsour.2021.230371
10.1021/ie50301a015
10.1007/BF00319237
10.1002/smll.202402472
10.1016/j.ultramic.2008.05.011
10.1002/sus2.128
10.1038/s41467-022-31028-6
10.1002/advs.201900491
10.1038/s41586-021-04350-0
10.3390/membranes12050504
10.1002/adfm.202009524
10.1002/xrs.2822
10.1016/S0168-583X(99)00225-6
10.1016/j.apcatb.2023.123236
10.1021/acsami.4c14733
10.1016/j.nanoen.2023.108843
10.1016/j.apcatb.2023.123065
10.1016/j.progpolymsci.2019.101148
10.1007/s12274-023-5772-1
10.1002/cssc.202300692
10.1039/D2CS00688J
10.1080/10643389.2023.2259275
10.1021/acsami.4c17701
10.1002/smll.202300283
10.1039/D0RA00016G
10.1016/j.jmst.2020.02.037
10.1016/j.saa.2019.117779
10.1021/acsnano.6b05240
10.1021/acs.chemrev.2c00575
10.1038/s41586-023-06939-z
10.1039/D4MH00203B
10.1002/anie.202300094
10.1039/D2GC00324D
10.1038/s41467-021-25048-x
10.1016/S0924-4247(02)00268-6
10.1021/acs.chemmater.4c01536
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d5ta01392e
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 19863
ExternalDocumentID 10_1039_D5TA01392E
d5ta01392e
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c242t-dbe76a9ae44339255595ed023ac781e04ddbb0e0e950c13878dddb66016c518d3
ISSN 2050-7488
IngestDate Mon Jun 30 07:17:36 EDT 2025
Thu Jul 03 08:35:42 EDT 2025
Thu Jun 26 15:20:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c242t-dbe76a9ae44339255595ed023ac781e04ddbb0e0e950c13878dddb66016c518d3
Notes https://doi.org/10.1039/d5ta01392e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0662-782X
PQID 3224068030
PQPubID 2047523
PageCount 14
ParticipantIDs proquest_journals_3224068030
rsc_primary_d5ta01392e
crossref_primary_10_1039_D5TA01392E
PublicationCentury 2000
PublicationDate 2025-06-25
PublicationDateYYYYMMDD 2025-06-25
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-25
  day: 25
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Rupp (D5TA01392E/cit57/1) 2022; 18
Tournier (D5TA01392E/cit8/1) 2023; 123
Li (D5TA01392E/cit35/1) 2022; 24
Li (D5TA01392E/cit47/1) 2017; 11
Chang (D5TA01392E/cit53/1) 2024; 16
Paillot (D5TA01392E/cit66/1) 2023; 16
Hussain (D5TA01392E/cit38/1) 2023; 97
Vidal (D5TA01392E/cit2/1) 2024; 626
Xie (D5TA01392E/cit43/1) 2016; 49
Chen (D5TA01392E/cit67/1) 2014; 1058
Jehanno (D5TA01392E/cit14/1) 2022; 603
Trimble (D5TA01392E/cit40/1) 1935; 27
Plummer (D5TA01392E/cit51/1) 1996; 36
Sundararajan (D5TA01392E/cit60/1) 2002; 101
Manjakkal (D5TA01392E/cit30/1) 2020; 10
Sang (D5TA01392E/cit45/1) 2016; 10
Li (D5TA01392E/cit68/1) 2023; 123
Schawe (D5TA01392E/cit52/1) 2014; 116
Zhang (D5TA01392E/cit18/1) 2024; 340
Martín (D5TA01392E/cit12/1) 2021; 7
Li (D5TA01392E/cit16/1) 2023; 16
Liu (D5TA01392E/cit20/1) 2023; 62
Patinha (D5TA01392E/cit32/1) 2019; 98
Ren (D5TA01392E/cit7/1) 2024; 54
Li (D5TA01392E/cit23/1) 2023; 3
Tanaka (D5TA01392E/cit56/1) 2008; 108
Shi (D5TA01392E/cit10/1) 2024; 124
Terada (D5TA01392E/cit58/1) 2018; 47
Xu (D5TA01392E/cit61/1) 2020; 30
Zhou (D5TA01392E/cit19/1) 2021; 12
Chang (D5TA01392E/cit29/1) 2024; 20
Svadlenak (D5TA01392E/cit26/1) 2023; 338
Kudo (D5TA01392E/cit48/1) 2020; 228
Lai (D5TA01392E/cit65/1) 2023; 19
Sang (D5TA01392E/cit34/1) 2020; 385
Geyer (D5TA01392E/cit4/1) 2017; 3
MacLeod (D5TA01392E/cit6/1) 2021; 373
Teo (D5TA01392E/cit27/1) 2024; 12
Zheng (D5TA01392E/cit5/1) 2023; 52
Lee (D5TA01392E/cit11/1) 2022; 6
Imran (D5TA01392E/cit41/1) 2010; 95
Kannan (D5TA01392E/cit49/1) 2017; 1139
Zhang (D5TA01392E/cit62/1) 2022; 13
Chang (D5TA01392E/cit44/1) 2024; 20
Lin (D5TA01392E/cit46/1) 2024; 15
Yan (D5TA01392E/cit21/1) 2023; 145
Ho (D5TA01392E/cit25/1) 2024; 6
Kim (D5TA01392E/cit28/1) 2024; 11
Guo (D5TA01392E/cit42/1) 2022; 61
Lin (D5TA01392E/cit63/1) 2017; 17
Li (D5TA01392E/cit70/1) 2025; 17
Korley (D5TA01392E/cit15/1) 2021; 373
Bharadwaj (D5TA01392E/cit9/1) 2024; 27
Xu (D5TA01392E/cit64/1) 2022; 48
Wei (D5TA01392E/cit13/1) 2019
Parker (D5TA01392E/cit50/1) 2024; 36
Ma (D5TA01392E/cit37/1) 2021; 31
Borrelle (D5TA01392E/cit3/1) 2020; 369
Tang (D5TA01392E/cit31/1) 2022; 12
Huang (D5TA01392E/cit22/1) 2023; 116
Zhang (D5TA01392E/cit71/1) 2025; 17
van Hoek (D5TA01392E/cit55/1) 2008; 161
Qiu (D5TA01392E/cit24/1) 2024; 15
Clark (D5TA01392E/cit1/1) 2024; 124
Elwan (D5TA01392E/cit33/1) 2021; 510
Iturrondobeitia (D5TA01392E/cit17/1) 2023; 198
Simha (D5TA01392E/cit39/1) 1952; 56
Luo (D5TA01392E/cit69/1) 2024; 16
Kuang (D5TA01392E/cit36/1) 2020; 56
Lin (D5TA01392E/cit54/1) 2024; 7
Raj (D5TA01392E/cit59/1) 1999; 152
References_xml – volume: 20
  start-page: 2400491
  year: 2024
  ident: D5TA01392E/cit29/1
  publication-title: Small
  doi: 10.1002/smll.202400491
– volume: 1058
  start-page: 244
  year: 2014
  ident: D5TA01392E/cit67/1
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2013.11.010
– volume: 124
  start-page: 2617
  year: 2024
  ident: D5TA01392E/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00739
– volume: 12
  start-page: 20947
  year: 2024
  ident: D5TA01392E/cit27/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D4TA02178A
– volume: 17
  start-page: 20307
  year: 2025
  ident: D5TA01392E/cit70/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5c01535
– volume: 124
  start-page: 4393
  year: 2024
  ident: D5TA01392E/cit10/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00848
– volume: 95
  start-page: 1686
  year: 2010
  ident: D5TA01392E/cit41/1
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2010.05.026
– volume: 49
  start-page: 3845
  year: 2016
  ident: D5TA01392E/cit43/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00382
– volume: 16
  start-page: 43979
  year: 2024
  ident: D5TA01392E/cit69/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c08185
– volume: 161
  start-page: 287
  year: 2008
  ident: D5TA01392E/cit55/1
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-007-0865-1
– volume: 1139
  start-page: 196
  year: 2017
  ident: D5TA01392E/cit49/1
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2017.03.036
– volume: 373
  start-page: 61
  year: 2021
  ident: D5TA01392E/cit6/1
  publication-title: Science
  doi: 10.1126/science.abg5433
– volume: 385
  start-page: 123973
  year: 2020
  ident: D5TA01392E/cit34/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123973
– volume: 116
  start-page: 1165
  year: 2014
  ident: D5TA01392E/cit52/1
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-013-3563-8
– volume: 145
  start-page: 6144
  year: 2023
  ident: D5TA01392E/cit21/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11861
– volume: 369
  start-page: 1515
  year: 2020
  ident: D5TA01392E/cit3/1
  publication-title: Science
  doi: 10.1126/science.aba3656
– volume: 123
  start-page: 5612
  year: 2023
  ident: D5TA01392E/cit8/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00644
– volume: 198
  start-page: 107182
  year: 2023
  ident: D5TA01392E/cit17/1
  publication-title: Resour., Conserv. Recycl.
  doi: 10.1016/j.resconrec.2023.107182
– volume: 18
  start-page: 064061
  year: 2022
  ident: D5TA01392E/cit57/1
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.18.064061
– volume: 3
  start-page: e1700782
  year: 2017
  ident: D5TA01392E/cit4/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700782
– volume: 56
  start-page: 707
  year: 1952
  ident: D5TA01392E/cit39/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150498a012
– volume: 48
  start-page: 10220
  year: 2022
  ident: D5TA01392E/cit64/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.12.235
– volume: 6
  start-page: 552
  year: 2024
  ident: D5TA01392E/cit25/1
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.3c01943
– volume: 15
  start-page: 9759
  year: 2024
  ident: D5TA01392E/cit24/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-53984-x
– volume: 15
  start-page: 916
  year: 2024
  ident: D5TA01392E/cit46/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45188-0
– volume: 30
  start-page: 2000712
  year: 2020
  ident: D5TA01392E/cit61/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000712
– volume: 61
  start-page: e202204383
  year: 2022
  ident: D5TA01392E/cit42/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202204383
– volume: 6
  start-page: 635
  year: 2022
  ident: D5TA01392E/cit11/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-022-00411-8
– volume: 7
  start-page: 14707
  year: 2024
  ident: D5TA01392E/cit54/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.4c02257
– volume: 17
  start-page: 384
  year: 2017
  ident: D5TA01392E/cit63/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04339
– volume: 97
  start-page: 101097
  year: 2023
  ident: D5TA01392E/cit38/1
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2023.101097
– volume: 11
  start-page: 3752
  year: 2017
  ident: D5TA01392E/cit47/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08415
– volume: 7
  start-page: 1487
  year: 2021
  ident: D5TA01392E/cit12/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.12.006
– volume: 373
  start-page: 66
  year: 2021
  ident: D5TA01392E/cit15/1
  publication-title: Science
  doi: 10.1126/science.abg4503
– volume: 510
  start-page: 230371
  year: 2021
  ident: D5TA01392E/cit33/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230371
– volume: 27
  start-page: 66
  year: 1935
  ident: D5TA01392E/cit40/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie50301a015
– volume: 36
  start-page: 355
  year: 1996
  ident: D5TA01392E/cit51/1
  publication-title: Polym. Bull.
  doi: 10.1007/BF00319237
– volume: 20
  start-page: 2402472
  year: 2024
  ident: D5TA01392E/cit44/1
  publication-title: Small
  doi: 10.1002/smll.202402472
– volume: 108
  start-page: 1427
  year: 2008
  ident: D5TA01392E/cit56/1
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2008.05.011
– volume: 3
  start-page: 345
  year: 2023
  ident: D5TA01392E/cit23/1
  publication-title: SusMat
  doi: 10.1002/sus2.128
– volume: 13
  start-page: 3315
  year: 2022
  ident: D5TA01392E/cit62/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31028-6
– start-page: 1900491
  year: 2019
  ident: D5TA01392E/cit13/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900491
– volume: 603
  start-page: 803
  year: 2022
  ident: D5TA01392E/cit14/1
  publication-title: Nature
  doi: 10.1038/s41586-021-04350-0
– volume: 12
  start-page: 504
  year: 2022
  ident: D5TA01392E/cit31/1
  publication-title: Membranes
  doi: 10.3390/membranes12050504
– volume: 31
  start-page: 2009524
  year: 2021
  ident: D5TA01392E/cit37/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009524
– volume: 47
  start-page: 137
  year: 2018
  ident: D5TA01392E/cit58/1
  publication-title: X-Ray Spectrom.
  doi: 10.1002/xrs.2822
– volume: 152
  start-page: 417
  year: 1999
  ident: D5TA01392E/cit59/1
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/S0168-583X(99)00225-6
– volume: 340
  start-page: 123236
  year: 2024
  ident: D5TA01392E/cit18/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2023.123236
– volume: 16
  start-page: 61096
  year: 2024
  ident: D5TA01392E/cit53/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c14733
– volume: 116
  start-page: 108843
  year: 2023
  ident: D5TA01392E/cit22/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108843
– volume: 338
  start-page: 123065
  year: 2023
  ident: D5TA01392E/cit26/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2023.123065
– volume: 98
  start-page: 101148
  year: 2019
  ident: D5TA01392E/cit32/1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2019.101148
– volume: 16
  start-page: 12223
  year: 2023
  ident: D5TA01392E/cit16/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-5772-1
– volume: 16
  start-page: e202300692
  year: 2023
  ident: D5TA01392E/cit66/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202300692
– volume: 52
  start-page: 8
  year: 2023
  ident: D5TA01392E/cit5/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00688J
– volume: 54
  start-page: 533
  year: 2024
  ident: D5TA01392E/cit7/1
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2023.2259275
– volume: 17
  start-page: 4165
  year: 2025
  ident: D5TA01392E/cit71/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c17701
– volume: 19
  start-page: 2300283
  year: 2023
  ident: D5TA01392E/cit65/1
  publication-title: Small
  doi: 10.1002/smll.202300283
– volume: 10
  start-page: 8594
  year: 2020
  ident: D5TA01392E/cit30/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA00016G
– volume: 56
  start-page: 18
  year: 2020
  ident: D5TA01392E/cit36/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.02.037
– volume: 228
  start-page: 117779
  year: 2020
  ident: D5TA01392E/cit48/1
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2019.117779
– volume: 10
  start-page: 9193
  year: 2016
  ident: D5TA01392E/cit45/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05240
– volume: 123
  start-page: 701
  year: 2023
  ident: D5TA01392E/cit68/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00575
– volume: 626
  start-page: 45
  year: 2024
  ident: D5TA01392E/cit2/1
  publication-title: Nature
  doi: 10.1038/s41586-023-06939-z
– volume: 11
  start-page: 3548
  year: 2024
  ident: D5TA01392E/cit28/1
  publication-title: Mater. Horiz.
  doi: 10.1039/D4MH00203B
– volume: 62
  start-page: e202300094
  year: 2023
  ident: D5TA01392E/cit20/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202300094
– volume: 24
  start-page: 3433
  year: 2022
  ident: D5TA01392E/cit35/1
  publication-title: Green Chem.
  doi: 10.1039/D2GC00324D
– volume: 27
  start-page: 100936
  year: 2024
  ident: D5TA01392E/cit9/1
  publication-title: Mater. Today Sustain.
– volume: 12
  start-page: 4679
  year: 2021
  ident: D5TA01392E/cit19/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25048-x
– volume: 101
  start-page: 338
  year: 2002
  ident: D5TA01392E/cit60/1
  publication-title: Sens. Actuators, A
  doi: 10.1016/S0924-4247(02)00268-6
– volume: 36
  start-page: 8437
  year: 2024
  ident: D5TA01392E/cit50/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.4c01536
SSID ssj0000800699
Score 2.4463034
Snippet Upcycling polyethylene terephthalate (PET) waste into multifunctional materials offers a sustainable solution to plastic pollution. In this work, upcycled...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 1985
SubjectTerms Acrylic acid
Clean technology
Elastomers
Electrical properties
Flexible components
Ionic liquids
Multifunctional materials
Multilayers
Plastic pollution
Polyethylene terephthalate
Substrates
Title Layer-by-layer techniques incorporating upcycled TPEE: from waste to conductive, multi-responsive, self-healable, and highly-stretchable electronics
URI https://www.proquest.com/docview/3224068030
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QUeELeJwkCW4K31yM258FaVoAIT4iETe4tix9UqVe3UJkLd79jf479wjh0nKdsk4CVKbTmK_H05_uyeCyHvuD93CiEFi-chbFDmqmCJzwWToogV6H1ck9Db4ls4Ow--XPCLweBXz2uprsSpvL4zruR_UIU2wBWjZP8B2fah0AD3gC9cAWG4_hXGZwUIZiZ2bIk3ozYfK_pYySZFMR4F1FdyB0PLUfY9TfEMQAeV_CwAYdSesCXGrK9g93DCtYsh2zS-s6Ztq5ZzhpoSA62swydmOl7uGEabAPQ6BKsrqrO9R_WCQDYzM5K21NzpaGKihmyPzkJuYhL1sb6N8UI33vYfgKk96Z5eLgr2Qy3u6KhXLLNLM_Ys1rVmLXwSbFa3C9LXem0cSxYMxjSfS3MS4nH02DJR08Zgeg53MDeqseeq32aq5rYW3-8xu3mCsd9uYgoINVoAfhrze2uhcXzM01ryqkAN7aluOW2dHLvOA3LkRRF6ERxN0uzzWXsIiHI91DVO23e3KXT95H33gH3R1O2EDja2TI2WQ9lj8qhBlE4MKZ-QgVo9JQ972S2fkZt9etKOnnSPntTSkyI9P1AkJ9XkpNWaduQc0z-pOaZ7xBxToAu9TUvao-Vzcv4pzaYz1hQBYRLUY8VKoaIQU8gHgQ9TwWEHzFUJSrOQUewqJyhLIRzlqIQ70vXjKC6hJcQsQ5K7cekfk8PVeqVeECpE6QZOGanIDQLpyjiG-XZFocJARNwLh-StneX8yuR6ybWPhp_kH3k20VikQ3JiAcgbW7DNfa2MY1gxh-QYQGnHdxi-vK_jFXnQsfmEHFabWr0GpVuJNw1ffgO_0rFL
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layer-by-layer+techniques+incorporating+upcycled+TPEE%3A+from+waste+to+conductive%2C+multi-responsive%2C+self-healable%2C+and+highly-stretchable+electronics&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Chang%2C+Chia-Wei&rft.au=Chang%2C+Chun-Ting&rft.au=Ciou%2C+Jian-Hua&rft.au=Kuo%2C+Kai-Chuan&rft.date=2025-06-25&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=13&rft.issue=25&rft.spage=1985&rft.epage=19863&rft_id=info:doi/10.1039%2Fd5ta01392e&rft.externalDocID=d5ta01392e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon