Surface reconstruction of NiFe layered double hydroxides by S2- corrosion for efficient oxygen evolution
[Display omitted] Nickel-iron layered double hydroxides (NiFe LDH) are subject to surface reconstruction by the applied anodic potential in alkaline media, and the reconstructed metal hydroxyl oxides are often considered to be the actual active material for oxygen evolution reaction (OER), so how to...
Saved in:
Published in | Journal of electroanalytical chemistry (Lausanne, Switzerland) Vol. 947; p. 117788 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1572-6657 1873-2569 |
DOI | 10.1016/j.jelechem.2023.117788 |
Cover
Loading…
Abstract | [Display omitted]
Nickel-iron layered double hydroxides (NiFe LDH) are subject to surface reconstruction by the applied anodic potential in alkaline media, and the reconstructed metal hydroxyl oxides are often considered to be the actual active material for oxygen evolution reaction (OER), so how to facilitate surface reconstruction is crucial for their performance. In this paper, the surface reconstruction of NiFe LDH nanosheets was successfully induced by S2- corrosion using rapid wet chemical engineering without affecting their crystal structure and nanomorphology; Notably, the NiOOH species formed on the corroded S-NiFe LDH/NF surface participate in the OER process as active species. The electrochemical measurements show that S-NiFe LDH/NF has a low overpotential of 250 mV and a Tafel slope of 26.3 mV dec -1 at 50 mA cm−2. This work provides a simple activation strategy for the surface reconstruction of NiFe LDH, which is an important reference for the design of advanced catalysts. |
---|---|
AbstractList | [Display omitted]
Nickel-iron layered double hydroxides (NiFe LDH) are subject to surface reconstruction by the applied anodic potential in alkaline media, and the reconstructed metal hydroxyl oxides are often considered to be the actual active material for oxygen evolution reaction (OER), so how to facilitate surface reconstruction is crucial for their performance. In this paper, the surface reconstruction of NiFe LDH nanosheets was successfully induced by S2- corrosion using rapid wet chemical engineering without affecting their crystal structure and nanomorphology; Notably, the NiOOH species formed on the corroded S-NiFe LDH/NF surface participate in the OER process as active species. The electrochemical measurements show that S-NiFe LDH/NF has a low overpotential of 250 mV and a Tafel slope of 26.3 mV dec -1 at 50 mA cm−2. This work provides a simple activation strategy for the surface reconstruction of NiFe LDH, which is an important reference for the design of advanced catalysts. |
ArticleNumber | 117788 |
Author | Hao, Liping Wang, Peng Xuanwen, Liu Wang, Hongxin |
Author_xml | – sequence: 1 givenname: Peng surname: Wang fullname: Wang, Peng organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China – sequence: 2 givenname: Liping surname: Hao fullname: Hao, Liping organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China – sequence: 3 givenname: Hongxin surname: Wang fullname: Wang, Hongxin organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China – sequence: 4 givenname: Liu surname: Xuanwen fullname: Xuanwen, Liu email: lxw@neuq.edu.cn organization: School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China |
BookMark | eNqFkMtOwzAQRS1UJNrCLyD_QILtPBxLLEAVBaQKFu3eSiZj6iiNkZNUzd-TqLBh09Xczbm6cxZk1rgGCbnnLOSMpw9VWGGNsMdDKJiIQs6lzLIrMueZjAKRpGo25kSKIE0TeUMWbVsxJrKMiznZb3tvckDqEVzTdr6HzrqGOkM_7BppnQ_osaSl64sa6X4ovTvZEltaDHQrAgrOe9dOiHGeojEWLDYddafhCxuKR1f3U-MtuTZ53eLd712S3fplt3oLNp-v76vnTQAiFl2gYgQErhjjShqVouCJUEIkABHDOFFFbCQww4sMOai8xMxEILiRmMaFipYkPdfCuKr1aPS3t4fcD5ozPenSlf7TpSdd-qxrBB__gWC7fFre-dzWl_GnM47jb0eLXreTB8DSjmY7XTp7qeIHOiOPVw |
CitedBy_id | crossref_primary_10_1021_acsami_4c10721 crossref_primary_10_1016_j_ijhydene_2025_03_262 crossref_primary_10_1016_j_jallcom_2024_178419 crossref_primary_10_1002_smll_202409499 crossref_primary_10_1016_j_diamond_2024_111514 |
Cites_doi | 10.1002/adfm.202212233 10.1016/j.cej.2020.127587 10.1016/j.apcatb.2021.121033 10.1021/acssuschemeng.0c01450 10.1016/j.cej.2023.141714 10.1021/acsami.0c04302 10.1002/smll.202102027 10.1002/adfm.202300579 10.1039/D2TA09039B 10.1002/smll.202000663 10.1016/j.jechem.2022.04.017 10.1021/acssuschemeng.0c06969 10.1016/j.apcatb.2022.121825 10.1002/aenm.202202522 10.1002/adma.201702327 10.1002/anie.202207217 10.1016/j.apcatb.2018.03.083 10.1016/j.jallcom.2019.153246 10.1016/j.nanoen.2021.105955 10.1073/pnas.2202812119 10.1002/anie.202112870 10.1021/acscatal.2c05624 10.1002/aenm.202201913 10.1002/adma.202200840 10.1002/smll.202100129 10.1016/j.apcatb.2022.121713 10.1016/j.apcatb.2023.122715 10.1016/j.cej.2018.09.001 10.1016/j.cej.2023.144839 10.1016/S1872-2067(20)63633-6 10.1039/D2EE01478E 10.1016/j.apcatb.2022.122091 10.1016/j.apcatb.2021.120150 10.1016/j.apcatb.2023.122598 10.1016/j.nanoen.2020.105606 10.1002/aenm.202102353 10.1002/adma.202003786 10.1016/j.cej.2020.126092 10.1039/C9TA13442E 10.1038/s41467-020-18891-x 10.1016/j.cej.2020.126803 10.1016/j.apcatb.2020.119869 10.1002/anie.202107390 10.1016/j.scib.2020.01.011 10.1016/j.jechem.2021.04.067 10.1002/cctc.201901803 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jelechem.2023.117788 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-2569 |
ExternalDocumentID | 10_1016_j_jelechem_2023_117788 S1572665723006483 |
GroupedDBID | --K --M -~X .~1 1B1 1RT 1~. 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M23 M2Z M41 MO0 N9A NQ- O-L OAUVE OZT P-8 P-9 P2P PC. Q38 RNS RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSG SSK SSZ T5K TWZ UPT YQT ~02 186 29K AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG ROL SCH SSH WUQ |
ID | FETCH-LOGICAL-c242t-94ecec1900197f96e21529225cc30e459b4f7c0f1b8e1c9ade8f3c21f7e64b93 |
IEDL.DBID | .~1 |
ISSN | 1572-6657 |
IngestDate | Thu Apr 24 22:52:49 EDT 2025 Tue Jul 01 00:22:44 EDT 2025 Fri Feb 23 02:33:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface reconstruction Corrosion OER NiFe LDH |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c242t-94ecec1900197f96e21529225cc30e459b4f7c0f1b8e1c9ade8f3c21f7e64b93 |
ParticipantIDs | crossref_primary_10_1016_j_jelechem_2023_117788 crossref_citationtrail_10_1016_j_jelechem_2023_117788 elsevier_sciencedirect_doi_10_1016_j_jelechem_2023_117788 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-15 |
PublicationDateYYYYMMDD | 2023-10-15 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of electroanalytical chemistry (Lausanne, Switzerland) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhou, Yu, Cao, Zhao, Dong, Ma, Wang, Fan, Zhou, Chai (b0210) 2021; 292 Bhanja, Kim, Paul, Lin, Alshehri, Ahamad, Kaneti, Bhaumik, Yamauchi (b0025) 2020; 12 Li, Huang, Zaman, Guo, Liu, Guo, Xia (b0075) 2022; 34 Liu, Meng, Xie, Liu, Tang, Wang, Wang, Gu, Song, Huo, Zou (b0160) 2023 Yan, Bao, Liu, Cao, Feng, Qi (b0060) 2020; 401 Han, Li, Baik, Xiong, Kang, Dou, Liu, Lee, Kim, Park (b0125) 2023; 33 H. Yang, C. Dong, H. Wang, R. Qi, L. Gong, Y. Lu, C. He, S. Chen, B. You, H. Liu, J. Yao, X. Jiang, X. Guo, B.Y. Xia, Constructing nickel–iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution, Proceed. Natl. Acad. Sci., 119 (2022). Doi: 10.1073/pnas.2202812119. Wei, Peng, Ji, Zhu, Yi, Xie (b0145) 2022; 71 Liao, Ni, Tan, Liu, Chen, Wang, Liu, Pan (b0130) 2022; 317 Yi, Qiu, Mei, Qi, Cui, Luo, Zhu, Xie, He (b0140) 2020; 65 Kim, Kim, Lee, Kwon, Kim, Kim, Seok, Park, Kim (b0150) 2022; 64 Guo, He, Yu, Cheng, You, Lin, Chen, Chan, Liu, Hu (b0180) 2021; 420 Yang, Gong, Wang, Dong, Wang, Qi, Liu, Guo, Xia (b0080) 2020; 11 Yang, Yang, Yang, Guo, Feng, Jia, Wang, Wang, He, Liu (b0220) 2023; 13 Wen, Yang, Huang, Cheng, Ai, Liu, Fang, Li, Yu, Zhai (b0105) 2021; 11 Liu, Gong, Xiao, Deng, Liang, Zhao, Lu, Shen, Zhang, Wang (b0095) 2020; 16 Wang, Tao, Lin, Wang, Zhao, Cai, Tao, Zhang, Sun, Hu, Huang, Yang (b0035) 2021; 81 Zhang, Hu, An, Li, Yin, Li, Yang, Lu, Zhang, Xi, Yan (b0115) 2022; 61 Gao, Tao, Liu (b0010) 2021; 33 Septiani, Kaneti, Fathoni, Guo, Ide, Yuliarto, Jiang, Nugraha, Dipojono, Golberg (b0190) 2020; 8 Ao, Wei, Daoud (b0230) 2020; 12 Huang, Zhou, Duan, Yu, Zhang, Wang, Liu, Peng, An, Zhang, Li, Yu, Yu (b0110) 2022; 15 Wang, Zhai, Xia, Wu, Zhang, Li, Ran, Gao, Zhang, Fan, Sun, Hou (b0165) 2021; 60 Li, Wu, Hao, Yuan, Lv, Xu, Wei (b0225) 2022; 305 Liu, Zhao, Cao, Xu, Wang, Xue, Li (b0135) 2023; 331 Li, Wu, Yuan, Hao, Lv, Xu, Wei (b0050) 2022; 318 Liu, Xu, Ni, Wang, You, Guo (b0170) 2019; 356 Luo, Wang, Gu, Wang, Li, Wang, Liu, Zhou, Zhang (b0200) 2023; 472 Gu, Wang, Xie, Wang, Huang, Liu, Zou, Tao, Wang (b0205) 2021; 60 Lee, Oh, Cho, Ahn, Hwang, Min (b0040) 2018; 233 Bhanja, Kim, Paul, Kaneti, Alothman, Bhaumik, Yamauchi (b0195) 2021; 405 Wang, Cheng, Wang, Hong, Fan, Yu (b0100) 2021; 42 Liu, Luan, Li, Lv, Chai, Dong (b0155) 2023; 461 Feng, Jiao, Chen, Dang, Dai, Suib, Zhang, Zhao, Li, Feng (b0030) 2021; 286 Zhang, Zou (b0005) 2021; 17 Yi, Sari, Li, Wang, Zhu, Hu, Zhang, Li (b0015) 2021; 85 Zhai, Ren, Sun, Li, Wang, Liu (b0085) 2023; 323 Kou, Zhou, Wang, Han, Han, Vomiero, Liu, Liang (b0120) 2023; 330 Wang, Tang, Wang, Li, Zhang (b0090) 2017; 29 Hu, Wang, Feng, Wu, Zhang, Mei (b0185) 2020; 8 Guo, Zhang, Zhang, Dastafkan, Wang, Zhao, Shi (b0215) 2021; 9 Li, Wan, Wang, Wu, Wu, Jiang, Cai, Jiang, Ren (b0045) 2022; 12 Lei, Ma, Wan, Tan, Yang, Wang, Mai, Fan (b0055) 2022; 12 Wang, Zhang, Wang, Mo, Luo, Yang, Lv, Li, Liu (b0020) 2023; 11 Yang, Qin, Dong, Wang, Wang, Jiao (b0065) 2021; 17 Guo, Yan, Xu, Xu, Li, Liu, Yi, Luo (b0175) 2020; 817 Zhang (10.1016/j.jelechem.2023.117788_b0005) 2021; 17 Guo (10.1016/j.jelechem.2023.117788_b0180) 2021; 420 Gu (10.1016/j.jelechem.2023.117788_b0205) 2021; 60 Wang (10.1016/j.jelechem.2023.117788_b0020) 2023; 11 Yang (10.1016/j.jelechem.2023.117788_b0080) 2020; 11 Wang (10.1016/j.jelechem.2023.117788_b0165) 2021; 60 Wang (10.1016/j.jelechem.2023.117788_b0090) 2017; 29 Li (10.1016/j.jelechem.2023.117788_b0045) 2022; 12 Han (10.1016/j.jelechem.2023.117788_b0125) 2023; 33 Wen (10.1016/j.jelechem.2023.117788_b0105) 2021; 11 Wang (10.1016/j.jelechem.2023.117788_b0035) 2021; 81 Yi (10.1016/j.jelechem.2023.117788_b0015) 2021; 85 Bhanja (10.1016/j.jelechem.2023.117788_b0025) 2020; 12 Zhai (10.1016/j.jelechem.2023.117788_b0085) 2023; 323 Li (10.1016/j.jelechem.2023.117788_b0225) 2022; 305 Liu (10.1016/j.jelechem.2023.117788_b0135) 2023; 331 Bhanja (10.1016/j.jelechem.2023.117788_b0195) 2021; 405 Yang (10.1016/j.jelechem.2023.117788_b0065) 2021; 17 Gao (10.1016/j.jelechem.2023.117788_b0010) 2021; 33 Kou (10.1016/j.jelechem.2023.117788_b0120) 2023; 330 Lei (10.1016/j.jelechem.2023.117788_b0055) 2022; 12 Guo (10.1016/j.jelechem.2023.117788_b0215) 2021; 9 Luo (10.1016/j.jelechem.2023.117788_b0200) 2023; 472 Lee (10.1016/j.jelechem.2023.117788_b0040) 2018; 233 Liu (10.1016/j.jelechem.2023.117788_b0095) 2020; 16 10.1016/j.jelechem.2023.117788_b0070 Yi (10.1016/j.jelechem.2023.117788_b0140) 2020; 65 Liao (10.1016/j.jelechem.2023.117788_b0130) 2022; 317 Liu (10.1016/j.jelechem.2023.117788_b0160) 2023 Ao (10.1016/j.jelechem.2023.117788_b0230) 2020; 12 Guo (10.1016/j.jelechem.2023.117788_b0175) 2020; 817 Wang (10.1016/j.jelechem.2023.117788_b0100) 2021; 42 Septiani (10.1016/j.jelechem.2023.117788_b0190) 2020; 8 Feng (10.1016/j.jelechem.2023.117788_b0030) 2021; 286 Zhang (10.1016/j.jelechem.2023.117788_b0115) 2022; 61 Yang (10.1016/j.jelechem.2023.117788_b0220) 2023; 13 Huang (10.1016/j.jelechem.2023.117788_b0110) 2022; 15 Liu (10.1016/j.jelechem.2023.117788_b0155) 2023; 461 Liu (10.1016/j.jelechem.2023.117788_b0170) 2019; 356 Zhou (10.1016/j.jelechem.2023.117788_b0210) 2021; 292 Kim (10.1016/j.jelechem.2023.117788_b0150) 2022; 64 Li (10.1016/j.jelechem.2023.117788_b0050) 2022; 318 Hu (10.1016/j.jelechem.2023.117788_b0185) 2020; 8 Wei (10.1016/j.jelechem.2023.117788_b0145) 2022; 71 Yan (10.1016/j.jelechem.2023.117788_b0060) 2020; 401 Li (10.1016/j.jelechem.2023.117788_b0075) 2022; 34 |
References_xml | – volume: 33 start-page: 2003786 year: 2021 ident: b0010 article-title: Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media publication-title: Adv. Mater. – volume: 420 year: 2021 ident: b0180 article-title: Enhanced oxygen evolution reaction activity of flower-like FeOOH via the synergistic effect of sulfur publication-title: Chem. Eng. J. – volume: 60 start-page: 20253 year: 2021 end-page: 20258 ident: b0205 article-title: Defect-Rich High-Entropy Oxide Nanosheets for Efficient 5-Hydroxymethylfurfural Electrooxidation publication-title: Angew. Chem. Int. Ed. – start-page: 2300579 year: 2023 ident: b0160 article-title: Dual Active Sites Engineering on Sea Urchin-Like CoNiS Hollow Nanosphere for Stabilizing Oxygen Electrocatalysis via a Template-Free Vulcanization Strategy publication-title: Adv. Funct. Mater. – volume: 8 start-page: 7414 year: 2020 end-page: 7422 ident: b0185 article-title: Novel MOF-Derived Nickel Nitride as High-Performance Bifunctional Electrocatalysts for Hydrogen Evolution and Urea Oxidation publication-title: ACS Sustain. Chem. Eng. – volume: 405 year: 2021 ident: b0195 article-title: Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction publication-title: Chem. Eng. J. – volume: 305 year: 2022 ident: b0225 article-title: In situ unraveling surface reconstruction of Ni publication-title: Appl Catal B – volume: 331 year: 2023 ident: b0135 article-title: Local hydroxyl enhancement design of NiFe sulfide electrocatalyst toward efficient oxygen evolution reaction publication-title: Appl Catal B – volume: 286 year: 2021 ident: b0030 article-title: Cactus-like NiCo publication-title: Appl Catal B – volume: 13 start-page: 2771 year: 2023 end-page: 2779 ident: b0220 article-title: Enhancing Water Oxidation of Ru Single Atoms via Oxygen-Coordination Bonding with NiFe Layered Double Hydroxide publication-title: ACS Catal. – volume: 81 year: 2021 ident: b0035 article-title: Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor publication-title: Nano Energy – volume: 42 start-page: 37 year: 2021 end-page: 45 ident: b0100 article-title: Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H publication-title: Chin. J. Catal. – volume: 317 year: 2022 ident: b0130 article-title: Borate narrowed band gap of nickel-iron layer double hydroxide to mediate rapid reconstruction kinetics for water oxidation publication-title: Appl Catal B – volume: 29 start-page: 1702327 year: 2017 ident: b0090 article-title: Bifunctional Transition Metal Hydroxysulfides: Room-Temperature Sulfurization and Their Applications in Zn–Air Batteries publication-title: Adv. Mater. – volume: 16 start-page: 2000663 year: 2020 ident: b0095 article-title: Turning Waste into Treasure: Regulating the Oxygen Corrosion on Fe Foam for Efficient Electrocatalysis publication-title: Small – volume: 401 year: 2020 ident: b0060 article-title: Minutes periodic wet chemistry engineering to turn bulk Co-Ni foam into hydroxide based nanosheets for efficient water decomposition publication-title: Chem. Eng. J. – volume: 17 start-page: 2102027 year: 2021 ident: b0065 article-title: Metallic S-CoTe with Surface Reconstruction Activated by Electrochemical Oxidation for Oxygen Evolution Catalysis publication-title: Small – volume: 330 year: 2023 ident: b0120 article-title: Boron pretreatment promotes phosphorization of FeNi catalysts for oxygen evolution publication-title: Appl Catal B – volume: 64 start-page: 364 year: 2022 end-page: 371 ident: b0150 article-title: Boosting overall water splitting by incorporating sulfur into NiFe (oxy)hydroxide publication-title: J. Energy Chem. – volume: 12 start-page: 2091 year: 2020 end-page: 2096 ident: b0025 article-title: Facile Synthesis of Nanoporous Transition Metal-Based Phosphates for Oxygen Evolution Reaction publication-title: ChemCatChem – volume: 33 start-page: 2212233 year: 2023 ident: b0125 article-title: Sulfur Mismatch Substitution in Layered Double Hydroxides as Efficient Oxygen Electrocatalysts for Flexible Zinc-Air Batteries publication-title: Adv. Funct. Mater. – volume: 8 start-page: 3035 year: 2020 end-page: 3047 ident: b0190 article-title: Tailorable nanoarchitecturing of bimetallic nickel–cobalt hydrogen phosphate via the self-weaving of nanotubes for efficient oxygen evolution publication-title: J. Mater. Chem. A – volume: 318 year: 2022 ident: b0050 article-title: Operando spectroscopies unveil interfacial FeOOH induced highly reactive β-Ni(Fe)OOH for efficient oxygen evolution publication-title: Appl Catal B – volume: 11 year: 2020 ident: b0080 article-title: Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution publication-title: Nat. Commun. – volume: 65 start-page: 546 year: 2020 end-page: 556 ident: b0140 article-title: Porous spherical NiO@NiMoO publication-title: Sci. Bull. – volume: 17 start-page: 2100129 year: 2021 ident: b0005 article-title: Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges publication-title: Small – volume: 71 start-page: 400 year: 2022 end-page: 410 ident: b0145 article-title: Rational construction and decoration of Li publication-title: J. Energy Chem. – volume: 85 year: 2021 ident: b0015 article-title: A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors publication-title: Nano Energy – volume: 11 start-page: 5476 year: 2023 end-page: 5494 ident: b0020 article-title: Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review publication-title: J. Mater. Chem. A – volume: 12 start-page: 2202522 year: 2022 ident: b0055 article-title: Promoting Surface Reconstruction of NiFe Layered Double Hydroxide for Enhanced Oxygen Evolution publication-title: Adv. Energy Mater. – volume: 61 start-page: e202207217 year: 2022 ident: b0115 article-title: Surface Activation and Ni-S Stabilization in NiO/NiS publication-title: Angew. Chem. Int. Ed. – volume: 356 start-page: 22 year: 2019 end-page: 33 ident: b0170 article-title: Adsorption and visible-light-driven photocatalytic properties of Ag publication-title: Chem. Eng. J. – volume: 15 start-page: 4647 year: 2022 end-page: 4658 ident: b0110 article-title: The rapid self-reconstruction of Fe-modified Ni hydrosulfide for efficient and stable large-current-density water/seawater oxidation publication-title: Energ. Environ. Sci. – volume: 12 start-page: 33595 year: 2020 end-page: 33602 ident: b0230 article-title: MOF-Derived Sulfide-Based Electrocatalyst and Scaffold for Boosted Hydrogen Production publication-title: ACS Appl. Mater. Interfaces – reference: H. Yang, C. Dong, H. Wang, R. Qi, L. Gong, Y. Lu, C. He, S. Chen, B. You, H. Liu, J. Yao, X. Jiang, X. Guo, B.Y. Xia, Constructing nickel–iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution, Proceed. Natl. Acad. Sci., 119 (2022). Doi: 10.1073/pnas.2202812119. – volume: 11 start-page: 2102353 year: 2021 ident: b0105 article-title: Schottky Heterojunction Nanosheet Array Achieving High-Current-Density Oxygen Evolution for Industrial Water Splitting Electrolyzes publication-title: Adv. Energy Mater. – volume: 292 year: 2021 ident: b0210 article-title: S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution publication-title: Appl Catal B – volume: 12 start-page: 2201913 year: 2022 ident: b0045 article-title: Self-Derivation and Surface Reconstruction of Fe-Doped Ni3S2 Electrode Realizing High-Efficient and Stable Overall Water and Urea Electrolysis publication-title: Adv. Energy Mater. – volume: 34 start-page: 2200840 year: 2022 ident: b0075 article-title: Corrosion Chemistry of Electrocatalysts publication-title: Adv. Mater. – volume: 233 start-page: 130 year: 2018 end-page: 135 ident: b0040 article-title: Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction publication-title: Appl Catal B – volume: 9 start-page: 2047 year: 2021 end-page: 2056 ident: b0215 article-title: Metal-Organic Framework-Derived Bimetallic NiFe Selenide Electrocatalysts with Multiple Phases for Efficient Oxygen Evolution Reaction publication-title: ACS Sustain. Chem. Eng. – volume: 60 start-page: 27126 year: 2021 end-page: 27134 ident: b0165 article-title: Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction publication-title: Angew. Chem. Int. Ed. – volume: 817 year: 2020 ident: b0175 article-title: Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO publication-title: J. Alloy. Compd. – volume: 323 year: 2023 ident: b0085 article-title: Synergistic effect of multiple vacancies to induce lattice oxygen redox in NiFe-layered double hydroxide OER catalysts publication-title: Appl Catal B – volume: 461 year: 2023 ident: b0155 article-title: Sulphur-dopant induced breaking of the scaling relation on low-valence Ni sites in nickel ferrite nanocones for water oxidation with industrial-level current density publication-title: Chem. Eng. J. – volume: 472 year: 2023 ident: b0200 article-title: Hierarchical sheet-like W-doped NiCo2O4 spinel synthesized by high-valence oxyanion exchange strategy for highly efficient electrocatalytic oxygen evolution reaction publication-title: Chem. Eng. J. – volume: 33 start-page: 2212233 year: 2023 ident: 10.1016/j.jelechem.2023.117788_b0125 article-title: Sulfur Mismatch Substitution in Layered Double Hydroxides as Efficient Oxygen Electrocatalysts for Flexible Zinc-Air Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202212233 – volume: 420 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0180 article-title: Enhanced oxygen evolution reaction activity of flower-like FeOOH via the synergistic effect of sulfur publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127587 – volume: 305 year: 2022 ident: 10.1016/j.jelechem.2023.117788_b0225 article-title: In situ unraveling surface reconstruction of Ni5P4@FeP nanosheet array for superior alkaline oxygen evolution reaction publication-title: Appl Catal B doi: 10.1016/j.apcatb.2021.121033 – volume: 8 start-page: 7414 year: 2020 ident: 10.1016/j.jelechem.2023.117788_b0185 article-title: Novel MOF-Derived Nickel Nitride as High-Performance Bifunctional Electrocatalysts for Hydrogen Evolution and Urea Oxidation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c01450 – volume: 461 year: 2023 ident: 10.1016/j.jelechem.2023.117788_b0155 article-title: Sulphur-dopant induced breaking of the scaling relation on low-valence Ni sites in nickel ferrite nanocones for water oxidation with industrial-level current density publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141714 – volume: 12 start-page: 33595 year: 2020 ident: 10.1016/j.jelechem.2023.117788_b0230 article-title: MOF-Derived Sulfide-Based Electrocatalyst and Scaffold for Boosted Hydrogen Production publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04302 – volume: 17 start-page: 2102027 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0065 article-title: Metallic S-CoTe with Surface Reconstruction Activated by Electrochemical Oxidation for Oxygen Evolution Catalysis publication-title: Small doi: 10.1002/smll.202102027 – start-page: 2300579 year: 2023 ident: 10.1016/j.jelechem.2023.117788_b0160 article-title: Dual Active Sites Engineering on Sea Urchin-Like CoNiS Hollow Nanosphere for Stabilizing Oxygen Electrocatalysis via a Template-Free Vulcanization Strategy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202300579 – volume: 11 start-page: 5476 year: 2023 ident: 10.1016/j.jelechem.2023.117788_b0020 article-title: Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review publication-title: J. Mater. Chem. A doi: 10.1039/D2TA09039B – volume: 16 start-page: 2000663 year: 2020 ident: 10.1016/j.jelechem.2023.117788_b0095 article-title: Turning Waste into Treasure: Regulating the Oxygen Corrosion on Fe Foam for Efficient Electrocatalysis publication-title: Small doi: 10.1002/smll.202000663 – volume: 71 start-page: 400 year: 2022 ident: 10.1016/j.jelechem.2023.117788_b0145 article-title: Rational construction and decoration of Li5Cr7Ti6O25@C nanofibers as stable lithium storage materials publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.04.017 – volume: 9 start-page: 2047 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0215 article-title: Metal-Organic Framework-Derived Bimetallic NiFe Selenide Electrocatalysts with Multiple Phases for Efficient Oxygen Evolution Reaction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c06969 – volume: 318 year: 2022 ident: 10.1016/j.jelechem.2023.117788_b0050 article-title: Operando spectroscopies unveil interfacial FeOOH induced highly reactive β-Ni(Fe)OOH for efficient oxygen evolution publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.121825 – volume: 12 start-page: 2202522 year: 2022 ident: 10.1016/j.jelechem.2023.117788_b0055 article-title: Promoting Surface Reconstruction of NiFe Layered Double Hydroxide for Enhanced Oxygen Evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202522 – volume: 29 start-page: 1702327 year: 2017 ident: 10.1016/j.jelechem.2023.117788_b0090 article-title: Bifunctional Transition Metal Hydroxysulfides: Room-Temperature Sulfurization and Their Applications in Zn–Air Batteries publication-title: Adv. Mater. doi: 10.1002/adma.201702327 – volume: 61 start-page: e202207217 year: 2022 ident: 10.1016/j.jelechem.2023.117788_b0115 article-title: Surface Activation and Ni-S Stabilization in NiO/NiS2 for Efficient Oxygen Evolution Reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202207217 – volume: 233 start-page: 130 year: 2018 ident: 10.1016/j.jelechem.2023.117788_b0040 article-title: Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide to nickel hydroxide in an oxygen evolution reaction publication-title: Appl Catal B doi: 10.1016/j.apcatb.2018.03.083 – volume: 817 year: 2020 ident: 10.1016/j.jelechem.2023.117788_b0175 article-title: Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: A discussion on photocatalysis mechanism publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.153246 – volume: 85 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0015 article-title: A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105955 – ident: 10.1016/j.jelechem.2023.117788_b0070 doi: 10.1073/pnas.2202812119 – volume: 60 start-page: 27126 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0165 article-title: Engineering Lattice Oxygen Activation of Iridium Clusters Stabilized on Amorphous Bimetal Borides Array for Oxygen Evolution Reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202112870 – volume: 13 start-page: 2771 year: 2023 ident: 10.1016/j.jelechem.2023.117788_b0220 article-title: Enhancing Water Oxidation of Ru Single Atoms via Oxygen-Coordination Bonding with NiFe Layered Double Hydroxide publication-title: ACS Catal. doi: 10.1021/acscatal.2c05624 – volume: 12 start-page: 2201913 year: 2022 ident: 10.1016/j.jelechem.2023.117788_b0045 article-title: Self-Derivation and Surface Reconstruction of Fe-Doped Ni3S2 Electrode Realizing High-Efficient and Stable Overall Water and Urea Electrolysis publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201913 – volume: 34 start-page: 2200840 year: 2022 ident: 10.1016/j.jelechem.2023.117788_b0075 article-title: Corrosion Chemistry of Electrocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.202200840 – volume: 17 start-page: 2100129 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0005 article-title: Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges publication-title: Small doi: 10.1002/smll.202100129 – volume: 317 year: 2022 ident: 10.1016/j.jelechem.2023.117788_b0130 article-title: Borate narrowed band gap of nickel-iron layer double hydroxide to mediate rapid reconstruction kinetics for water oxidation publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.121713 – volume: 331 year: 2023 ident: 10.1016/j.jelechem.2023.117788_b0135 article-title: Local hydroxyl enhancement design of NiFe sulfide electrocatalyst toward efficient oxygen evolution reaction publication-title: Appl Catal B doi: 10.1016/j.apcatb.2023.122715 – volume: 356 start-page: 22 year: 2019 ident: 10.1016/j.jelechem.2023.117788_b0170 article-title: Adsorption and visible-light-driven photocatalytic properties of Ag3PO4/WO3 composites: A discussion of the mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.001 – volume: 472 year: 2023 ident: 10.1016/j.jelechem.2023.117788_b0200 article-title: Hierarchical sheet-like W-doped NiCo2O4 spinel synthesized by high-valence oxyanion exchange strategy for highly efficient electrocatalytic oxygen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144839 – volume: 42 start-page: 37 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0100 article-title: Sulfur-mediated photodeposition synthesis of NiS cocatalyst for boosting H2-evolution performance of g-C3N4 photocatalyst publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63633-6 – volume: 15 start-page: 4647 year: 2022 ident: 10.1016/j.jelechem.2023.117788_b0110 article-title: The rapid self-reconstruction of Fe-modified Ni hydrosulfide for efficient and stable large-current-density water/seawater oxidation publication-title: Energ. Environ. Sci. doi: 10.1039/D2EE01478E – volume: 323 year: 2023 ident: 10.1016/j.jelechem.2023.117788_b0085 article-title: Synergistic effect of multiple vacancies to induce lattice oxygen redox in NiFe-layered double hydroxide OER catalysts publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.122091 – volume: 292 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0210 article-title: S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution publication-title: Appl Catal B doi: 10.1016/j.apcatb.2021.120150 – volume: 330 year: 2023 ident: 10.1016/j.jelechem.2023.117788_b0120 article-title: Boron pretreatment promotes phosphorization of FeNi catalysts for oxygen evolution publication-title: Appl Catal B doi: 10.1016/j.apcatb.2023.122598 – volume: 81 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0035 article-title: Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105606 – volume: 11 start-page: 2102353 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0105 article-title: Schottky Heterojunction Nanosheet Array Achieving High-Current-Density Oxygen Evolution for Industrial Water Splitting Electrolyzes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102353 – volume: 33 start-page: 2003786 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0010 article-title: Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media publication-title: Adv. Mater. doi: 10.1002/adma.202003786 – volume: 401 year: 2020 ident: 10.1016/j.jelechem.2023.117788_b0060 article-title: Minutes periodic wet chemistry engineering to turn bulk Co-Ni foam into hydroxide based nanosheets for efficient water decomposition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126092 – volume: 8 start-page: 3035 year: 2020 ident: 10.1016/j.jelechem.2023.117788_b0190 article-title: Tailorable nanoarchitecturing of bimetallic nickel–cobalt hydrogen phosphate via the self-weaving of nanotubes for efficient oxygen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13442E – volume: 11 year: 2020 ident: 10.1016/j.jelechem.2023.117788_b0080 article-title: Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-020-18891-x – volume: 405 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0195 article-title: Microporous nickel phosphonate derived heteroatom doped nickel oxide and nickel phosphide: Efficient electrocatalysts for oxygen evolution reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126803 – volume: 286 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0030 article-title: Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution publication-title: Appl Catal B doi: 10.1016/j.apcatb.2020.119869 – volume: 60 start-page: 20253 year: 2021 ident: 10.1016/j.jelechem.2023.117788_b0205 article-title: Defect-Rich High-Entropy Oxide Nanosheets for Efficient 5-Hydroxymethylfurfural Electrooxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202107390 – volume: 65 start-page: 546 year: 2020 ident: 10.1016/j.jelechem.2023.117788_b0140 article-title: Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.01.011 – volume: 64 start-page: 364 year: 2022 ident: 10.1016/j.jelechem.2023.117788_b0150 article-title: Boosting overall water splitting by incorporating sulfur into NiFe (oxy)hydroxide publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.04.067 – volume: 12 start-page: 2091 year: 2020 ident: 10.1016/j.jelechem.2023.117788_b0025 article-title: Facile Synthesis of Nanoporous Transition Metal-Based Phosphates for Oxygen Evolution Reaction publication-title: ChemCatChem doi: 10.1002/cctc.201901803 |
SSID | ssj0028812 |
Score | 2.449571 |
Snippet | [Display omitted]
Nickel-iron layered double hydroxides (NiFe LDH) are subject to surface reconstruction by the applied anodic potential in alkaline media, and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117788 |
SubjectTerms | Corrosion NiFe LDH OER Surface reconstruction |
Title | Surface reconstruction of NiFe layered double hydroxides by S2- corrosion for efficient oxygen evolution |
URI | https://dx.doi.org/10.1016/j.jelechem.2023.117788 |
Volume | 947 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EHtpL6ZPah-yh1xiTbF5HkYqt1EO11FvIbiYYESNWi7n0t3cmD7FQ8NBTSNiBZWZ2vtnsznyMPcZm5IVK0a83I9SEsIWGqOhryhMGuG3Vjl0qFH4dOv138TKxJzXWrWph6FplGfuLmJ5H6_KLXmpTXyaJPjJs16RzA0yiEVc96vhJ3evQp1vfu2sepucVJ544TqPRe1XCs9aMuGamQBXpppWfX-YMLH8A1B7o9M7YaZkt8k4xoXNWg8UFO-5WJG2XbDrarOJQAc83trtmsDyN-TDpAZ-HGZFx8ijdyDnwaRat0m0SwSeXGR-ZGsfNJ06DRDB75ZA3lEAc4uk2Q9fi8FW65hUb957G3b5WkidoClF3rfkCFCiEe8zh3Nh3gAhsfVy9SlltELYvReyiKQzpgaH8MAIvtpRpoG0cIX3rmtUX6QJuGKchqBgZ2RE1_7IlhkcJroPLHxADZYPZlcICVTYWJ36LeVDdIJsFlaIDUnRQKLrB9J3csmitcVDCr-wR_HKSAOP_Adnbf8jesRN6I8gy7HtWR2PCA-Yia9nMna3JjjrPg_6QnoO3j8EPhijhYg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8NADLZKGWBBPMWbG1hDm-TyGlFFVShkaZG6RbmLo7aqmqpQ1Px77DyqIiExsCZn6WQ7_uzc2R_AfWolfqw1_3ozY0NKRxqEioGhfWmi19bt1ONG4bfQ7b3Ll5EzakCn7oXha5VV7C9jehGtqyetSputxWTSGpiOZ_G5ASXRhKu-vQO7PJ1KNmH38bnfCzd1l--Xh5601GCBrUbh6cOU6WbGyE3pll0cYRYkLL9g1BbudA_hoEoYxWO5pyNo4PwY9jo1T9sJjAerZRprFEVtu5kHK7JUhJMuilmcMx-nSLKVmqEY58kyW08S_BAqFwPLEFR_0jZYhBJYgcVMCYIika1z8i6BX5V3nsKw-zTs9IyKP8HQBLyfRiBRoybEpzTOSwMXmcM2oA9Ya7uN0gmUTD2yhql8NHUQJ-intrZMMo8rVWCfQXOezfEcBC8hxajESXj-l6MoQir0XIoASDCoLsCpFRbparY4U1zMovoS2TSqFR2xoqNS0RfQ2sgtyukaf0oEtT2iH34SEQT8IXv5D9k72OsN316j1-ewfwX7_IYRzHSuoUmGxRtKTT7VbeV63zLX4nA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+reconstruction+of+NiFe+layered+double+hydroxides+by+S2-+corrosion+for+efficient+oxygen+evolution&rft.jtitle=Journal+of+electroanalytical+chemistry+%28Lausanne%2C+Switzerland%29&rft.au=Wang%2C+Peng&rft.au=Hao%2C+Liping&rft.au=Wang%2C+Hongxin&rft.au=Xuanwen%2C+Liu&rft.date=2023-10-15&rft.issn=1572-6657&rft.volume=947&rft.spage=117788&rft_id=info:doi/10.1016%2Fj.jelechem.2023.117788&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jelechem_2023_117788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-6657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-6657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-6657&client=summon |