Ship weight reduction by parametric design of hull scantling
In this paper, a semi-automatic design procedure for concept and preliminary phases of hull structural design is described. It allows investigating the design of ship structures, consisting of a series of stiffened panels surrounded by primary members, assembled to form the hull girder. The optimal...
Saved in:
Published in | Ocean engineering Vol. 263; p. 112370 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a semi-automatic design procedure for concept and preliminary phases of hull structural design is described. It allows investigating the design of ship structures, consisting of a series of stiffened panels surrounded by primary members, assembled to form the hull girder. The optimal configuration of the structural lay-out and the best scantling of each structural component (i.e. platings, ordinary stiffeners and primary elements) is provided, accounting for interactions among all structural components as well as integration of primary, secondary and tertiary responses. The proposed method allows the minimization of the overall weight of hull blocks intended as the sum of stiffened panels’ weight (shell and stiffeners) plus that of the surrounding primary members. A dedicated application in VBA language (Visual Basic for Applications) has been developed in which scantling checks have been implemented by applying a few rules formulations after a comprehensive analysis of involved variables defining the state of the hull structural system. The proposed scantling design approach is very practical, it follows well-known hull structural design principles and it takes advantage of the nowadays widely available computation means to update the traditional sequence of the scantling checks in a more rational way and to select the optimal lay-out scantling solutions among truly feasible ones.
•A semi-automatic design procedure for preliminary design of the hull structures proposed.•Limit states and domain ranges of variables assessed considering robustness, fabrication and operational constraints.•A relatively limited number of feasible solutions are identified and scanned to select the lightest one.•Method considers interactions among structural components as well as integration of primary, secondary and tertiary responses.•Approach is very practical as it follows traditional structural design principles.•It takes advantage of automatic computation means though rationally updating the order of scantling checks. |
---|---|
AbstractList | In this paper, a semi-automatic design procedure for concept and preliminary phases of hull structural design is described. It allows investigating the design of ship structures, consisting of a series of stiffened panels surrounded by primary members, assembled to form the hull girder. The optimal configuration of the structural lay-out and the best scantling of each structural component (i.e. platings, ordinary stiffeners and primary elements) is provided, accounting for interactions among all structural components as well as integration of primary, secondary and tertiary responses. The proposed method allows the minimization of the overall weight of hull blocks intended as the sum of stiffened panels’ weight (shell and stiffeners) plus that of the surrounding primary members. A dedicated application in VBA language (Visual Basic for Applications) has been developed in which scantling checks have been implemented by applying a few rules formulations after a comprehensive analysis of involved variables defining the state of the hull structural system. The proposed scantling design approach is very practical, it follows well-known hull structural design principles and it takes advantage of the nowadays widely available computation means to update the traditional sequence of the scantling checks in a more rational way and to select the optimal lay-out scantling solutions among truly feasible ones.
•A semi-automatic design procedure for preliminary design of the hull structures proposed.•Limit states and domain ranges of variables assessed considering robustness, fabrication and operational constraints.•A relatively limited number of feasible solutions are identified and scanned to select the lightest one.•Method considers interactions among structural components as well as integration of primary, secondary and tertiary responses.•Approach is very practical as it follows traditional structural design principles.•It takes advantage of automatic computation means though rationally updating the order of scantling checks. |
ArticleNumber | 112370 |
Author | Gaiotti, M. Aguiari, M. Rizzo, C.M. |
Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0002-7950-605X surname: Aguiari fullname: Aguiari, M. email: martina.aguiari@edu.unige.it – sequence: 2 givenname: M. orcidid: 0000-0002-7252-065X surname: Gaiotti fullname: Gaiotti, M. email: marco.gaiotti@unige.it – sequence: 3 givenname: C.M. orcidid: 0000-0001-6072-0032 surname: Rizzo fullname: Rizzo, C.M. email: cesare.rizzo@unige.it |
BookMark | eNqFkMtKAzEYRoNUsFVfQfICU_8kM5MZcKEUb1Bwoa5DLn-mKdNMSaZK396W6trVtzqHjzMjkzhEJOSGwZwBq2_X88Gijhi7OQfO54xxIeGMTFkjRVHxqpmQKQBviwZYc0FmOa8BoK5BTMnd-yps6TeGbjXShG5nxzBEavZ0q5Pe4JiCpQ5z6CIdPF3t-p5mq-PYh9hdkXOv-4zXv3tJPp8ePxYvxfLt-XXxsCwsL_lYtNDKlluPBpgupfHCgBTW-BKNaSQ49CiNYa2oRF25kpfGe2dRlhoMb524JPXJa9OQc0KvtilsdNorBurYQK3VXwN1bKBODQ7g_QnEw7uvgEllGzBadCGhHZUbwn-KH06ia10 |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2023_137450 crossref_primary_10_1016_j_oceaneng_2024_117866 crossref_primary_10_1016_j_oceaneng_2023_114962 |
Cites_doi | 10.1080/14786440409463229 10.1016/0020-7403(66)90031-2 10.1093/qjmam/12.3.314 10.1016/0951-8339(92)90001-6 10.1016/S0965-9978(00)00048-X 10.1051/ro/197408V300731 10.1007/s00158-018-1930-6 10.1108/02644400310503017 10.1016/0020-7403(72)90023-9 10.1016/j.oceaneng.2017.03.013 10.1145/355769.355773 10.1016/j.marstruc.2009.06.003 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2022.112370 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2022_112370 S0029801822016626 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AAXKI AAYXX ABFNM ABXDB ACKIV ACNNM ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW WUQ |
ID | FETCH-LOGICAL-c242t-909792cfeb01a47bf3b073cbf4ebb870defe7bb1935365d424bffdce74a0b29d3 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Thu Sep 26 15:44:56 EDT 2024 Fri Feb 23 02:37:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Design process Parametric design Rule requirements Ship structures Scantling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c242t-909792cfeb01a47bf3b073cbf4ebb870defe7bb1935365d424bffdce74a0b29d3 |
ORCID | 0000-0002-7950-605X 0000-0001-6072-0032 0000-0002-7252-065X |
ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2022_112370 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_112370 |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 2022-11-00 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bolbotowski, Linwei, Gilbert (bib2) 2018; 58 Lasdon, Fox, Ratner (bib12) 1974; 8 Hughes, Paik (bib9) 2010 Caprace, Bair, Rigo (bib3) 2010 Michell (bib14) 1904 Saka, Daloğlu, Malhas (bib21) 2000; 31 Erdal, Saka (bib5) 2008; 9 Pilkey (bib16) 2005 Rahman, Caldwell (bib17) 1992; 5 Gilbert, Tyas (bib7) 2003; 20 Sekulski (bib22) 2009; 22 Lasdon, Waren, Jain, Ratner (bib13) 1978; 4 Morley (bib15) 1966; 8 Tushaj, Lako, Saliu (bib23) 2017; 41 Rigo, Caprace (bib18) 2011; 16 Aguiari, Gaiotti, Rizzo (bib1) 2021 bib6 Rozvany (bib20) 1972; 14 Khan, Gunpinar, Doğan (bib11) 2017; 136 (bib19) 2017 Dorn, Greenbeg (bib4) 1964; 3 (bib10) 2018 Heyman (bib8) 1959; 12 Gilbert (10.1016/j.oceaneng.2022.112370_bib7) 2003; 20 Caprace (10.1016/j.oceaneng.2022.112370_bib3) 2010 Aguiari (10.1016/j.oceaneng.2022.112370_bib1) 2021 Morley (10.1016/j.oceaneng.2022.112370_bib15) 1966; 8 (10.1016/j.oceaneng.2022.112370_bib19) 2017 Dorn (10.1016/j.oceaneng.2022.112370_bib4) 1964; 3 Hughes (10.1016/j.oceaneng.2022.112370_bib9) 2010 Erdal (10.1016/j.oceaneng.2022.112370_bib5) 2008; 9 Rigo (10.1016/j.oceaneng.2022.112370_bib18) 2011; 16 Saka (10.1016/j.oceaneng.2022.112370_bib21) 2000; 31 Sekulski (10.1016/j.oceaneng.2022.112370_bib22) 2009; 22 Heyman (10.1016/j.oceaneng.2022.112370_bib8) 1959; 12 Pilkey (10.1016/j.oceaneng.2022.112370_bib16) 2005 Michell (10.1016/j.oceaneng.2022.112370_bib14) 1904 Rozvany (10.1016/j.oceaneng.2022.112370_bib20) 1972; 14 Tushaj (10.1016/j.oceaneng.2022.112370_bib23) 2017; 41 (10.1016/j.oceaneng.2022.112370_bib10) 2018 Bolbotowski (10.1016/j.oceaneng.2022.112370_bib2) 2018; 58 Khan (10.1016/j.oceaneng.2022.112370_bib11) 2017; 136 Rahman (10.1016/j.oceaneng.2022.112370_bib17) 1992; 5 Lasdon (10.1016/j.oceaneng.2022.112370_bib12) 1974; 8 Lasdon (10.1016/j.oceaneng.2022.112370_bib13) 1978; 4 |
References_xml | – volume: 22 start-page: 691 year: 2009 end-page: 711 ident: bib22 article-title: Least-weight topology and size optimization of high speed vehicle-passenger catamaran structure by genetic algorithm publication-title: Mar. Struct. contributor: fullname: Sekulski – volume: 20 start-page: 1044 year: 2003 end-page: 1064 ident: bib7 article-title: Layout optimization of large scale pin-jointed frames publication-title: Eng. Comput. contributor: fullname: Tyas – year: 2018 ident: bib10 article-title: Common Structural Rules for Bulk Carries and Oil Tankers Adopted by IACS International Association of Classification Societies – volume: 14 start-page: 651 year: 1972 end-page: 666 ident: bib20 article-title: Grillages of maximum strength and maximum stiffness publication-title: Int. J. Mech. Sci. contributor: fullname: Rozvany – year: 2017 ident: bib19 article-title: Rules for the Classification of Naval Ships RINAMIL – volume: 9 start-page: 215 year: 2008 end-page: 228 ident: bib5 article-title: Effect of beam spacing in the harmony search based optimum design of grillages publication-title: Asian J. Civil Eng. contributor: fullname: Saka – volume: 8 start-page: 305 year: 1966 end-page: 319 ident: bib15 article-title: The minimum reinforcement of concrete slabs publication-title: Int. J. Mech. Sci. contributor: fullname: Morley – volume: 16 start-page: 68 year: 2011 end-page: 75 ident: bib18 article-title: Optimization of ship structures publication-title: J. Marine Tech. Eng. contributor: fullname: Caprace – volume: 58 start-page: 851 year: 2018 end-page: 868 ident: bib2 article-title: Design of optimum grillages using layout optimization publication-title: Struct. Multidiscip. Optim. contributor: fullname: Gilbert – year: 2021 ident: bib1 article-title: A design approach to reduce hull weight of naval ships publication-title: Ship Technol. Res. contributor: fullname: Rizzo – volume: 5 start-page: 467 year: 1992 end-page: 490 ident: bib17 article-title: Rule based optimization of midship structures publication-title: Mar. Struct. contributor: fullname: Caldwell – ident: bib6 article-title: Frontline Systems Inc., solver add-in help and support – year: 1904 ident: bib14 article-title: The limits of economy of material in framed structures publication-title: Phil. Mag. contributor: fullname: Michell – volume: 31 start-page: 863 year: 2000 end-page: 873 ident: bib21 article-title: Optimum spacing of grillage system using genetic algorithm publication-title: Adv. Eng. Software contributor: fullname: Malhas – volume: 12 start-page: 314 year: 1959 end-page: 324 ident: bib8 article-title: On the absolute minimum weight design of framed structures publication-title: Q. J. Mech. Appl. Math. contributor: fullname: Heyman – start-page: 667 year: 2005 end-page: 674 ident: bib16 article-title: Formulas for Stress, Strain, and Structural Matrices contributor: fullname: Pilkey – year: 2010 ident: bib3 article-title: Least weight and least cost optimization of a passenger vessel publication-title: Sci. J. Series: Math. Model Civ. Eng. contributor: fullname: Rigo – volume: 3 start-page: 25 year: 1964 end-page: 52 ident: bib4 article-title: Automatic design of optimal structures publication-title: J. Mec. contributor: fullname: Greenbeg – year: 2010 ident: bib9 article-title: Ship Structural Analysis and Design contributor: fullname: Paik – volume: 41 year: 2017 ident: bib23 article-title: Optimal Design of Grillage Structures with Steel Crossed Beams Using Genetic Algorithm publication-title: UBT International Conference contributor: fullname: Saliu – volume: 8 start-page: 73 year: 1974 end-page: 103 ident: bib12 article-title: Nonlinear optimization using the generalized reduced gradient method, R.A.I.R.O publication-title: Recherche opérationnelle contributor: fullname: Ratner – volume: 4 start-page: 34 year: 1978 end-page: 50 ident: bib13 article-title: Design and testing of a generalized reduced gradient code for nonlinear programming publication-title: ACM Trans. Math Software contributor: fullname: Ratner – volume: 136 start-page: 243 year: 2017 end-page: 259 ident: bib11 article-title: A novel design framework for generation and parametric modification of yacht hull surfaces publication-title: Ocean Eng. contributor: fullname: Doğan – year: 2021 ident: 10.1016/j.oceaneng.2022.112370_bib1 article-title: A design approach to reduce hull weight of naval ships publication-title: Ship Technol. Res. contributor: fullname: Aguiari – volume: 41 year: 2017 ident: 10.1016/j.oceaneng.2022.112370_bib23 article-title: Optimal Design of Grillage Structures with Steel Crossed Beams Using Genetic Algorithm contributor: fullname: Tushaj – year: 1904 ident: 10.1016/j.oceaneng.2022.112370_bib14 article-title: The limits of economy of material in framed structures publication-title: Phil. Mag. doi: 10.1080/14786440409463229 contributor: fullname: Michell – volume: 8 start-page: 305 issue: 4 year: 1966 ident: 10.1016/j.oceaneng.2022.112370_bib15 article-title: The minimum reinforcement of concrete slabs publication-title: Int. J. Mech. Sci. doi: 10.1016/0020-7403(66)90031-2 contributor: fullname: Morley – volume: 12 start-page: 314 issue: 3 year: 1959 ident: 10.1016/j.oceaneng.2022.112370_bib8 article-title: On the absolute minimum weight design of framed structures publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/12.3.314 contributor: fullname: Heyman – year: 2018 ident: 10.1016/j.oceaneng.2022.112370_bib10 – start-page: 667 year: 2005 ident: 10.1016/j.oceaneng.2022.112370_bib16 contributor: fullname: Pilkey – volume: 3 start-page: 25 issue: 1 year: 1964 ident: 10.1016/j.oceaneng.2022.112370_bib4 article-title: Automatic design of optimal structures publication-title: J. Mec. contributor: fullname: Dorn – volume: 5 start-page: 467 issue: 6 year: 1992 ident: 10.1016/j.oceaneng.2022.112370_bib17 article-title: Rule based optimization of midship structures publication-title: Mar. Struct. doi: 10.1016/0951-8339(92)90001-6 contributor: fullname: Rahman – volume: 31 start-page: 863 issue: 11 year: 2000 ident: 10.1016/j.oceaneng.2022.112370_bib21 article-title: Optimum spacing of grillage system using genetic algorithm publication-title: Adv. Eng. Software doi: 10.1016/S0965-9978(00)00048-X contributor: fullname: Saka – volume: 16 start-page: 68 issue: 1 year: 2011 ident: 10.1016/j.oceaneng.2022.112370_bib18 article-title: Optimization of ship structures publication-title: J. Marine Tech. Eng. contributor: fullname: Rigo – volume: 8 start-page: 73 issue: V3 year: 1974 ident: 10.1016/j.oceaneng.2022.112370_bib12 article-title: Nonlinear optimization using the generalized reduced gradient method, R.A.I.R.O publication-title: Recherche opérationnelle doi: 10.1051/ro/197408V300731 contributor: fullname: Lasdon – year: 2010 ident: 10.1016/j.oceaneng.2022.112370_bib9 contributor: fullname: Hughes – issue: 2 year: 2010 ident: 10.1016/j.oceaneng.2022.112370_bib3 article-title: Least weight and least cost optimization of a passenger vessel publication-title: Sci. J. Series: Math. Model Civ. Eng. contributor: fullname: Caprace – year: 2017 ident: 10.1016/j.oceaneng.2022.112370_bib19 – volume: 58 start-page: 851 year: 2018 ident: 10.1016/j.oceaneng.2022.112370_bib2 article-title: Design of optimum grillages using layout optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-1930-6 contributor: fullname: Bolbotowski – volume: 9 start-page: 215 issue: 3 year: 2008 ident: 10.1016/j.oceaneng.2022.112370_bib5 article-title: Effect of beam spacing in the harmony search based optimum design of grillages publication-title: Asian J. Civil Eng. contributor: fullname: Erdal – volume: 20 start-page: 1044 issue: 8 year: 2003 ident: 10.1016/j.oceaneng.2022.112370_bib7 article-title: Layout optimization of large scale pin-jointed frames publication-title: Eng. Comput. doi: 10.1108/02644400310503017 contributor: fullname: Gilbert – volume: 14 start-page: 651 issue: 10 year: 1972 ident: 10.1016/j.oceaneng.2022.112370_bib20 article-title: Grillages of maximum strength and maximum stiffness publication-title: Int. J. Mech. Sci. doi: 10.1016/0020-7403(72)90023-9 contributor: fullname: Rozvany – volume: 136 start-page: 243 year: 2017 ident: 10.1016/j.oceaneng.2022.112370_bib11 article-title: A novel design framework for generation and parametric modification of yacht hull surfaces publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.03.013 contributor: fullname: Khan – volume: 4 start-page: 34 issue: 1 year: 1978 ident: 10.1016/j.oceaneng.2022.112370_bib13 article-title: Design and testing of a generalized reduced gradient code for nonlinear programming publication-title: ACM Trans. Math Software doi: 10.1145/355769.355773 contributor: fullname: Lasdon – volume: 22 start-page: 691 year: 2009 ident: 10.1016/j.oceaneng.2022.112370_bib22 article-title: Least-weight topology and size optimization of high speed vehicle-passenger catamaran structure by genetic algorithm publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2009.06.003 contributor: fullname: Sekulski |
SSID | ssj0006603 |
Score | 2.400591 |
Snippet | In this paper, a semi-automatic design procedure for concept and preliminary phases of hull structural design is described. It allows investigating the design... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 112370 |
SubjectTerms | Design process Parametric design Rule requirements Scantling Ship structures |
Title | Ship weight reduction by parametric design of hull scantling |
URI | https://dx.doi.org/10.1016/j.oceaneng.2022.112370 |
Volume | 263 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1KvaggWhXrR9mD17TbZJO44KUUpSrWgxZ6C7ubXduCaakV8eJvdyYfWEHw4DEhG8LbnXkzYd4MwLlVXAmFhoSeUHnCV7GnZGo9bmN9YYRwIiJx8v0wGozE7Tgc16BfaWGorLL0_YVPz711eadTotlZTKek8fUl-ldkOAxbMC4nBTvSH57p9ud3mUcU8aAq86Cn11TCszZShMps9ox5ou-TmiagocW_EdQa6Vzvwk4ZLbJe8UF7ULNZA7bWegg2YPuB3l42nt6Hy8fJdMHe8x-ebEl9WQl5pj8YNfl-oflZhqV52QabOzbBDJS9ErwkSz-A0fXVU3_glRMSPIPUuvIkl7H0jbOad5WItQs0mqzRTlit0RJT6xBzjUFaGERhKnyhnUuNjYXi2pdpcAj1bJ7ZI2DScpkaaWIZWkyZhcRAxnaDVEuuEWLThE4FS7IoGmEkVYXYLKmATAjIpACyCbJCL_mxpQl66z_WHv9j7Qls0lUhGDyF-mr5Zs8wcljpVn40WrDRu7kbDL8Ao_HDwg |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1qe_ADRKti_dyD19htsklc8FKKJbUfHmyht7C72bUtmJZaEf-9s00iFQQPXhM2hJedN2_DvBmAGy2oYAIDCZlQOMwVoSN4oh2qQ3mnGDMssObk_iCIRuxx7I9L0Cq8MLasMuf-jNPXbJ1fqedo1hfTqfX4uhz5FTMcyhbU5VtQQTXAMTorzU43GnwTchBQr6j0sAs2jMKzW8wSItXpCx4VXdcaajw7t_i3HLWRd9oHsJ8LRtLM3ukQSjqtwu5GG8Eq7D3Zp-e9p4_g_nkyXZCP9T9PsrStWS34RH4S2-f71Y7QUiRZV26QuSETPISSN4uwdaYfw6j9MGxFTj4kwVGYXVcOpzzkrjJa0oZgoTSexKhV0jAtJQZjog3CLlGn-V7gJ8xl0phE6ZAJKl2eeCdQTuepPgXCNeWJ4irkvsZTM-OoZXTDSySnElFWNagXsMSLrBdGXBSJzeICyNgCGWdA1oAX6MU_vmqMhP3H2rN_rL2G7WjY78W9zqB7Djv2TuYfvIDyavmuL1FIrORVvlG-AHWcxnY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ship+weight+reduction+by+parametric+design+of+hull+scantling&rft.jtitle=Ocean+engineering&rft.au=Aguiari%2C+M.&rft.au=Gaiotti%2C+M.&rft.au=Rizzo%2C+C.M.&rft.date=2022-11-01&rft.issn=0029-8018&rft.volume=263&rft.spage=112370&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.112370&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2022_112370 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |