A study of Brownian relaxation time in magnetic nanofluids: a semi-analytical model
Magnetic nanofluids find application in various fields, including magnetic hyperthermia, which holds significant potential for non-invasive cancer treatment. The dynamics of magnetic nanoparticle systems under the influence of a magnetic field plays a crucial role in all applications, particularly i...
Saved in:
Published in | Multiscale and Multidisciplinary Modeling, Experiments and Design Vol. 7; no. 1; pp. 15 - 29 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic nanofluids find application in various fields, including magnetic hyperthermia, which holds significant potential for non-invasive cancer treatment. The dynamics of magnetic nanoparticle systems under the influence of a magnetic field plays a crucial role in all applications, particularly in magnetic hyperthermia, and has been the subject of recent intensive research. Numerous studies investigating magnetic hyperthermia assume that the Brownian relaxation time is independent of the magnetic field and nanoparticle concentration. However, this modeling assumption can introduce errors in estimating certain parameters of interest. Consequently, these errors propagate in determining the effective relaxation time, which holds great importance in estimating quantities such as the Specific Absorption Rate and Intrinsic Loss Power Values for magnetic hyperthermia. This scientific paper presents a study that addresses these errors using a semi-analytical model. The experimental results obtained in our study contribute to the understanding of magnetic relaxation mechanisms in nanofluids under various conditions. Furthermore, these findings can aid in the development of accurate numerical evaluation models for practical applications. |
---|---|
AbstractList | Magnetic nanofluids find application in various fields, including magnetic hyperthermia, which holds significant potential for non-invasive cancer treatment. The dynamics of magnetic nanoparticle systems under the influence of a magnetic field plays a crucial role in all applications, particularly in magnetic hyperthermia, and has been the subject of recent intensive research. Numerous studies investigating magnetic hyperthermia assume that the Brownian relaxation time is independent of the magnetic field and nanoparticle concentration. However, this modeling assumption can introduce errors in estimating certain parameters of interest. Consequently, these errors propagate in determining the effective relaxation time, which holds great importance in estimating quantities such as the Specific Absorption Rate and Intrinsic Loss Power Values for magnetic hyperthermia. This scientific paper presents a study that addresses these errors using a semi-analytical model. The experimental results obtained in our study contribute to the understanding of magnetic relaxation mechanisms in nanofluids under various conditions. Furthermore, these findings can aid in the development of accurate numerical evaluation models for practical applications. |
Author | Cacciola, Matteo Osaci, Mihaela |
Author_xml | – sequence: 1 givenname: Mihaela orcidid: 0000-0003-4062-7556 surname: Osaci fullname: Osaci, Mihaela email: mihaela.osaci@upt.ro organization: Department of Electrical Engineering and Industrial Informatics, Politehnica University Timişoara – sequence: 2 givenname: Matteo orcidid: 0000-0001-7795-4396 surname: Cacciola fullname: Cacciola, Matteo organization: Cooperativa TEC |
BookMark | eNp9kMtKAzEUhoNUsGpfwFVeIHpymyTuavEGBRfqOsRMpqTMJJJM0b69oxWXrs6Bc74f_u8UzVJOAaELCpcUQF1VQQ03BBgnAFQJYo7QnEkGRFNlZn97AydoUesWAJjiQmmYo-clruOu3ePc4ZuSP1J0CZfQu083xpzwGIeAY8KD26QwRo-TS7nrd7Gt19jhGoZIXHL9frq5Hg-5Df05Ou5cX8Pid56h17vbl9UDWT_dP66Wa-KZYCPRbVCi8dpoTTsvggTJqZfevCkQAkLjvWioaxoOrQyUUgFCdl75IE2jleZniB1yfcm1ltDZ9xIHV_aWgv02Yw9m7GTG_pixZoL4AarTc9qEYrd5V6YG9T_qC_JrZ50 |
Cites_doi | 10.1063/1.4754272 10.1016/j.apsadv.2021.100163 10.3390/nano6090170 10.1039/D0CP04377J 10.3390/ma16020496 10.1063/1.1398588 10.3390/ijms221810071 10.1063/1.3639276 10.3379/msjmag.2203R003 10.1155/2015/532198 10.3762/bjnano.6.223 10.1016/0927-7757(93)80218-4 10.1039/D1NA00463H 10.1038/s41598-019-40341-y 10.3762/bjnano.11.105 10.1063/5.0085202 10.3390/macromol2030024 10.3390/nano11123396 10.1063/1.4940724 10.1063/1.3604009 10.1016/j.jmmm.2020.167451 10.1118/1.4837216 10.3390/app11209651 10.1021/acs.jpcc.9b06790 10.1007/s10404-017-1856-0 10.1016/j.physa.2015.07.014 10.1140/epjst/e2019-900096-y 10.3390/magnetochemistry8090107 10.1063/1.4928202 10.1007/s00231-017-2114-4 10.1103/PhysRevE.93.063117 10.3390/sym13081362 10.1063/1.4914061 10.1118/1.3426294 10.1186/s13287-022-02808-0 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s41939-023-00174-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2520-8179 |
EndPage | 29 |
ExternalDocumentID | 10_1007_s41939_023_00174_9 |
GroupedDBID | -EM 0R~ 406 AAAVM AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c242t-8de746c89881fc4e50531c5c9b70440e6cc461a6630d5e1114045fc7ce5968783 |
ISSN | 2520-8160 |
IngestDate | Tue Jul 01 02:07:02 EDT 2025 Fri Feb 21 02:41:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Magnetic nanoparticle Brownian relaxation time Néel relaxation time Nanofluid Effective relaxation time |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c242t-8de746c89881fc4e50531c5c9b70440e6cc461a6630d5e1114045fc7ce5968783 |
ORCID | 0000-0003-4062-7556 0000-0001-7795-4396 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1007_s41939_023_00174_9 springer_journals_10_1007_s41939_023_00174_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240300 2024-03-00 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Multiscale and Multidisciplinary Modeling, Experiments and Design |
PublicationTitleAbbrev | Multiscale and Multidiscip. Model. Exp. and Des |
PublicationYear | 2024 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Flores-Rojas, López-Saucedo, Vera-Graziano, Mendizabal, Bucio (CR12) 2022; 2 Krafcik, Babinec, Strbak, Frollo (CR15) 2021; 11 Osaci, Cacciola (CR26) 2020; 11 Dieckhoff, Schilling, Ludwig (CR10) 2011; 99 Osaci, Cacciola (CR25) 2017; 21 Ota, Takemura (CR30) 2020; 6 Ilg, Kröger (CR14) 2020; 22 Mittal, Roy, Gandhi (CR18) 2022; 8 Chen, Hou (CR5) 2022; 13 Zubarev, Iskakova, Abu-Bakr (CR44) 2015; 438 Sadat, Bud’ko, Ewing, Xu, Pauletti, Mast, Shi (CR36) 2023; 16 Coffey, Kalmykov (CR7) 2012; 112 Rietberg, Waanders, Horstman-van de Loosdrecht, Wildeboer, ten Haken, Alic (CR34) 2021; 11 Deissler, Wu, Martens (CR9) 2014; 41 Ota, Kitaguchi, Takeda, Yamada, Takemura (CR32) 2016; 6 Morales, Costo, Mille, Carrey, de la Presa, de la Presa (CR20) 2021; 3 Abu-Bakr, Zubarev (CR3) 2021; 379 Coffey, Gregg, Kalmykov (CR8) 1992; 83 Dieckhoff, Eberbeck, Schilling, Ludwig (CR11) 2016; 119 Osaci, Cacciola (CR24) 2015; 6 Coene, Leliaert (CR6) 2022; 131 Osaci, Cacciola (CR27) 2019; 12 Materón, Miyazaki, Carr, Joshi, Picciani, Dalmaschio, Davis, Shimizu (CR17) 2021; 6 Osaci, Cacciola (CR28) 2021; 519 Rauwerdink, Weaver (CR33) 2010; 37 Abu-Bakr, Zubarev (CR2) 2020; 2313 Yelenich, Solopan, Kolodiazhnyi, Tykhonenko, Tovstolytkin, Belous (CR41) 2015; 3 Ota, Takemura (CR29) 2019; 123 Abu-Bakr, Zubarev (CR1) 2020; 229 Goodwill, Tamrazian, Croft, Lu, Johnson, Pidaparthi, Ferguson, Khandhar, Krishnan, Conolly (CR13) 2011; 98 Tackett, Thakur, Mosher, Perkins-Harbin, Kumon, Wang, Rablau, Vaishnava (CR38) 2015; 118 Ota, Yamada, Takemura (CR31) 2015; 117 Moita, Moreira, Pereira (CR19) 2021; 13 Neveu-Prin, Tourinho, Bacri, Perzynski (CR22) 1993; 80 Wang, Holm (CR40) 2001; 115 Caizer, Caizer (CR4) 2021; 22 Naushad Alam, Langde (CR21) 2022; 65 Yoshida, Enpuku (CR42) 2009; 48 Sindt, Camp, Kantorovich, Elfimova, Ivanov (CR37) 2016; 93 Rosensweig (CR35) 1985 Torres, Lima, Calatayud, Sanz, Ibarra, Fernández-Pacheco, Mayoral, Marquina, Ibarra, Goya (CR39) 2019; 9 Noguchi, Trisnanto, Yamada, Ota, Takemura (CR23) 2022; 46 Zhong, Lucht, Hankiewicz, Schilling, Ludwig (CR43) 2019; 115 Kumar, Subudhi (CR16) 2018; 54 OJ Sindt (174_CR37) 2016; 93 M Osaci (174_CR26) 2020; 11 S Ota (174_CR31) 2015; 117 M Osaci (174_CR24) 2015; 6 I Morales (174_CR20) 2021; 3 M Osaci (174_CR25) 2017; 21 M Osaci (174_CR27) 2019; 12 A Coene (174_CR6) 2022; 131 PW Goodwill (174_CR13) 2011; 98 A Krafcik (174_CR15) 2021; 11 J Zhong (174_CR43) 2019; 115 T Yoshida (174_CR42) 2009; 48 S Neveu-Prin (174_CR22) 1993; 80 AF Abu-Bakr (174_CR1) 2020; 229 A Mittal (174_CR18) 2022; 8 S Ota (174_CR32) 2016; 6 P Ilg (174_CR14) 2020; 22 S Ota (174_CR30) 2020; 6 A Moita (174_CR19) 2021; 13 MD Sadat (174_CR36) 2023; 16 O Yelenich (174_CR41) 2015; 3 EM Materón (174_CR17) 2021; 6 GG Flores-Rojas (174_CR12) 2022; 2 S Noguchi (174_CR23) 2022; 46 Y Chen (174_CR5) 2022; 13 J Dieckhoff (174_CR11) 2016; 119 WT Coffey (174_CR8) 1992; 83 A Kumar (174_CR16) 2018; 54 C Caizer (174_CR4) 2021; 22 Z Wang (174_CR40) 2001; 115 RE Rosensweig (174_CR35) 1985 R Tackett (174_CR38) 2015; 118 Md Naushad Alam (174_CR21) 2022; 65 WT Coffey (174_CR7) 2012; 112 M Osaci (174_CR28) 2021; 519 TE Torres (174_CR39) 2019; 9 S Ota (174_CR29) 2019; 123 J Dieckhoff (174_CR10) 2011; 99 AF Abu-Bakr (174_CR3) 2021; 379 RJ Deissler (174_CR9) 2014; 41 AF Abu-Bakr (174_CR2) 2020; 2313 AM Rauwerdink (174_CR33) 2010; 37 MT Rietberg (174_CR34) 2021; 11 AY Zubarev (174_CR44) 2015; 438 |
References_xml | – volume: 115 year: 2019 ident: CR43 article-title: Magnetic field orientation dependent dynamic susceptibility and Brownian relaxation time of magnetic nanoparticles publication-title: Appl Phys Lett – volume: 379 start-page: 2205 year: 2021 ident: CR3 article-title: Effect of ring-shaped clusters on magnetic hyperthermia: modelling approach publication-title: Philos Trans R Soc A Math Phys Eng Sci – volume: 46 start-page: 42 year: 2022 end-page: 48 ident: CR23 article-title: AC magnetic susceptibility of magnetic nanoparticles measured under DC bias magnetic field publication-title: J Magn Soc Jpn – volume: 83 start-page: 263 year: 1992 end-page: 464 ident: CR8 article-title: On the theory of Debye and Nèel relaxation of single domain ferromagnetic particles publication-title: Adv Chem Phys – volume: 54 start-page: 241 year: 2018 end-page: 265 ident: CR16 article-title: Preparation, characteristics, convection and applications of magnetic nanofluids: a review publication-title: Heat Mass Transf – volume: 123 start-page: 28859 year: 2019 end-page: 28866 ident: CR29 article-title: Characterization of neel and Brownian relaxations isolated from complex dynamics influenced by dipole interactions in magnetic nanoparticles publication-title: J Phys Chem C – volume: 22 start-page: 10071 issue: 18 year: 2021 ident: CR4 article-title: Study on maximum specific loss power in Fe O nanoparticles decorated with biocompatible gamma-cyclodextrins for cancer therapy with superparamagnetic hyperthermia publication-title: Int J Mol Sci – volume: 131 year: 2022 ident: CR6 article-title: Magnetic nanoparticles in theranostic applications publication-title: J Appl Phys – volume: 6 start-page: 2009005 issue: 2 Suppl 1 year: 2020 ident: CR30 article-title: Individual observation of Néel and Brownian relaxations in magnetic nanoparticles publication-title: Int J Magn Part Imaging – year: 1985 ident: CR35 publication-title: Ferrohydrodynamics – volume: 37 start-page: 2587 issue: 6 year: 2010 ident: CR33 article-title: Harmonic phase angle as a concentration independent measure of nanoparticle dynamics publication-title: Med Phys – volume: 13 start-page: 1362 issue: 2021 year: 2021 end-page: 1388 ident: CR19 article-title: Nanofluids for the next generation thermal management of electronics: a review publication-title: Symmetry – volume: 11 start-page: 3396 year: 2021 ident: CR34 article-title: Modelling of dynamic behaviour in magnetic nanoparticles publication-title: Nanomaterials – volume: 16 start-page: 496 year: 2023 ident: CR36 article-title: Effect of dipole interactions on blocking temperature and relaxation dynamics of superparamagnetic iron-oxide (Fe3O4) nanoparticle systems publication-title: Materials – volume: 119 year: 2016 ident: CR11 article-title: Magnetic-field dependence of Brownian and Néel relaxation times publication-title: J Appl Phys – volume: 11 start-page: 9651 year: 2021 ident: CR15 article-title: Theoretical analysis of magnetic particle alignment in external magnetic fields affected by viscosity and Brownian motion publication-title: Appl Sci – volume: 438 start-page: 487 year: 2015 end-page: 492 ident: CR44 article-title: Effect of interparticle interaction on magnetic hyperthermia in ferrofluids publication-title: Phys A – volume: 9 start-page: 3992 year: 2019 ident: CR39 article-title: The relevance of Brownian relaxation as power absorption mechanism in magnetic hyperthermia publication-title: Sci Rep – volume: 6 year: 2021 ident: CR17 article-title: Magnetic nanoparticles in biomedical applications: a review publication-title: Appl Surf Sci Adv – volume: 8 start-page: 107 year: 2022 ident: CR18 article-title: Magnetic nanoparticles: an overview for biomedical applications publication-title: Magnetochemistry – volume: 93 year: 2016 ident: CR37 article-title: Influence of dipolar interactions on the magnetic susceptibility spectra of ferrofluids publication-title: Phys Rev E – volume: 3 start-page: 5801 year: 2021 end-page: 5812 ident: CR20 article-title: Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field publication-title: Nanoscale Adv – volume: 6 start-page: 170 year: 2016 ident: CR32 article-title: Rotation of magnetization derived from Brownian relaxation in magnetic fluids of different viscosity evaluated by dynamic hysteresis measurements over a wide frequency range publication-title: Nanomaterials – volume: 112 year: 2012 ident: CR7 article-title: Thermal fluctuations of magnetic nanoparticles: fifty years after Brown publication-title: J Appl Phys – volume: 2313 issue: 1 year: 2020 ident: CR2 article-title: A study of easy magnetization axes of ferro-nanoparticles on magnetic hyperthermia publication-title: AIP Conf Proc – volume: 48 issue: 12 year: 2009 ident: CR42 article-title: Simulation and quantitative clarification of AC susceptibility of magnetic fluid in nonlinear Brownian relaxation region publication-title: Jpn J Appl Phys – volume: 21 start-page: 1 issue: 2 year: 2017 end-page: 14 ident: CR25 article-title: Study about the nanoparticle agglomeration in a magnetic nanofluid by the Langevin dynamics simulation model using an effective Verlet-type algorithm publication-title: Microfluid Nanofluid – volume: 12 start-page: 1 issue: 6 year: 2019 end-page: 18 ident: CR27 article-title: The influence of the magnetic nanoparticles coating from colloidal system on the magnetic relaxation time publication-title: Beilstein Arch – volume: 98 issue: 26 year: 2011 ident: CR13 article-title: Ferrohydrodynamic relaxometry for magnetic particle imaging publication-title: Appl Phys Lett – volume: 22 start-page: 22244 year: 2020 end-page: 22259 ident: CR14 article-title: Dynamics of interacting magnetic nanoparticles: effective behaviour from competition between Brownian and Néel relaxation publication-title: Phys Chem Chem Phys – volume: 41 issue: 1 year: 2014 ident: CR9 article-title: Dependence of Brownian and Néel relaxation times on magnetic field strength publication-title: Med Phys – volume: 115 start-page: 6351 year: 2001 ident: CR40 article-title: Estimate of the cutoff errors in the Ewald summation for dipolar systems publication-title: J Chem Phys – volume: 65 start-page: 173 issue: 4 year: 2022 end-page: 180 ident: CR21 article-title: A review of application of nanofluid publication-title: J East China Univ Sci Technol – volume: 11 start-page: 1207 issue: 1 year: 2020 end-page: 1216 ident: CR26 article-title: Influence of the magnetic nanoparticle coating on the magnetic relaxation time publication-title: Beilstein J Nanotechnol – volume: 229 start-page: 315 year: 2020 end-page: 322 ident: CR1 article-title: Magnetic hyperthermia in a system of dense cluster of ferromagnetic nanoparticles publication-title: Eur Phys J Sp Top – volume: 13 start-page: 135 year: 2022 ident: CR5 article-title: Application of magnetic nanoparticles in cell therapy publication-title: Stem Cell Res Ther – volume: 519 start-page: 16745 year: 2021 ident: CR28 article-title: About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia publication-title: J Magn Magn Mater – volume: 118 issue: 6 year: 2015 ident: CR38 article-title: A method for measuring the Neel relaxation time in a frozen ferrofluid publication-title: J Appl Phys – volume: 99 issue: 11 year: 2011 ident: CR10 article-title: Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field publication-title: Appl Phys Lett – volume: 80 start-page: 1 issue: 1 year: 1993 end-page: 10 ident: CR22 article-title: Magnetic birefringence of cobalt ferrite ferrofluids publication-title: Colloids Surf A – volume: 3 start-page: 1 year: 2015 end-page: 9 ident: CR41 article-title: Magnetic properties and AC losses in AFe2O4 (A = Mn Co, Ni, Zn) nanoparticles synthesized from nonaqueous solution publication-title: J Chem – volume: 2 start-page: 374 year: 2022 end-page: 390 ident: CR12 article-title: Magnetic nanoparticles for medical applications: updated review publication-title: Macromol – volume: 6 start-page: 2173 issue: 1 year: 2015 end-page: 2182 ident: CR24 article-title: An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles publication-title: Beilstein J Nanotechnol – volume: 117 start-page: 17D713 year: 2015 ident: CR31 article-title: Dipole-dipole interactions and its concentration dependence of magnetic fluid evaluated by aloternatting current hysteresis measurement publication-title: J Appl Phys – volume: 112 year: 2012 ident: 174_CR7 publication-title: J Appl Phys doi: 10.1063/1.4754272 – volume: 6 year: 2021 ident: 174_CR17 publication-title: Appl Surf Sci Adv doi: 10.1016/j.apsadv.2021.100163 – volume: 6 start-page: 170 year: 2016 ident: 174_CR32 publication-title: Nanomaterials doi: 10.3390/nano6090170 – volume: 83 start-page: 263 year: 1992 ident: 174_CR8 publication-title: Adv Chem Phys – volume: 22 start-page: 22244 year: 2020 ident: 174_CR14 publication-title: Phys Chem Chem Phys doi: 10.1039/D0CP04377J – volume: 16 start-page: 496 year: 2023 ident: 174_CR36 publication-title: Materials doi: 10.3390/ma16020496 – volume: 115 start-page: 6351 year: 2001 ident: 174_CR40 publication-title: J Chem Phys doi: 10.1063/1.1398588 – volume-title: Ferrohydrodynamics year: 1985 ident: 174_CR35 – volume: 22 start-page: 10071 issue: 18 year: 2021 ident: 174_CR4 publication-title: Int J Mol Sci doi: 10.3390/ijms221810071 – volume: 115 year: 2019 ident: 174_CR43 publication-title: Appl Phys Lett – volume: 65 start-page: 173 issue: 4 year: 2022 ident: 174_CR21 publication-title: J East China Univ Sci Technol – volume: 99 issue: 11 year: 2011 ident: 174_CR10 publication-title: Appl Phys Lett doi: 10.1063/1.3639276 – volume: 46 start-page: 42 year: 2022 ident: 174_CR23 publication-title: J Magn Soc Jpn doi: 10.3379/msjmag.2203R003 – volume: 3 start-page: 1 year: 2015 ident: 174_CR41 publication-title: J Chem doi: 10.1155/2015/532198 – volume: 6 start-page: 2173 issue: 1 year: 2015 ident: 174_CR24 publication-title: Beilstein J Nanotechnol doi: 10.3762/bjnano.6.223 – volume: 80 start-page: 1 issue: 1 year: 1993 ident: 174_CR22 publication-title: Colloids Surf A doi: 10.1016/0927-7757(93)80218-4 – volume: 6 start-page: 2009005 issue: 2 Suppl 1 year: 2020 ident: 174_CR30 publication-title: Int J Magn Part Imaging – volume: 3 start-page: 5801 year: 2021 ident: 174_CR20 publication-title: Nanoscale Adv doi: 10.1039/D1NA00463H – volume: 9 start-page: 3992 year: 2019 ident: 174_CR39 publication-title: Sci Rep doi: 10.1038/s41598-019-40341-y – volume: 11 start-page: 1207 issue: 1 year: 2020 ident: 174_CR26 publication-title: Beilstein J Nanotechnol doi: 10.3762/bjnano.11.105 – volume: 131 year: 2022 ident: 174_CR6 publication-title: J Appl Phys doi: 10.1063/5.0085202 – volume: 2 start-page: 374 year: 2022 ident: 174_CR12 publication-title: Macromol doi: 10.3390/macromol2030024 – volume: 2313 issue: 1 year: 2020 ident: 174_CR2 publication-title: AIP Conf Proc – volume: 11 start-page: 3396 year: 2021 ident: 174_CR34 publication-title: Nanomaterials doi: 10.3390/nano11123396 – volume: 119 year: 2016 ident: 174_CR11 publication-title: J Appl Phys doi: 10.1063/1.4940724 – volume: 98 issue: 26 year: 2011 ident: 174_CR13 publication-title: Appl Phys Lett doi: 10.1063/1.3604009 – volume: 519 start-page: 16745 year: 2021 ident: 174_CR28 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2020.167451 – volume: 41 issue: 1 year: 2014 ident: 174_CR9 publication-title: Med Phys doi: 10.1118/1.4837216 – volume: 11 start-page: 9651 year: 2021 ident: 174_CR15 publication-title: Appl Sci doi: 10.3390/app11209651 – volume: 12 start-page: 1 issue: 6 year: 2019 ident: 174_CR27 publication-title: Beilstein Arch – volume: 123 start-page: 28859 year: 2019 ident: 174_CR29 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.9b06790 – volume: 21 start-page: 1 issue: 2 year: 2017 ident: 174_CR25 publication-title: Microfluid Nanofluid doi: 10.1007/s10404-017-1856-0 – volume: 438 start-page: 487 year: 2015 ident: 174_CR44 publication-title: Phys A doi: 10.1016/j.physa.2015.07.014 – volume: 229 start-page: 315 year: 2020 ident: 174_CR1 publication-title: Eur Phys J Sp Top doi: 10.1140/epjst/e2019-900096-y – volume: 8 start-page: 107 year: 2022 ident: 174_CR18 publication-title: Magnetochemistry doi: 10.3390/magnetochemistry8090107 – volume: 118 issue: 6 year: 2015 ident: 174_CR38 publication-title: J Appl Phys doi: 10.1063/1.4928202 – volume: 48 issue: 12 year: 2009 ident: 174_CR42 publication-title: Jpn J Appl Phys – volume: 379 start-page: 2205 year: 2021 ident: 174_CR3 publication-title: Philos Trans R Soc A Math Phys Eng Sci – volume: 54 start-page: 241 year: 2018 ident: 174_CR16 publication-title: Heat Mass Transf doi: 10.1007/s00231-017-2114-4 – volume: 93 year: 2016 ident: 174_CR37 publication-title: Phys Rev E doi: 10.1103/PhysRevE.93.063117 – volume: 13 start-page: 1362 issue: 2021 year: 2021 ident: 174_CR19 publication-title: Symmetry doi: 10.3390/sym13081362 – volume: 117 start-page: 17D713 year: 2015 ident: 174_CR31 publication-title: J Appl Phys doi: 10.1063/1.4914061 – volume: 37 start-page: 2587 issue: 6 year: 2010 ident: 174_CR33 publication-title: Med Phys doi: 10.1118/1.3426294 – volume: 13 start-page: 135 year: 2022 ident: 174_CR5 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-022-02808-0 |
SSID | ssj0002734780 ssib042110740 |
Score | 2.255938 |
Snippet | Magnetic nanofluids find application in various fields, including magnetic hyperthermia, which holds significant potential for non-invasive cancer treatment.... |
SourceID | crossref springer |
SourceType | Index Database Publisher |
StartPage | 15 |
SubjectTerms | Characterization and Evaluation of Materials Engineering Mathematical Applications in the Physical Sciences Mechanical Engineering Numerical and Computational Physics Original Paper Simulation Solid Mechanics |
Title | A study of Brownian relaxation time in magnetic nanofluids: a semi-analytical model |
URI | https://link.springer.com/article/10.1007/s41939-023-00174-9 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELW2cKEHBIWqUIp84EaNmmAndm9LBUKVoIeCxC1yHKfaCrJVk5UQZ344M7bzsSxU0Eu0611Zu5mX8Rt73gwhezpWVgiTM1HmgmEJdJZHsWE6knhMpLUqUI18dp6cXvLvV-JqNLofZC3NmvzA3D2pK_kfq8IY2BVVsq-wbDcpDMBrsC9cwcJwfZGNx746LBI-F07jw4rilFtvVewbj_sZN_pXhVrF_UpX0_J6Nilqr3Gu7c2EaSxL4ne0XVucIV118twaPgoJGfh2TseLrdSuQ1uU465ZQB0SnIfJIT9qbSY-UR_z9PsEIW1QMqO9cKhp7HS4ERHzPhPL-6tYQCQqI98e4MAOx3y_mNbhpgu48s7T6zrDMuz3QRYcvM_pqDnwTsWAbzBcZjlT_XLWHuE_WuW63MOuTrObI4M5MjdHpt6Q5RiCDfCWy-OTo6Pz1i9xFySHmji_Q0mg1DXl6_5z0GM5VebCj5vnPPMH7o7HXKyR1RCA0LFH0zoZ2eodeTsoS7lBfo6pwxWdlrTFFe1xRRFXdFLRFle0x9VXqukjVFGHqk1yeXJ88e2UheYbzABra5gsbMoTI5WUUWm4FeitjTAqT7FLuU2M4UmkgbB-KYSFFZNDcFCaFGV9iUzl4XuyVE0r-4HQw8iqQgFTh1icQ7whgXSXIgduXWgsxrRF9tvbk_3xNVay5620RT63dzALz2L9j69vv2ryj2Slh_YOWWr-zuwnYJ1NvhtA8QA0L3rC |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+Brownian+relaxation+time+in+magnetic+nanofluids%3A+a+semi-analytical+model&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Osaci%2C+Mihaela&rft.au=Cacciola%2C+Matteo&rft.date=2024-03-01&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=1&rft.spage=15&rft.epage=29&rft_id=info:doi/10.1007%2Fs41939-023-00174-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41939_023_00174_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon |