A study of Brownian relaxation time in magnetic nanofluids: a semi-analytical model

Magnetic nanofluids find application in various fields, including magnetic hyperthermia, which holds significant potential for non-invasive cancer treatment. The dynamics of magnetic nanoparticle systems under the influence of a magnetic field plays a crucial role in all applications, particularly i...

Full description

Saved in:
Bibliographic Details
Published inMultiscale and Multidisciplinary Modeling, Experiments and Design Vol. 7; no. 1; pp. 15 - 29
Main Authors Osaci, Mihaela, Cacciola, Matteo
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic nanofluids find application in various fields, including magnetic hyperthermia, which holds significant potential for non-invasive cancer treatment. The dynamics of magnetic nanoparticle systems under the influence of a magnetic field plays a crucial role in all applications, particularly in magnetic hyperthermia, and has been the subject of recent intensive research. Numerous studies investigating magnetic hyperthermia assume that the Brownian relaxation time is independent of the magnetic field and nanoparticle concentration. However, this modeling assumption can introduce errors in estimating certain parameters of interest. Consequently, these errors propagate in determining the effective relaxation time, which holds great importance in estimating quantities such as the Specific Absorption Rate and Intrinsic Loss Power Values for magnetic hyperthermia. This scientific paper presents a study that addresses these errors using a semi-analytical model. The experimental results obtained in our study contribute to the understanding of magnetic relaxation mechanisms in nanofluids under various conditions. Furthermore, these findings can aid in the development of accurate numerical evaluation models for practical applications.
AbstractList Magnetic nanofluids find application in various fields, including magnetic hyperthermia, which holds significant potential for non-invasive cancer treatment. The dynamics of magnetic nanoparticle systems under the influence of a magnetic field plays a crucial role in all applications, particularly in magnetic hyperthermia, and has been the subject of recent intensive research. Numerous studies investigating magnetic hyperthermia assume that the Brownian relaxation time is independent of the magnetic field and nanoparticle concentration. However, this modeling assumption can introduce errors in estimating certain parameters of interest. Consequently, these errors propagate in determining the effective relaxation time, which holds great importance in estimating quantities such as the Specific Absorption Rate and Intrinsic Loss Power Values for magnetic hyperthermia. This scientific paper presents a study that addresses these errors using a semi-analytical model. The experimental results obtained in our study contribute to the understanding of magnetic relaxation mechanisms in nanofluids under various conditions. Furthermore, these findings can aid in the development of accurate numerical evaluation models for practical applications.
Author Cacciola, Matteo
Osaci, Mihaela
Author_xml – sequence: 1
  givenname: Mihaela
  orcidid: 0000-0003-4062-7556
  surname: Osaci
  fullname: Osaci, Mihaela
  email: mihaela.osaci@upt.ro
  organization: Department of Electrical Engineering and Industrial Informatics, Politehnica University Timişoara
– sequence: 2
  givenname: Matteo
  orcidid: 0000-0001-7795-4396
  surname: Cacciola
  fullname: Cacciola, Matteo
  organization: Cooperativa TEC
BookMark eNp9kMtKAzEUhoNUsGpfwFVeIHpymyTuavEGBRfqOsRMpqTMJJJM0b69oxWXrs6Bc74f_u8UzVJOAaELCpcUQF1VQQ03BBgnAFQJYo7QnEkGRFNlZn97AydoUesWAJjiQmmYo-clruOu3ePc4ZuSP1J0CZfQu083xpzwGIeAY8KD26QwRo-TS7nrd7Gt19jhGoZIXHL9frq5Hg-5Df05Ou5cX8Pid56h17vbl9UDWT_dP66Wa-KZYCPRbVCi8dpoTTsvggTJqZfevCkQAkLjvWioaxoOrQyUUgFCdl75IE2jleZniB1yfcm1ltDZ9xIHV_aWgv02Yw9m7GTG_pixZoL4AarTc9qEYrd5V6YG9T_qC_JrZ50
Cites_doi 10.1063/1.4754272
10.1016/j.apsadv.2021.100163
10.3390/nano6090170
10.1039/D0CP04377J
10.3390/ma16020496
10.1063/1.1398588
10.3390/ijms221810071
10.1063/1.3639276
10.3379/msjmag.2203R003
10.1155/2015/532198
10.3762/bjnano.6.223
10.1016/0927-7757(93)80218-4
10.1039/D1NA00463H
10.1038/s41598-019-40341-y
10.3762/bjnano.11.105
10.1063/5.0085202
10.3390/macromol2030024
10.3390/nano11123396
10.1063/1.4940724
10.1063/1.3604009
10.1016/j.jmmm.2020.167451
10.1118/1.4837216
10.3390/app11209651
10.1021/acs.jpcc.9b06790
10.1007/s10404-017-1856-0
10.1016/j.physa.2015.07.014
10.1140/epjst/e2019-900096-y
10.3390/magnetochemistry8090107
10.1063/1.4928202
10.1007/s00231-017-2114-4
10.1103/PhysRevE.93.063117
10.3390/sym13081362
10.1063/1.4914061
10.1118/1.3426294
10.1186/s13287-022-02808-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s41939-023-00174-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8179
EndPage 29
ExternalDocumentID 10_1007_s41939_023_00174_9
GroupedDBID -EM
0R~
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c242t-8de746c89881fc4e50531c5c9b70440e6cc461a6630d5e1114045fc7ce5968783
ISSN 2520-8160
IngestDate Tue Jul 01 02:07:02 EDT 2025
Fri Feb 21 02:41:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Magnetic nanoparticle
Brownian relaxation time
Néel relaxation time
Nanofluid
Effective relaxation time
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c242t-8de746c89881fc4e50531c5c9b70440e6cc461a6630d5e1114045fc7ce5968783
ORCID 0000-0003-4062-7556
0000-0001-7795-4396
PageCount 15
ParticipantIDs crossref_primary_10_1007_s41939_023_00174_9
springer_journals_10_1007_s41939_023_00174_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Multiscale and Multidisciplinary Modeling, Experiments and Design
PublicationTitleAbbrev Multiscale and Multidiscip. Model. Exp. and Des
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Flores-Rojas, López-Saucedo, Vera-Graziano, Mendizabal, Bucio (CR12) 2022; 2
Krafcik, Babinec, Strbak, Frollo (CR15) 2021; 11
Osaci, Cacciola (CR26) 2020; 11
Dieckhoff, Schilling, Ludwig (CR10) 2011; 99
Osaci, Cacciola (CR25) 2017; 21
Ota, Takemura (CR30) 2020; 6
Ilg, Kröger (CR14) 2020; 22
Mittal, Roy, Gandhi (CR18) 2022; 8
Chen, Hou (CR5) 2022; 13
Zubarev, Iskakova, Abu-Bakr (CR44) 2015; 438
Sadat, Bud’ko, Ewing, Xu, Pauletti, Mast, Shi (CR36) 2023; 16
Coffey, Kalmykov (CR7) 2012; 112
Rietberg, Waanders, Horstman-van de Loosdrecht, Wildeboer, ten Haken, Alic (CR34) 2021; 11
Deissler, Wu, Martens (CR9) 2014; 41
Ota, Kitaguchi, Takeda, Yamada, Takemura (CR32) 2016; 6
Morales, Costo, Mille, Carrey, de la Presa, de la Presa (CR20) 2021; 3
Abu-Bakr, Zubarev (CR3) 2021; 379
Coffey, Gregg, Kalmykov (CR8) 1992; 83
Dieckhoff, Eberbeck, Schilling, Ludwig (CR11) 2016; 119
Osaci, Cacciola (CR24) 2015; 6
Coene, Leliaert (CR6) 2022; 131
Osaci, Cacciola (CR27) 2019; 12
Materón, Miyazaki, Carr, Joshi, Picciani, Dalmaschio, Davis, Shimizu (CR17) 2021; 6
Osaci, Cacciola (CR28) 2021; 519
Rauwerdink, Weaver (CR33) 2010; 37
Abu-Bakr, Zubarev (CR2) 2020; 2313
Yelenich, Solopan, Kolodiazhnyi, Tykhonenko, Tovstolytkin, Belous (CR41) 2015; 3
Ota, Takemura (CR29) 2019; 123
Abu-Bakr, Zubarev (CR1) 2020; 229
Goodwill, Tamrazian, Croft, Lu, Johnson, Pidaparthi, Ferguson, Khandhar, Krishnan, Conolly (CR13) 2011; 98
Tackett, Thakur, Mosher, Perkins-Harbin, Kumon, Wang, Rablau, Vaishnava (CR38) 2015; 118
Ota, Yamada, Takemura (CR31) 2015; 117
Moita, Moreira, Pereira (CR19) 2021; 13
Neveu-Prin, Tourinho, Bacri, Perzynski (CR22) 1993; 80
Wang, Holm (CR40) 2001; 115
Caizer, Caizer (CR4) 2021; 22
Naushad Alam, Langde (CR21) 2022; 65
Yoshida, Enpuku (CR42) 2009; 48
Sindt, Camp, Kantorovich, Elfimova, Ivanov (CR37) 2016; 93
Rosensweig (CR35) 1985
Torres, Lima, Calatayud, Sanz, Ibarra, Fernández-Pacheco, Mayoral, Marquina, Ibarra, Goya (CR39) 2019; 9
Noguchi, Trisnanto, Yamada, Ota, Takemura (CR23) 2022; 46
Zhong, Lucht, Hankiewicz, Schilling, Ludwig (CR43) 2019; 115
Kumar, Subudhi (CR16) 2018; 54
OJ Sindt (174_CR37) 2016; 93
M Osaci (174_CR26) 2020; 11
S Ota (174_CR31) 2015; 117
M Osaci (174_CR24) 2015; 6
I Morales (174_CR20) 2021; 3
M Osaci (174_CR25) 2017; 21
M Osaci (174_CR27) 2019; 12
A Coene (174_CR6) 2022; 131
PW Goodwill (174_CR13) 2011; 98
A Krafcik (174_CR15) 2021; 11
J Zhong (174_CR43) 2019; 115
T Yoshida (174_CR42) 2009; 48
S Neveu-Prin (174_CR22) 1993; 80
AF Abu-Bakr (174_CR1) 2020; 229
A Mittal (174_CR18) 2022; 8
S Ota (174_CR32) 2016; 6
P Ilg (174_CR14) 2020; 22
S Ota (174_CR30) 2020; 6
A Moita (174_CR19) 2021; 13
MD Sadat (174_CR36) 2023; 16
O Yelenich (174_CR41) 2015; 3
EM Materón (174_CR17) 2021; 6
GG Flores-Rojas (174_CR12) 2022; 2
S Noguchi (174_CR23) 2022; 46
Y Chen (174_CR5) 2022; 13
J Dieckhoff (174_CR11) 2016; 119
WT Coffey (174_CR8) 1992; 83
A Kumar (174_CR16) 2018; 54
C Caizer (174_CR4) 2021; 22
Z Wang (174_CR40) 2001; 115
RE Rosensweig (174_CR35) 1985
R Tackett (174_CR38) 2015; 118
Md Naushad Alam (174_CR21) 2022; 65
WT Coffey (174_CR7) 2012; 112
M Osaci (174_CR28) 2021; 519
TE Torres (174_CR39) 2019; 9
S Ota (174_CR29) 2019; 123
J Dieckhoff (174_CR10) 2011; 99
AF Abu-Bakr (174_CR3) 2021; 379
RJ Deissler (174_CR9) 2014; 41
AF Abu-Bakr (174_CR2) 2020; 2313
AM Rauwerdink (174_CR33) 2010; 37
MT Rietberg (174_CR34) 2021; 11
AY Zubarev (174_CR44) 2015; 438
References_xml – volume: 115
  year: 2019
  ident: CR43
  article-title: Magnetic field orientation dependent dynamic susceptibility and Brownian relaxation time of magnetic nanoparticles
  publication-title: Appl Phys Lett
– volume: 379
  start-page: 2205
  year: 2021
  ident: CR3
  article-title: Effect of ring-shaped clusters on magnetic hyperthermia: modelling approach
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
– volume: 46
  start-page: 42
  year: 2022
  end-page: 48
  ident: CR23
  article-title: AC magnetic susceptibility of magnetic nanoparticles measured under DC bias magnetic field
  publication-title: J Magn Soc Jpn
– volume: 83
  start-page: 263
  year: 1992
  end-page: 464
  ident: CR8
  article-title: On the theory of Debye and Nèel relaxation of single domain ferromagnetic particles
  publication-title: Adv Chem Phys
– volume: 54
  start-page: 241
  year: 2018
  end-page: 265
  ident: CR16
  article-title: Preparation, characteristics, convection and applications of magnetic nanofluids: a review
  publication-title: Heat Mass Transf
– volume: 123
  start-page: 28859
  year: 2019
  end-page: 28866
  ident: CR29
  article-title: Characterization of neel and Brownian relaxations isolated from complex dynamics influenced by dipole interactions in magnetic nanoparticles
  publication-title: J Phys Chem C
– volume: 22
  start-page: 10071
  issue: 18
  year: 2021
  ident: CR4
  article-title: Study on maximum specific loss power in Fe O nanoparticles decorated with biocompatible gamma-cyclodextrins for cancer therapy with superparamagnetic hyperthermia
  publication-title: Int J Mol Sci
– volume: 131
  year: 2022
  ident: CR6
  article-title: Magnetic nanoparticles in theranostic applications
  publication-title: J Appl Phys
– volume: 6
  start-page: 2009005
  issue: 2 Suppl 1
  year: 2020
  ident: CR30
  article-title: Individual observation of Néel and Brownian relaxations in magnetic nanoparticles
  publication-title: Int J Magn Part Imaging
– year: 1985
  ident: CR35
  publication-title: Ferrohydrodynamics
– volume: 37
  start-page: 2587
  issue: 6
  year: 2010
  ident: CR33
  article-title: Harmonic phase angle as a concentration independent measure of nanoparticle dynamics
  publication-title: Med Phys
– volume: 13
  start-page: 1362
  issue: 2021
  year: 2021
  end-page: 1388
  ident: CR19
  article-title: Nanofluids for the next generation thermal management of electronics: a review
  publication-title: Symmetry
– volume: 11
  start-page: 3396
  year: 2021
  ident: CR34
  article-title: Modelling of dynamic behaviour in magnetic nanoparticles
  publication-title: Nanomaterials
– volume: 16
  start-page: 496
  year: 2023
  ident: CR36
  article-title: Effect of dipole interactions on blocking temperature and relaxation dynamics of superparamagnetic iron-oxide (Fe3O4) nanoparticle systems
  publication-title: Materials
– volume: 119
  year: 2016
  ident: CR11
  article-title: Magnetic-field dependence of Brownian and Néel relaxation times
  publication-title: J Appl Phys
– volume: 11
  start-page: 9651
  year: 2021
  ident: CR15
  article-title: Theoretical analysis of magnetic particle alignment in external magnetic fields affected by viscosity and Brownian motion
  publication-title: Appl Sci
– volume: 438
  start-page: 487
  year: 2015
  end-page: 492
  ident: CR44
  article-title: Effect of interparticle interaction on magnetic hyperthermia in ferrofluids
  publication-title: Phys A
– volume: 9
  start-page: 3992
  year: 2019
  ident: CR39
  article-title: The relevance of Brownian relaxation as power absorption mechanism in magnetic hyperthermia
  publication-title: Sci Rep
– volume: 6
  year: 2021
  ident: CR17
  article-title: Magnetic nanoparticles in biomedical applications: a review
  publication-title: Appl Surf Sci Adv
– volume: 8
  start-page: 107
  year: 2022
  ident: CR18
  article-title: Magnetic nanoparticles: an overview for biomedical applications
  publication-title: Magnetochemistry
– volume: 93
  year: 2016
  ident: CR37
  article-title: Influence of dipolar interactions on the magnetic susceptibility spectra of ferrofluids
  publication-title: Phys Rev E
– volume: 3
  start-page: 5801
  year: 2021
  end-page: 5812
  ident: CR20
  article-title: Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field
  publication-title: Nanoscale Adv
– volume: 6
  start-page: 170
  year: 2016
  ident: CR32
  article-title: Rotation of magnetization derived from Brownian relaxation in magnetic fluids of different viscosity evaluated by dynamic hysteresis measurements over a wide frequency range
  publication-title: Nanomaterials
– volume: 112
  year: 2012
  ident: CR7
  article-title: Thermal fluctuations of magnetic nanoparticles: fifty years after Brown
  publication-title: J Appl Phys
– volume: 2313
  issue: 1
  year: 2020
  ident: CR2
  article-title: A study of easy magnetization axes of ferro-nanoparticles on magnetic hyperthermia
  publication-title: AIP Conf Proc
– volume: 48
  issue: 12
  year: 2009
  ident: CR42
  article-title: Simulation and quantitative clarification of AC susceptibility of magnetic fluid in nonlinear Brownian relaxation region
  publication-title: Jpn J Appl Phys
– volume: 21
  start-page: 1
  issue: 2
  year: 2017
  end-page: 14
  ident: CR25
  article-title: Study about the nanoparticle agglomeration in a magnetic nanofluid by the Langevin dynamics simulation model using an effective Verlet-type algorithm
  publication-title: Microfluid Nanofluid
– volume: 12
  start-page: 1
  issue: 6
  year: 2019
  end-page: 18
  ident: CR27
  article-title: The influence of the magnetic nanoparticles coating from colloidal system on the magnetic relaxation time
  publication-title: Beilstein Arch
– volume: 98
  issue: 26
  year: 2011
  ident: CR13
  article-title: Ferrohydrodynamic relaxometry for magnetic particle imaging
  publication-title: Appl Phys Lett
– volume: 22
  start-page: 22244
  year: 2020
  end-page: 22259
  ident: CR14
  article-title: Dynamics of interacting magnetic nanoparticles: effective behaviour from competition between Brownian and Néel relaxation
  publication-title: Phys Chem Chem Phys
– volume: 41
  issue: 1
  year: 2014
  ident: CR9
  article-title: Dependence of Brownian and Néel relaxation times on magnetic field strength
  publication-title: Med Phys
– volume: 115
  start-page: 6351
  year: 2001
  ident: CR40
  article-title: Estimate of the cutoff errors in the Ewald summation for dipolar systems
  publication-title: J Chem Phys
– volume: 65
  start-page: 173
  issue: 4
  year: 2022
  end-page: 180
  ident: CR21
  article-title: A review of application of nanofluid
  publication-title: J East China Univ Sci Technol
– volume: 11
  start-page: 1207
  issue: 1
  year: 2020
  end-page: 1216
  ident: CR26
  article-title: Influence of the magnetic nanoparticle coating on the magnetic relaxation time
  publication-title: Beilstein J Nanotechnol
– volume: 229
  start-page: 315
  year: 2020
  end-page: 322
  ident: CR1
  article-title: Magnetic hyperthermia in a system of dense cluster of ferromagnetic nanoparticles
  publication-title: Eur Phys J Sp Top
– volume: 13
  start-page: 135
  year: 2022
  ident: CR5
  article-title: Application of magnetic nanoparticles in cell therapy
  publication-title: Stem Cell Res Ther
– volume: 519
  start-page: 16745
  year: 2021
  ident: CR28
  article-title: About the influence of the colloidal magnetic nanoparticles coating on the specific loss power in magnetic hyperthermia
  publication-title: J Magn Magn Mater
– volume: 118
  issue: 6
  year: 2015
  ident: CR38
  article-title: A method for measuring the Neel relaxation time in a frozen ferrofluid
  publication-title: J Appl Phys
– volume: 99
  issue: 11
  year: 2011
  ident: CR10
  article-title: Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field
  publication-title: Appl Phys Lett
– volume: 80
  start-page: 1
  issue: 1
  year: 1993
  end-page: 10
  ident: CR22
  article-title: Magnetic birefringence of cobalt ferrite ferrofluids
  publication-title: Colloids Surf A
– volume: 3
  start-page: 1
  year: 2015
  end-page: 9
  ident: CR41
  article-title: Magnetic properties and AC losses in AFe2O4 (A = Mn Co, Ni, Zn) nanoparticles synthesized from nonaqueous solution
  publication-title: J Chem
– volume: 2
  start-page: 374
  year: 2022
  end-page: 390
  ident: CR12
  article-title: Magnetic nanoparticles for medical applications: updated review
  publication-title: Macromol
– volume: 6
  start-page: 2173
  issue: 1
  year: 2015
  end-page: 2182
  ident: CR24
  article-title: An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles
  publication-title: Beilstein J Nanotechnol
– volume: 117
  start-page: 17D713
  year: 2015
  ident: CR31
  article-title: Dipole-dipole interactions and its concentration dependence of magnetic fluid evaluated by aloternatting current hysteresis measurement
  publication-title: J Appl Phys
– volume: 112
  year: 2012
  ident: 174_CR7
  publication-title: J Appl Phys
  doi: 10.1063/1.4754272
– volume: 6
  year: 2021
  ident: 174_CR17
  publication-title: Appl Surf Sci Adv
  doi: 10.1016/j.apsadv.2021.100163
– volume: 6
  start-page: 170
  year: 2016
  ident: 174_CR32
  publication-title: Nanomaterials
  doi: 10.3390/nano6090170
– volume: 83
  start-page: 263
  year: 1992
  ident: 174_CR8
  publication-title: Adv Chem Phys
– volume: 22
  start-page: 22244
  year: 2020
  ident: 174_CR14
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/D0CP04377J
– volume: 16
  start-page: 496
  year: 2023
  ident: 174_CR36
  publication-title: Materials
  doi: 10.3390/ma16020496
– volume: 115
  start-page: 6351
  year: 2001
  ident: 174_CR40
  publication-title: J Chem Phys
  doi: 10.1063/1.1398588
– volume-title: Ferrohydrodynamics
  year: 1985
  ident: 174_CR35
– volume: 22
  start-page: 10071
  issue: 18
  year: 2021
  ident: 174_CR4
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms221810071
– volume: 115
  year: 2019
  ident: 174_CR43
  publication-title: Appl Phys Lett
– volume: 65
  start-page: 173
  issue: 4
  year: 2022
  ident: 174_CR21
  publication-title: J East China Univ Sci Technol
– volume: 99
  issue: 11
  year: 2011
  ident: 174_CR10
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3639276
– volume: 46
  start-page: 42
  year: 2022
  ident: 174_CR23
  publication-title: J Magn Soc Jpn
  doi: 10.3379/msjmag.2203R003
– volume: 3
  start-page: 1
  year: 2015
  ident: 174_CR41
  publication-title: J Chem
  doi: 10.1155/2015/532198
– volume: 6
  start-page: 2173
  issue: 1
  year: 2015
  ident: 174_CR24
  publication-title: Beilstein J Nanotechnol
  doi: 10.3762/bjnano.6.223
– volume: 80
  start-page: 1
  issue: 1
  year: 1993
  ident: 174_CR22
  publication-title: Colloids Surf A
  doi: 10.1016/0927-7757(93)80218-4
– volume: 6
  start-page: 2009005
  issue: 2 Suppl 1
  year: 2020
  ident: 174_CR30
  publication-title: Int J Magn Part Imaging
– volume: 3
  start-page: 5801
  year: 2021
  ident: 174_CR20
  publication-title: Nanoscale Adv
  doi: 10.1039/D1NA00463H
– volume: 9
  start-page: 3992
  year: 2019
  ident: 174_CR39
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-40341-y
– volume: 11
  start-page: 1207
  issue: 1
  year: 2020
  ident: 174_CR26
  publication-title: Beilstein J Nanotechnol
  doi: 10.3762/bjnano.11.105
– volume: 131
  year: 2022
  ident: 174_CR6
  publication-title: J Appl Phys
  doi: 10.1063/5.0085202
– volume: 2
  start-page: 374
  year: 2022
  ident: 174_CR12
  publication-title: Macromol
  doi: 10.3390/macromol2030024
– volume: 2313
  issue: 1
  year: 2020
  ident: 174_CR2
  publication-title: AIP Conf Proc
– volume: 11
  start-page: 3396
  year: 2021
  ident: 174_CR34
  publication-title: Nanomaterials
  doi: 10.3390/nano11123396
– volume: 119
  year: 2016
  ident: 174_CR11
  publication-title: J Appl Phys
  doi: 10.1063/1.4940724
– volume: 98
  issue: 26
  year: 2011
  ident: 174_CR13
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3604009
– volume: 519
  start-page: 16745
  year: 2021
  ident: 174_CR28
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2020.167451
– volume: 41
  issue: 1
  year: 2014
  ident: 174_CR9
  publication-title: Med Phys
  doi: 10.1118/1.4837216
– volume: 11
  start-page: 9651
  year: 2021
  ident: 174_CR15
  publication-title: Appl Sci
  doi: 10.3390/app11209651
– volume: 12
  start-page: 1
  issue: 6
  year: 2019
  ident: 174_CR27
  publication-title: Beilstein Arch
– volume: 123
  start-page: 28859
  year: 2019
  ident: 174_CR29
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.9b06790
– volume: 21
  start-page: 1
  issue: 2
  year: 2017
  ident: 174_CR25
  publication-title: Microfluid Nanofluid
  doi: 10.1007/s10404-017-1856-0
– volume: 438
  start-page: 487
  year: 2015
  ident: 174_CR44
  publication-title: Phys A
  doi: 10.1016/j.physa.2015.07.014
– volume: 229
  start-page: 315
  year: 2020
  ident: 174_CR1
  publication-title: Eur Phys J Sp Top
  doi: 10.1140/epjst/e2019-900096-y
– volume: 8
  start-page: 107
  year: 2022
  ident: 174_CR18
  publication-title: Magnetochemistry
  doi: 10.3390/magnetochemistry8090107
– volume: 118
  issue: 6
  year: 2015
  ident: 174_CR38
  publication-title: J Appl Phys
  doi: 10.1063/1.4928202
– volume: 48
  issue: 12
  year: 2009
  ident: 174_CR42
  publication-title: Jpn J Appl Phys
– volume: 379
  start-page: 2205
  year: 2021
  ident: 174_CR3
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
– volume: 54
  start-page: 241
  year: 2018
  ident: 174_CR16
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-017-2114-4
– volume: 93
  year: 2016
  ident: 174_CR37
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.93.063117
– volume: 13
  start-page: 1362
  issue: 2021
  year: 2021
  ident: 174_CR19
  publication-title: Symmetry
  doi: 10.3390/sym13081362
– volume: 117
  start-page: 17D713
  year: 2015
  ident: 174_CR31
  publication-title: J Appl Phys
  doi: 10.1063/1.4914061
– volume: 37
  start-page: 2587
  issue: 6
  year: 2010
  ident: 174_CR33
  publication-title: Med Phys
  doi: 10.1118/1.3426294
– volume: 13
  start-page: 135
  year: 2022
  ident: 174_CR5
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-022-02808-0
SSID ssj0002734780
ssib042110740
Score 2.255938
Snippet Magnetic nanofluids find application in various fields, including magnetic hyperthermia, which holds significant potential for non-invasive cancer treatment....
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 15
SubjectTerms Characterization and Evaluation of Materials
Engineering
Mathematical Applications in the Physical Sciences
Mechanical Engineering
Numerical and Computational Physics
Original Paper
Simulation
Solid Mechanics
Title A study of Brownian relaxation time in magnetic nanofluids: a semi-analytical model
URI https://link.springer.com/article/10.1007/s41939-023-00174-9
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELW2cKEHBIWqUIp84EaNmmAndm9LBUKVoIeCxC1yHKfaCrJVk5UQZ344M7bzsSxU0Eu0611Zu5mX8Rt73gwhezpWVgiTM1HmgmEJdJZHsWE6knhMpLUqUI18dp6cXvLvV-JqNLofZC3NmvzA3D2pK_kfq8IY2BVVsq-wbDcpDMBrsC9cwcJwfZGNx746LBI-F07jw4rilFtvVewbj_sZN_pXhVrF_UpX0_J6Nilqr3Gu7c2EaSxL4ne0XVucIV118twaPgoJGfh2TseLrdSuQ1uU465ZQB0SnIfJIT9qbSY-UR_z9PsEIW1QMqO9cKhp7HS4ERHzPhPL-6tYQCQqI98e4MAOx3y_mNbhpgu48s7T6zrDMuz3QRYcvM_pqDnwTsWAbzBcZjlT_XLWHuE_WuW63MOuTrObI4M5MjdHpt6Q5RiCDfCWy-OTo6Pz1i9xFySHmji_Q0mg1DXl6_5z0GM5VebCj5vnPPMH7o7HXKyR1RCA0LFH0zoZ2eodeTsoS7lBfo6pwxWdlrTFFe1xRRFXdFLRFle0x9VXqukjVFGHqk1yeXJ88e2UheYbzABra5gsbMoTI5WUUWm4FeitjTAqT7FLuU2M4UmkgbB-KYSFFZNDcFCaFGV9iUzl4XuyVE0r-4HQw8iqQgFTh1icQ7whgXSXIgduXWgsxrRF9tvbk_3xNVay5620RT63dzALz2L9j69vv2ryj2Slh_YOWWr-zuwnYJ1NvhtA8QA0L3rC
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+Brownian+relaxation+time+in+magnetic+nanofluids%3A+a+semi-analytical+model&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Osaci%2C+Mihaela&rft.au=Cacciola%2C+Matteo&rft.date=2024-03-01&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=1&rft.spage=15&rft.epage=29&rft_id=info:doi/10.1007%2Fs41939-023-00174-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41939_023_00174_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon