Fermions in graphene with magnetic field and time-oscillating potential
•The magnetic field effect on Dirac fermions in graphene subject to an oscillating potential is studied.•The energy spectrum shows extra subbands resulted from the applied potential and possesses a symmetry.•A current density is generated in both directions x and y and oscillates with different ampl...
Saved in:
Published in | Physics letters. A Vol. 447; p. 128288 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
30.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The magnetic field effect on Dirac fermions in graphene subject to an oscillating potential is studied.•The energy spectrum shows extra subbands resulted from the applied potential and possesses a symmetry.•A current density is generated in both directions x and y and oscillates with different amplitudes.
We study the Dirac fermions in graphene under a magnetic field and a scalar potential oscillating in time. Using the Floquet theory and resonance approximation, we show that the energy spectrum exhibits extra subbands resulting from the oscillating potential in addition to quantized Landau levels. The magnetic field and potential are discovered to greatly influence the generation of current density in the x and y-directions. Our numerical analysis reveals that the energy spectrum is symmetric and that the current density oscillates with varying amplitudes under various conditions. |
---|---|
AbstractList | •The magnetic field effect on Dirac fermions in graphene subject to an oscillating potential is studied.•The energy spectrum shows extra subbands resulted from the applied potential and possesses a symmetry.•A current density is generated in both directions x and y and oscillates with different amplitudes.
We study the Dirac fermions in graphene under a magnetic field and a scalar potential oscillating in time. Using the Floquet theory and resonance approximation, we show that the energy spectrum exhibits extra subbands resulting from the oscillating potential in addition to quantized Landau levels. The magnetic field and potential are discovered to greatly influence the generation of current density in the x and y-directions. Our numerical analysis reveals that the energy spectrum is symmetric and that the current density oscillates with varying amplitudes under various conditions. |
ArticleNumber | 128288 |
Author | El Aitouni, Rachid Jellal, Ahmed |
Author_xml | – sequence: 1 givenname: Rachid surname: El Aitouni fullname: El Aitouni, Rachid organization: Laboratory of Theoretical Physics, Faculty of Sciences, Chouaïb Doukkali University, PO Box 20, 24000 El Jadida, Morocco – sequence: 2 givenname: Ahmed orcidid: 0000-0002-1976-5519 surname: Jellal fullname: Jellal, Ahmed email: a.jellal@ucd.ac.ma organization: Laboratory of Theoretical Physics, Faculty of Sciences, Chouaïb Doukkali University, PO Box 20, 24000 El Jadida, Morocco |
BookMark | eNqFkM1KAzEUhYNUsK2-guQFpiaZn2bAhVJsFQpudB0yyU17y0xmSILSt3dKdeOmq7P6Dud8MzLxvQdC7jlbcMarh8Ni2B9jC0kvBBNiwYUUUl6RKZfLPBOFqCdkyvJlmdUV4zdkFuOBsZFk9ZRs1hA67H2k6Oku6GEPHug3pj3t9M5DQkMdQmup9pYm7CDro8G21Qn9jg59Ap9Qt7fk2uk2wt1vzsnn-uVj9Zpt3zdvq-dtZsYhKZPM5oKZhjdFZSpXOKhF6YqCAeiyLpyxTjBd8sqKRucgK-ClhKZxkouaW5bPyeO514Q-xgBOGUzjlt6noLFVnKmTFHVQf1LUSYo6Sxnx6h8-BOx0OF4Gn84gjOe-EIIaLYA3YDGAScr2eKniBxhRhDI |
CitedBy_id | crossref_primary_10_1007_s10854_024_12594_5 crossref_primary_10_1016_j_physe_2023_115865 crossref_primary_10_1002_andp_202200630 crossref_primary_10_1007_s00339_024_08168_1 crossref_primary_10_1016_j_cjph_2024_03_028 crossref_primary_10_1016_j_physb_2023_414975 crossref_primary_10_1016_j_physe_2025_116227 crossref_primary_10_1088_1402_4896_ad418a |
Cites_doi | 10.1016/j.ssc.2008.02.024 10.1103/PhysRevB.78.075442 10.1063/1.4758695 10.1038/nmat2003 10.1103/PhysRevLett.98.256803 10.1103/PhysRevD.92.125005 10.1103/PhysRevLett.8.246 10.1140/epjb/e2013-40691-0 10.1126/science.1191700 10.1063/1.3597412 10.1126/science.1102896 10.1103/RevModPhys.81.109 10.1080/00018732.2010.487978 10.1088/1367-2630/12/3/033014 10.1103/PhysRev.129.647 10.1140/epjb/e2014-41096-3 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.physleta.2022.128288 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2429 |
ExternalDocumentID | 10_1016_j_physleta_2022_128288 S037596012200370X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABLJU ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SPG SSQ SSZ T5K TN5 WH7 ~02 ~G- 29O 5VS 6TJ 8WZ A6W AAQFI AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMV HVGLF HZ~ K-O MVM NDZJH R2- RIG SEW SSH WUQ XJT XOL YYP ZCG |
ID | FETCH-LOGICAL-c242t-80d320cb1b46c6f4fe925f440eea594fcdf20a516d2ba3e86e158ebbf81291d03 |
IEDL.DBID | .~1 |
ISSN | 0375-9601 |
IngestDate | Thu Apr 24 22:53:44 EDT 2025 Tue Jul 01 02:52:40 EDT 2025 Fri Feb 23 02:39:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graphene Magnetic field Current density Periodic potential |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c242t-80d320cb1b46c6f4fe925f440eea594fcdf20a516d2ba3e86e158ebbf81291d03 |
ORCID | 0000-0002-1976-5519 |
ParticipantIDs | crossref_citationtrail_10_1016_j_physleta_2022_128288 crossref_primary_10_1016_j_physleta_2022_128288 elsevier_sciencedirect_doi_10_1016_j_physleta_2022_128288 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-30 |
PublicationDateYYYYMMDD | 2022-09-30 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Physics letters. A |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | San-Jose, Prada, Schomerus, Kohler (br0170) 2012; 101 Jiang, Young, Chang, Kim, Engel, Tsui (br0150) 2010; 97 Levy, Burke, Meaker, Panlasigui, Zettl, Guinea, Castro Neto, Crommie (br0220) 2010; 329 Zhou, Gweon, Fedorov, First, deHeer, Lee, Guinea, Castro Neto, Lanzara (br0060) 2007; 6 Ribeiro, Peres, Coutinho, Briddon (br0100) 2008; 78 Enderlein, Kim, Bostwick, Rotenberg, Horn (br0070) 2010; 12 Calvo, Pastawski, Roche, Foa Torres (br0160) 2011; 98 Castro Neto, Guinea, Peres, Novoselov, Geim (br0020) 2009; 81 Dayem, Martin (br0130) 1962; 8 Savel'ev, Alexandrov (br0200) 2011; 84 Tiwari, Stroud (br0090) 2009; 79 Morozov, Novoselov, Katsnelson, Schedin, Elias, Jaszczak, Geim (br0030) 2008; 100 Jellal, Mekkaoui, Choubabi, Bahlouli (br0120) 2014; 87 Iorio, Pais (br0230) 2015; 92 Abergel, Apalkov, Berashevich, Ziegler, Chakraborty (br0050) 2010; 59 Fistul, Efetov (br0180) 2007; 98 Bolotin, Sikes, Jiang, Klima, Fudenberg, Hone, Kim, Stormer (br0040) 2008; 146 Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (br0010) 2004; 306 Tien, Gordon (br0140) 1963; 129 Savel'ev, Häusler, Hänggi (br0240) 2012; 109 Savel'ev, Hausler, Hänggi (br0190) 2013; 86 Rao, Sipe (br0210) 2012; 86 Ahsan Zeb, Sabeeh, Tahir (br0110) 2008; 78 Giovannetti, Khomyakov, Brocks, Kelly, van den Brink (br0080) 2007; 76 Bolotin (10.1016/j.physleta.2022.128288_br0040) 2008; 146 Ribeiro (10.1016/j.physleta.2022.128288_br0100) 2008; 78 Abergel (10.1016/j.physleta.2022.128288_br0050) 2010; 59 Jiang (10.1016/j.physleta.2022.128288_br0150) 2010; 97 Dayem (10.1016/j.physleta.2022.128288_br0130) 1962; 8 San-Jose (10.1016/j.physleta.2022.128288_br0170) 2012; 101 Jellal (10.1016/j.physleta.2022.128288_br0120) 2014; 87 Savel'ev (10.1016/j.physleta.2022.128288_br0190) 2013; 86 Rao (10.1016/j.physleta.2022.128288_br0210) 2012; 86 Morozov (10.1016/j.physleta.2022.128288_br0030) 2008; 100 Ahsan Zeb (10.1016/j.physleta.2022.128288_br0110) 2008; 78 Enderlein (10.1016/j.physleta.2022.128288_br0070) 2010; 12 Iorio (10.1016/j.physleta.2022.128288_br0230) 2015; 92 Zhou (10.1016/j.physleta.2022.128288_br0060) 2007; 6 Tien (10.1016/j.physleta.2022.128288_br0140) 1963; 129 Fistul (10.1016/j.physleta.2022.128288_br0180) 2007; 98 Giovannetti (10.1016/j.physleta.2022.128288_br0080) 2007; 76 Levy (10.1016/j.physleta.2022.128288_br0220) 2010; 329 Novoselov (10.1016/j.physleta.2022.128288_br0010) 2004; 306 Castro Neto (10.1016/j.physleta.2022.128288_br0020) 2009; 81 Tiwari (10.1016/j.physleta.2022.128288_br0090) 2009; 79 Calvo (10.1016/j.physleta.2022.128288_br0160) 2011; 98 Savel'ev (10.1016/j.physleta.2022.128288_br0200) 2011; 84 Savel'ev (10.1016/j.physleta.2022.128288_br0240) 2012; 109 |
References_xml | – volume: 78 year: 2008 ident: br0110 publication-title: Phys. Rev. B – volume: 59 start-page: 261 year: 2010 ident: br0050 publication-title: Adv. Phys. – volume: 92 year: 2015 ident: br0230 publication-title: Phys. Rev. D – volume: 101 year: 2012 ident: br0170 publication-title: Appl. Phys. Lett. – volume: 79 year: 2009 ident: br0090 publication-title: Phys. Rev. B – volume: 8 start-page: 246 year: 1962 ident: br0130 publication-title: Phys. Rev. Lett. – volume: 98 year: 2007 ident: br0180 publication-title: Phys. Rev. Lett. – volume: 329 start-page: 544 year: 2010 ident: br0220 publication-title: Science – volume: 86 start-page: 433 year: 2013 ident: br0190 publication-title: Eur. Phys. J. B – volume: 87 start-page: 123 year: 2014 ident: br0120 publication-title: Eur. Phys. J. B – volume: 6 start-page: 770 year: 2007 ident: br0060 publication-title: Nat. Mater. – volume: 146 start-page: 351 year: 2008 ident: br0040 publication-title: Solid State Commun. – volume: 98 year: 2011 ident: br0160 publication-title: Appl. Phys. Lett. – volume: 81 start-page: 109 year: 2009 ident: br0020 publication-title: Rev. Mod. Phys. – volume: 97 year: 2010 ident: br0150 publication-title: Appl. Phys. Lett. – volume: 109 year: 2012 ident: br0240 publication-title: Eur. Phys. J. B – volume: 306 start-page: 666 year: 2004 ident: br0010 publication-title: Science – volume: 78 year: 2008 ident: br0100 publication-title: Phys. Rev. B – volume: 129 start-page: 647 year: 1963 ident: br0140 publication-title: Phys. Rev. – volume: 100 year: 2008 ident: br0030 publication-title: Phys. Rev. Lett. – volume: 12 year: 2010 ident: br0070 publication-title: New J. Phys. – volume: 76 year: 2007 ident: br0080 publication-title: Phys. Rev. B – volume: 84 year: 2011 ident: br0200 publication-title: Phys. Rev. B – volume: 86 year: 2012 ident: br0210 publication-title: Phys. Rev. B – volume: 146 start-page: 351 year: 2008 ident: 10.1016/j.physleta.2022.128288_br0040 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2008.02.024 – volume: 79 year: 2009 ident: 10.1016/j.physleta.2022.128288_br0090 publication-title: Phys. Rev. B – volume: 78 year: 2008 ident: 10.1016/j.physleta.2022.128288_br0110 publication-title: Phys. Rev. B – volume: 84 issue: 3 year: 2011 ident: 10.1016/j.physleta.2022.128288_br0200 publication-title: Phys. Rev. B – volume: 78 year: 2008 ident: 10.1016/j.physleta.2022.128288_br0100 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.075442 – volume: 101 year: 2012 ident: 10.1016/j.physleta.2022.128288_br0170 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4758695 – volume: 6 start-page: 770 year: 2007 ident: 10.1016/j.physleta.2022.128288_br0060 publication-title: Nat. Mater. doi: 10.1038/nmat2003 – volume: 98 year: 2007 ident: 10.1016/j.physleta.2022.128288_br0180 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.256803 – volume: 92 year: 2015 ident: 10.1016/j.physleta.2022.128288_br0230 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.125005 – volume: 109 issue: 22 year: 2012 ident: 10.1016/j.physleta.2022.128288_br0240 publication-title: Eur. Phys. J. B – volume: 8 start-page: 246 year: 1962 ident: 10.1016/j.physleta.2022.128288_br0130 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.8.246 – volume: 97 year: 2010 ident: 10.1016/j.physleta.2022.128288_br0150 publication-title: Appl. Phys. Lett. – volume: 86 start-page: 433 year: 2013 ident: 10.1016/j.physleta.2022.128288_br0190 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2013-40691-0 – volume: 329 start-page: 544 year: 2010 ident: 10.1016/j.physleta.2022.128288_br0220 publication-title: Science doi: 10.1126/science.1191700 – volume: 98 year: 2011 ident: 10.1016/j.physleta.2022.128288_br0160 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3597412 – volume: 306 start-page: 666 year: 2004 ident: 10.1016/j.physleta.2022.128288_br0010 publication-title: Science doi: 10.1126/science.1102896 – volume: 81 start-page: 109 year: 2009 ident: 10.1016/j.physleta.2022.128288_br0020 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 100 year: 2008 ident: 10.1016/j.physleta.2022.128288_br0030 publication-title: Phys. Rev. Lett. – volume: 59 start-page: 261 year: 2010 ident: 10.1016/j.physleta.2022.128288_br0050 publication-title: Adv. Phys. doi: 10.1080/00018732.2010.487978 – volume: 76 year: 2007 ident: 10.1016/j.physleta.2022.128288_br0080 publication-title: Phys. Rev. B – volume: 12 year: 2010 ident: 10.1016/j.physleta.2022.128288_br0070 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/3/033014 – volume: 86 year: 2012 ident: 10.1016/j.physleta.2022.128288_br0210 publication-title: Phys. Rev. B – volume: 129 start-page: 647 year: 1963 ident: 10.1016/j.physleta.2022.128288_br0140 publication-title: Phys. Rev. doi: 10.1103/PhysRev.129.647 – volume: 87 start-page: 123 year: 2014 ident: 10.1016/j.physleta.2022.128288_br0120 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2014-41096-3 |
SSID | ssj0001609 |
Score | 2.4272206 |
Snippet | •The magnetic field effect on Dirac fermions in graphene subject to an oscillating potential is studied.•The energy spectrum shows extra subbands resulted from... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 128288 |
SubjectTerms | Current density Graphene Magnetic field Periodic potential |
Title | Fermions in graphene with magnetic field and time-oscillating potential |
URI | https://dx.doi.org/10.1016/j.physleta.2022.128288 |
Volume | 447 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KIngRn1gfZQ9e02w2u2n2WIq1Kvaihd7CPktLTYvGq7_dnTy0gtCDtyTswPIxmZldvm8GoRvFCNPMssDZiAYs9U9CcxEklgojneNCglD4aZyMJuxhyqctNGi0MECrrGN_FdPLaF1_CWs0w_V8Hj7D9FZff0cU-FU9MgUFO-uBl3c_f2geUVLRPPziAFZvqIQXXbg98PBA_yFKuxEcP9K_E9RG0hkeooO6WsT9akNHqGXzY7RXsjb1-wm6GwKVxfsNnue4bD3tIxeGq1X8Kmc56BNxSVHDMjcYxsgH0LtyCfy3fIbXqwK4QnJ5iibD25fBKKgnIwTap9TCpxUTU6JVpFiiE8ecFZQ7xoi1kgvmtHGUSB4lhioZ2zSxEU-tUs6ncxEZEp-hnXyV23OEFZeKOGV6wjnmf3jlSwbrtIgVYc5Y1ka8gSPTddtwmF6xzBp-2CJrYMwAxqyCsY3Cb7t11Thjq4Vo0M5-uUDmo_sW24t_2F6ifXirSCBXaKd4-7DXvtIoVKd0pQ7a7d8_jsZfXhjVzg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na8JAEB2sUtpL6Se1n3voNZpsdqN7FKnV-nGpgrewu9kVxUZp7f_vjknEQqGH3kKSgfDYfTNZ3rwBeFLMZ5oZ5lkTUI813ZXQXHiRoSKR1nIhsVF4OIq6E_Y65dMStIteGJRV5tyfcfqWrfM79RzN-no-r7_h9FZXfwcU9VUNf3oAFXSn4mWotHr97mhHyEGUKT3c-x4G7DUKL2p4gOAQQgsiSmsB_oE0f89Re3mncwonecFIWtk3nUHJpOdwuBVu6s8LeOmgmsUtHTJPydZ92pEXwdNV8i5nKbYokq1Kjcg0IThJ3kP7yiVK4NIZWa82KBeSy0uYdJ7H7a6XD0fwtMuqG5dZkpD6WgWKRTqyzBpBuWXMN0ZywaxOLPUlD6KEKhmaZmQC3jRKWZfRRZD44RWU01VqroEoLpVvVdIQ1jK355WrGozVIlQ-s4lhVeAFHLHOncNxgMUyLiRii7iAMUYY4wzGKtR3cevMO-PPCFGgHf9YBbEj-D9ib_4R-whH3fFwEA96o_4tHOOTTBNyB-XNx5e5d4XHRj3kC-sbupzYfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fermions+in+graphene+with+magnetic+field+and+time-oscillating+potential&rft.jtitle=Physics+letters.+A&rft.au=El+Aitouni%2C+Rachid&rft.au=Jellal%2C+Ahmed&rft.date=2022-09-30&rft.issn=0375-9601&rft.volume=447&rft.spage=128288&rft_id=info:doi/10.1016%2Fj.physleta.2022.128288&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physleta_2022_128288 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon |