Fermions in graphene with magnetic field and time-oscillating potential

•The magnetic field effect on Dirac fermions in graphene subject to an oscillating potential is studied.•The energy spectrum shows extra subbands resulted from the applied potential and possesses a symmetry.•A current density is generated in both directions x and y and oscillates with different ampl...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. A Vol. 447; p. 128288
Main Authors El Aitouni, Rachid, Jellal, Ahmed
Format Journal Article
LanguageEnglish
Published Elsevier B.V 30.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The magnetic field effect on Dirac fermions in graphene subject to an oscillating potential is studied.•The energy spectrum shows extra subbands resulted from the applied potential and possesses a symmetry.•A current density is generated in both directions x and y and oscillates with different amplitudes. We study the Dirac fermions in graphene under a magnetic field and a scalar potential oscillating in time. Using the Floquet theory and resonance approximation, we show that the energy spectrum exhibits extra subbands resulting from the oscillating potential in addition to quantized Landau levels. The magnetic field and potential are discovered to greatly influence the generation of current density in the x and y-directions. Our numerical analysis reveals that the energy spectrum is symmetric and that the current density oscillates with varying amplitudes under various conditions.
AbstractList •The magnetic field effect on Dirac fermions in graphene subject to an oscillating potential is studied.•The energy spectrum shows extra subbands resulted from the applied potential and possesses a symmetry.•A current density is generated in both directions x and y and oscillates with different amplitudes. We study the Dirac fermions in graphene under a magnetic field and a scalar potential oscillating in time. Using the Floquet theory and resonance approximation, we show that the energy spectrum exhibits extra subbands resulting from the oscillating potential in addition to quantized Landau levels. The magnetic field and potential are discovered to greatly influence the generation of current density in the x and y-directions. Our numerical analysis reveals that the energy spectrum is symmetric and that the current density oscillates with varying amplitudes under various conditions.
ArticleNumber 128288
Author El Aitouni, Rachid
Jellal, Ahmed
Author_xml – sequence: 1
  givenname: Rachid
  surname: El Aitouni
  fullname: El Aitouni, Rachid
  organization: Laboratory of Theoretical Physics, Faculty of Sciences, Chouaïb Doukkali University, PO Box 20, 24000 El Jadida, Morocco
– sequence: 2
  givenname: Ahmed
  orcidid: 0000-0002-1976-5519
  surname: Jellal
  fullname: Jellal, Ahmed
  email: a.jellal@ucd.ac.ma
  organization: Laboratory of Theoretical Physics, Faculty of Sciences, Chouaïb Doukkali University, PO Box 20, 24000 El Jadida, Morocco
BookMark eNqFkM1KAzEUhYNUsK2-guQFpiaZn2bAhVJsFQpudB0yyU17y0xmSILSt3dKdeOmq7P6Dud8MzLxvQdC7jlbcMarh8Ni2B9jC0kvBBNiwYUUUl6RKZfLPBOFqCdkyvJlmdUV4zdkFuOBsZFk9ZRs1hA67H2k6Oku6GEPHug3pj3t9M5DQkMdQmup9pYm7CDro8G21Qn9jg59Ap9Qt7fk2uk2wt1vzsnn-uVj9Zpt3zdvq-dtZsYhKZPM5oKZhjdFZSpXOKhF6YqCAeiyLpyxTjBd8sqKRucgK-ClhKZxkouaW5bPyeO514Q-xgBOGUzjlt6noLFVnKmTFHVQf1LUSYo6Sxnx6h8-BOx0OF4Gn84gjOe-EIIaLYA3YDGAScr2eKniBxhRhDI
CitedBy_id crossref_primary_10_1007_s10854_024_12594_5
crossref_primary_10_1016_j_physe_2023_115865
crossref_primary_10_1002_andp_202200630
crossref_primary_10_1007_s00339_024_08168_1
crossref_primary_10_1016_j_cjph_2024_03_028
crossref_primary_10_1016_j_physb_2023_414975
crossref_primary_10_1016_j_physe_2025_116227
crossref_primary_10_1088_1402_4896_ad418a
Cites_doi 10.1016/j.ssc.2008.02.024
10.1103/PhysRevB.78.075442
10.1063/1.4758695
10.1038/nmat2003
10.1103/PhysRevLett.98.256803
10.1103/PhysRevD.92.125005
10.1103/PhysRevLett.8.246
10.1140/epjb/e2013-40691-0
10.1126/science.1191700
10.1063/1.3597412
10.1126/science.1102896
10.1103/RevModPhys.81.109
10.1080/00018732.2010.487978
10.1088/1367-2630/12/3/033014
10.1103/PhysRev.129.647
10.1140/epjb/e2014-41096-3
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physleta.2022.128288
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2429
ExternalDocumentID 10_1016_j_physleta_2022_128288
S037596012200370X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABLJU
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
WH7
~02
~G-
29O
5VS
6TJ
8WZ
A6W
AAQFI
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
K-O
MVM
NDZJH
R2-
RIG
SEW
SSH
WUQ
XJT
XOL
YYP
ZCG
ID FETCH-LOGICAL-c242t-80d320cb1b46c6f4fe925f440eea594fcdf20a516d2ba3e86e158ebbf81291d03
IEDL.DBID .~1
ISSN 0375-9601
IngestDate Thu Apr 24 22:53:44 EDT 2025
Tue Jul 01 02:52:40 EDT 2025
Fri Feb 23 02:39:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graphene
Magnetic field
Current density
Periodic potential
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-80d320cb1b46c6f4fe925f440eea594fcdf20a516d2ba3e86e158ebbf81291d03
ORCID 0000-0002-1976-5519
ParticipantIDs crossref_citationtrail_10_1016_j_physleta_2022_128288
crossref_primary_10_1016_j_physleta_2022_128288
elsevier_sciencedirect_doi_10_1016_j_physleta_2022_128288
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-30
PublicationDateYYYYMMDD 2022-09-30
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Physics letters. A
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References San-Jose, Prada, Schomerus, Kohler (br0170) 2012; 101
Jiang, Young, Chang, Kim, Engel, Tsui (br0150) 2010; 97
Levy, Burke, Meaker, Panlasigui, Zettl, Guinea, Castro Neto, Crommie (br0220) 2010; 329
Zhou, Gweon, Fedorov, First, deHeer, Lee, Guinea, Castro Neto, Lanzara (br0060) 2007; 6
Ribeiro, Peres, Coutinho, Briddon (br0100) 2008; 78
Enderlein, Kim, Bostwick, Rotenberg, Horn (br0070) 2010; 12
Calvo, Pastawski, Roche, Foa Torres (br0160) 2011; 98
Castro Neto, Guinea, Peres, Novoselov, Geim (br0020) 2009; 81
Dayem, Martin (br0130) 1962; 8
Savel'ev, Alexandrov (br0200) 2011; 84
Tiwari, Stroud (br0090) 2009; 79
Morozov, Novoselov, Katsnelson, Schedin, Elias, Jaszczak, Geim (br0030) 2008; 100
Jellal, Mekkaoui, Choubabi, Bahlouli (br0120) 2014; 87
Iorio, Pais (br0230) 2015; 92
Abergel, Apalkov, Berashevich, Ziegler, Chakraborty (br0050) 2010; 59
Fistul, Efetov (br0180) 2007; 98
Bolotin, Sikes, Jiang, Klima, Fudenberg, Hone, Kim, Stormer (br0040) 2008; 146
Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos, Grigorieva, Firsov (br0010) 2004; 306
Tien, Gordon (br0140) 1963; 129
Savel'ev, Häusler, Hänggi (br0240) 2012; 109
Savel'ev, Hausler, Hänggi (br0190) 2013; 86
Rao, Sipe (br0210) 2012; 86
Ahsan Zeb, Sabeeh, Tahir (br0110) 2008; 78
Giovannetti, Khomyakov, Brocks, Kelly, van den Brink (br0080) 2007; 76
Bolotin (10.1016/j.physleta.2022.128288_br0040) 2008; 146
Ribeiro (10.1016/j.physleta.2022.128288_br0100) 2008; 78
Abergel (10.1016/j.physleta.2022.128288_br0050) 2010; 59
Jiang (10.1016/j.physleta.2022.128288_br0150) 2010; 97
Dayem (10.1016/j.physleta.2022.128288_br0130) 1962; 8
San-Jose (10.1016/j.physleta.2022.128288_br0170) 2012; 101
Jellal (10.1016/j.physleta.2022.128288_br0120) 2014; 87
Savel'ev (10.1016/j.physleta.2022.128288_br0190) 2013; 86
Rao (10.1016/j.physleta.2022.128288_br0210) 2012; 86
Morozov (10.1016/j.physleta.2022.128288_br0030) 2008; 100
Ahsan Zeb (10.1016/j.physleta.2022.128288_br0110) 2008; 78
Enderlein (10.1016/j.physleta.2022.128288_br0070) 2010; 12
Iorio (10.1016/j.physleta.2022.128288_br0230) 2015; 92
Zhou (10.1016/j.physleta.2022.128288_br0060) 2007; 6
Tien (10.1016/j.physleta.2022.128288_br0140) 1963; 129
Fistul (10.1016/j.physleta.2022.128288_br0180) 2007; 98
Giovannetti (10.1016/j.physleta.2022.128288_br0080) 2007; 76
Levy (10.1016/j.physleta.2022.128288_br0220) 2010; 329
Novoselov (10.1016/j.physleta.2022.128288_br0010) 2004; 306
Castro Neto (10.1016/j.physleta.2022.128288_br0020) 2009; 81
Tiwari (10.1016/j.physleta.2022.128288_br0090) 2009; 79
Calvo (10.1016/j.physleta.2022.128288_br0160) 2011; 98
Savel'ev (10.1016/j.physleta.2022.128288_br0200) 2011; 84
Savel'ev (10.1016/j.physleta.2022.128288_br0240) 2012; 109
References_xml – volume: 78
  year: 2008
  ident: br0110
  publication-title: Phys. Rev. B
– volume: 59
  start-page: 261
  year: 2010
  ident: br0050
  publication-title: Adv. Phys.
– volume: 92
  year: 2015
  ident: br0230
  publication-title: Phys. Rev. D
– volume: 101
  year: 2012
  ident: br0170
  publication-title: Appl. Phys. Lett.
– volume: 79
  year: 2009
  ident: br0090
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 246
  year: 1962
  ident: br0130
  publication-title: Phys. Rev. Lett.
– volume: 98
  year: 2007
  ident: br0180
  publication-title: Phys. Rev. Lett.
– volume: 329
  start-page: 544
  year: 2010
  ident: br0220
  publication-title: Science
– volume: 86
  start-page: 433
  year: 2013
  ident: br0190
  publication-title: Eur. Phys. J. B
– volume: 87
  start-page: 123
  year: 2014
  ident: br0120
  publication-title: Eur. Phys. J. B
– volume: 6
  start-page: 770
  year: 2007
  ident: br0060
  publication-title: Nat. Mater.
– volume: 146
  start-page: 351
  year: 2008
  ident: br0040
  publication-title: Solid State Commun.
– volume: 98
  year: 2011
  ident: br0160
  publication-title: Appl. Phys. Lett.
– volume: 81
  start-page: 109
  year: 2009
  ident: br0020
  publication-title: Rev. Mod. Phys.
– volume: 97
  year: 2010
  ident: br0150
  publication-title: Appl. Phys. Lett.
– volume: 109
  year: 2012
  ident: br0240
  publication-title: Eur. Phys. J. B
– volume: 306
  start-page: 666
  year: 2004
  ident: br0010
  publication-title: Science
– volume: 78
  year: 2008
  ident: br0100
  publication-title: Phys. Rev. B
– volume: 129
  start-page: 647
  year: 1963
  ident: br0140
  publication-title: Phys. Rev.
– volume: 100
  year: 2008
  ident: br0030
  publication-title: Phys. Rev. Lett.
– volume: 12
  year: 2010
  ident: br0070
  publication-title: New J. Phys.
– volume: 76
  year: 2007
  ident: br0080
  publication-title: Phys. Rev. B
– volume: 84
  year: 2011
  ident: br0200
  publication-title: Phys. Rev. B
– volume: 86
  year: 2012
  ident: br0210
  publication-title: Phys. Rev. B
– volume: 146
  start-page: 351
  year: 2008
  ident: 10.1016/j.physleta.2022.128288_br0040
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2008.02.024
– volume: 79
  year: 2009
  ident: 10.1016/j.physleta.2022.128288_br0090
  publication-title: Phys. Rev. B
– volume: 78
  year: 2008
  ident: 10.1016/j.physleta.2022.128288_br0110
  publication-title: Phys. Rev. B
– volume: 84
  issue: 3
  year: 2011
  ident: 10.1016/j.physleta.2022.128288_br0200
  publication-title: Phys. Rev. B
– volume: 78
  year: 2008
  ident: 10.1016/j.physleta.2022.128288_br0100
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.075442
– volume: 101
  year: 2012
  ident: 10.1016/j.physleta.2022.128288_br0170
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4758695
– volume: 6
  start-page: 770
  year: 2007
  ident: 10.1016/j.physleta.2022.128288_br0060
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2003
– volume: 98
  year: 2007
  ident: 10.1016/j.physleta.2022.128288_br0180
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.256803
– volume: 92
  year: 2015
  ident: 10.1016/j.physleta.2022.128288_br0230
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.125005
– volume: 109
  issue: 22
  year: 2012
  ident: 10.1016/j.physleta.2022.128288_br0240
  publication-title: Eur. Phys. J. B
– volume: 8
  start-page: 246
  year: 1962
  ident: 10.1016/j.physleta.2022.128288_br0130
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.8.246
– volume: 97
  year: 2010
  ident: 10.1016/j.physleta.2022.128288_br0150
  publication-title: Appl. Phys. Lett.
– volume: 86
  start-page: 433
  year: 2013
  ident: 10.1016/j.physleta.2022.128288_br0190
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2013-40691-0
– volume: 329
  start-page: 544
  year: 2010
  ident: 10.1016/j.physleta.2022.128288_br0220
  publication-title: Science
  doi: 10.1126/science.1191700
– volume: 98
  year: 2011
  ident: 10.1016/j.physleta.2022.128288_br0160
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3597412
– volume: 306
  start-page: 666
  year: 2004
  ident: 10.1016/j.physleta.2022.128288_br0010
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 81
  start-page: 109
  year: 2009
  ident: 10.1016/j.physleta.2022.128288_br0020
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 100
  year: 2008
  ident: 10.1016/j.physleta.2022.128288_br0030
  publication-title: Phys. Rev. Lett.
– volume: 59
  start-page: 261
  year: 2010
  ident: 10.1016/j.physleta.2022.128288_br0050
  publication-title: Adv. Phys.
  doi: 10.1080/00018732.2010.487978
– volume: 76
  year: 2007
  ident: 10.1016/j.physleta.2022.128288_br0080
  publication-title: Phys. Rev. B
– volume: 12
  year: 2010
  ident: 10.1016/j.physleta.2022.128288_br0070
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/3/033014
– volume: 86
  year: 2012
  ident: 10.1016/j.physleta.2022.128288_br0210
  publication-title: Phys. Rev. B
– volume: 129
  start-page: 647
  year: 1963
  ident: 10.1016/j.physleta.2022.128288_br0140
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.129.647
– volume: 87
  start-page: 123
  year: 2014
  ident: 10.1016/j.physleta.2022.128288_br0120
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2014-41096-3
SSID ssj0001609
Score 2.4272206
Snippet •The magnetic field effect on Dirac fermions in graphene subject to an oscillating potential is studied.•The energy spectrum shows extra subbands resulted from...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 128288
SubjectTerms Current density
Graphene
Magnetic field
Periodic potential
Title Fermions in graphene with magnetic field and time-oscillating potential
URI https://dx.doi.org/10.1016/j.physleta.2022.128288
Volume 447
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KIngRn1gfZQ9e02w2u2n2WIq1Kvaihd7CPktLTYvGq7_dnTy0gtCDtyTswPIxmZldvm8GoRvFCNPMssDZiAYs9U9CcxEklgojneNCglD4aZyMJuxhyqctNGi0MECrrGN_FdPLaF1_CWs0w_V8Hj7D9FZff0cU-FU9MgUFO-uBl3c_f2geUVLRPPziAFZvqIQXXbg98PBA_yFKuxEcP9K_E9RG0hkeooO6WsT9akNHqGXzY7RXsjb1-wm6GwKVxfsNnue4bD3tIxeGq1X8Kmc56BNxSVHDMjcYxsgH0LtyCfy3fIbXqwK4QnJ5iibD25fBKKgnIwTap9TCpxUTU6JVpFiiE8ecFZQ7xoi1kgvmtHGUSB4lhioZ2zSxEU-tUs6ncxEZEp-hnXyV23OEFZeKOGV6wjnmf3jlSwbrtIgVYc5Y1ka8gSPTddtwmF6xzBp-2CJrYMwAxqyCsY3Cb7t11Thjq4Vo0M5-uUDmo_sW24t_2F6ifXirSCBXaKd4-7DXvtIoVKd0pQ7a7d8_jsZfXhjVzg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na8JAEB2sUtpL6Se1n3voNZpsdqN7FKnV-nGpgrewu9kVxUZp7f_vjknEQqGH3kKSgfDYfTNZ3rwBeFLMZ5oZ5lkTUI813ZXQXHiRoSKR1nIhsVF4OIq6E_Y65dMStIteGJRV5tyfcfqWrfM79RzN-no-r7_h9FZXfwcU9VUNf3oAFXSn4mWotHr97mhHyEGUKT3c-x4G7DUKL2p4gOAQQgsiSmsB_oE0f89Re3mncwonecFIWtk3nUHJpOdwuBVu6s8LeOmgmsUtHTJPydZ92pEXwdNV8i5nKbYokq1Kjcg0IThJ3kP7yiVK4NIZWa82KBeSy0uYdJ7H7a6XD0fwtMuqG5dZkpD6WgWKRTqyzBpBuWXMN0ZywaxOLPUlD6KEKhmaZmQC3jRKWZfRRZD44RWU01VqroEoLpVvVdIQ1jK355WrGozVIlQ-s4lhVeAFHLHOncNxgMUyLiRii7iAMUYY4wzGKtR3cevMO-PPCFGgHf9YBbEj-D9ib_4R-whH3fFwEA96o_4tHOOTTBNyB-XNx5e5d4XHRj3kC-sbupzYfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fermions+in+graphene+with+magnetic+field+and+time-oscillating+potential&rft.jtitle=Physics+letters.+A&rft.au=El+Aitouni%2C+Rachid&rft.au=Jellal%2C+Ahmed&rft.date=2022-09-30&rft.issn=0375-9601&rft.volume=447&rft.spage=128288&rft_id=info:doi/10.1016%2Fj.physleta.2022.128288&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physleta_2022_128288
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon