Hydroxy acid-functionalized ionic liquids as green alternatives for carbonate synthesis from carbon dioxide and epoxide: catalytic and kinetic investigation
The rising level of atmospheric carbon dioxide (CO 2 ) has become an important factor threatening environments and human health, so development of feasible methods for converting CO 2 into high-value-added chemicals stands out as a hot subject. In this study, an environmentally friendly catalytic sy...
Saved in:
Published in | New journal of chemistry Vol. 49; no. 22; pp. 9432 - 944 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
03.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rising level of atmospheric carbon dioxide (CO
2
) has become an important factor threatening environments and human health, so development of feasible methods for converting CO
2
into high-value-added chemicals stands out as a hot subject. In this study, an environmentally friendly catalytic system, which consists of a novel hydroxyl acid ionic liquid was successfully prepared for the cycloaddition reaction of CO
2
and epoxides under mild conditions without solvent or co-catalyst. The different reaction variables that affect the cycloaddition reaction were also explored and discussed, including temperature, pressure, time, and amount of catalyst. Under designed reaction conditions, these hydroxyl acid-functionalized ionic liquids exhibited excellent catalytic activity towards various terminal epoxides, in which >99% selectivity of the corresponding cyclic carbonates was achieved. Meanwhile, the catalyst can be recycled at least six times without significant loss of its activity and selectivity. In addition, the reaction kinetics were studied, and the activation energy was determined to be 48.55 kJ mol
−1
. Finally, a possible reaction mechanism was proposed, in which the synergistic effects involving the hydroxyl group on the cation and the COO
−
in functionalized ionic liquids guarantee the reaction to proceeds effectively.
An environmentally friendly synthesis route of carbonates from CO
2
and epoxides catalysed by novel hydroxy acid ionic liquids under metal/halogen/cocatalyst/solvent-free conditions. |
---|---|
AbstractList | The rising level of atmospheric carbon dioxide (CO 2 ) has become an important factor threatening environments and human health, so development of feasible methods for converting CO 2 into high-value-added chemicals stands out as a hot subject. In this study, an environmentally friendly catalytic system, which consists of a novel hydroxyl acid ionic liquid was successfully prepared for the cycloaddition reaction of CO 2 and epoxides under mild conditions without solvent or co-catalyst. The different reaction variables that affect the cycloaddition reaction were also explored and discussed, including temperature, pressure, time, and amount of catalyst. Under designed reaction conditions, these hydroxyl acid-functionalized ionic liquids exhibited excellent catalytic activity towards various terminal epoxides, in which >99% selectivity of the corresponding cyclic carbonates was achieved. Meanwhile, the catalyst can be recycled at least six times without significant loss of its activity and selectivity. In addition, the reaction kinetics were studied, and the activation energy was determined to be 48.55 kJ mol −1 . Finally, a possible reaction mechanism was proposed, in which the synergistic effects involving the hydroxyl group on the cation and the COO − in functionalized ionic liquids guarantee the reaction to proceeds effectively. The rising level of atmospheric carbon dioxide (CO2) has become an important factor threatening environments and human health, so development of feasible methods for converting CO2 into high-value-added chemicals stands out as a hot subject. In this study, an environmentally friendly catalytic system, which consists of a novel hydroxyl acid ionic liquid was successfully prepared for the cycloaddition reaction of CO2 and epoxides under mild conditions without solvent or co-catalyst. The different reaction variables that affect the cycloaddition reaction were also explored and discussed, including temperature, pressure, time, and amount of catalyst. Under designed reaction conditions, these hydroxyl acid-functionalized ionic liquids exhibited excellent catalytic activity towards various terminal epoxides, in which >99% selectivity of the corresponding cyclic carbonates was achieved. Meanwhile, the catalyst can be recycled at least six times without significant loss of its activity and selectivity. In addition, the reaction kinetics were studied, and the activation energy was determined to be 48.55 kJ mol−1. Finally, a possible reaction mechanism was proposed, in which the synergistic effects involving the hydroxyl group on the cation and the COO− in functionalized ionic liquids guarantee the reaction to proceeds effectively. The rising level of atmospheric carbon dioxide (CO 2 ) has become an important factor threatening environments and human health, so development of feasible methods for converting CO 2 into high-value-added chemicals stands out as a hot subject. In this study, an environmentally friendly catalytic system, which consists of a novel hydroxyl acid ionic liquid was successfully prepared for the cycloaddition reaction of CO 2 and epoxides under mild conditions without solvent or co-catalyst. The different reaction variables that affect the cycloaddition reaction were also explored and discussed, including temperature, pressure, time, and amount of catalyst. Under designed reaction conditions, these hydroxyl acid-functionalized ionic liquids exhibited excellent catalytic activity towards various terminal epoxides, in which >99% selectivity of the corresponding cyclic carbonates was achieved. Meanwhile, the catalyst can be recycled at least six times without significant loss of its activity and selectivity. In addition, the reaction kinetics were studied, and the activation energy was determined to be 48.55 kJ mol −1 . Finally, a possible reaction mechanism was proposed, in which the synergistic effects involving the hydroxyl group on the cation and the COO − in functionalized ionic liquids guarantee the reaction to proceeds effectively. An environmentally friendly synthesis route of carbonates from CO 2 and epoxides catalysed by novel hydroxy acid ionic liquids under metal/halogen/cocatalyst/solvent-free conditions. |
Author | Zhang, Sining Wang, Xuejuan Yue, Shuang Wu, Yuee |
AuthorAffiliation | College of Chemistry Institute of Rare and Scattered Elements Chemistry Liaoning University |
AuthorAffiliation_xml | – name: Liaoning University – name: College of Chemistry – name: Institute of Rare and Scattered Elements Chemistry |
Author_xml | – sequence: 1 givenname: Shuang surname: Yue fullname: Yue, Shuang – sequence: 2 givenname: Xuejuan surname: Wang fullname: Wang, Xuejuan – sequence: 3 givenname: Yuee surname: Wu fullname: Wu, Yuee – sequence: 4 givenname: Sining surname: Zhang fullname: Zhang, Sining |
BookMark | eNpFkU1PxCAQhonRRF29eDch8WZShUJp8Wb8Nhu96LmZAlXWCiuwxvpb_LGyrtHTvJl55nsbrTvvDEJ7lBxRwuSxrtyMUC4lrKEtyoQsZCnoetaU84JUXGyi7RhnhFBaC7qFvq5HHfzHiEFZXfQLp5L1Dgb7aTTOyio82LeF1RFDxE_BGIdhSCY4SPbdRNz7gBWELiclg-Po0rOJNvuDf_0NYG39h9UGg9PYzH_0SY4lGMaUGyzdL9aZpbYuF032CZZj7KCNHoZodn_tBD1eXjycXRfT-6ubs9NpoUpepqIGSWvadTWpOW-UNoxygF5xUfasAipJ0-jGEK46ENAwKKUpJZRaCNZo3rEJOljVnQf_tsj925lf5A2H2LKSVoQJQUSmDleUCj7GYPp2HuwrhLGlpF1evz2v7m5_rn-a4f0VHKL64_6_w74BVZ6HWw |
Cites_doi | 10.1007/s10562-011-0682-3 10.1016/j.mcat.2018.02.018 10.1016/j.cep.2020.108235 10.1016/j.polymer.2024.127639 10.1002/cjoc.201800587 10.1016/j.inoche.2019.05.031 10.1016/j.seppur.2024.126682 10.1016/j.seppur.2024.129734 10.1016/j.jcou.2016.03.001 10.1039/B705520J 10.1016/j.fuel.2024.133809 10.1016/j.jcou.2020.101189 10.1039/D1NJ00601K 10.1016/j.fuel.2024.133112 10.1016/j.jcou.2020.101162 10.1016/j.apsusc.2022.152663 10.1016/j.mcat.2019.110637 10.1016/j.jece.2024.114417 10.1016/j.mcat.2019.01.001 10.1039/D4NJ04877F 10.1039/C7GC00199A 10.1039/C8RA10233C 10.1039/D2GC04475G 10.1021/acssuschemeng.7b00355 10.1002/cjoc.201700747 10.1016/j.jcou.2018.09.012 10.1039/D1NJ02140K 10.1016/j.seppur.2023.123375 10.1016/j.molliq.2024.126423 10.1016/j.molcata.2015.11.017 10.1016/j.jcat.2015.10.014 10.1016/j.jcat.2015.05.002 10.1021/acssuschemeng.9b07242 10.1021/ie5042879 10.1016/j.mcat.2020.111292 10.1016/j.jece.2024.113718 10.1016/j.jece.2023.110438 10.1016/j.cattod.2018.06.020 10.1016/j.jcou.2019.07.018 10.1002/adsc.202000032 10.1016/j.jes.2023.10.018 10.1021/acssuschemeng.2c06816 10.1039/C8GC03086C 10.1016/j.seppur.2024.130579 10.1016/j.seppur.2024.130922 10.1016/j.fuel.2024.134057 10.1016/j.cej.2025.161544 10.3390/molecules27196204 10.1016/j.jece.2024.111989 10.1016/j.seppur.2024.130269 10.1016/j.seppur.2024.131352 10.1021/acssuschemeng.0c08388 10.1016/j.catcom.2019.03.012 10.1021/acssuschemeng.8b03296 10.1016/j.fuel.2019.04.039 10.1016/j.molliq.2019.03.089 10.1039/D3NJ03851C 10.1016/j.molliq.2020.114782 10.1016/j.jes.2020.06.034 10.1021/acs.iecr.0c01050 10.1016/j.apsusc.2024.162164 10.1016/j.jece.2023.109458 10.1002/cjoc.201700573 10.1016/j.molliq.2019.111479 10.1016/j.jes.2024.06.010 10.1016/j.jiec.2020.05.016 10.1002/cssc.201300459 10.1016/j.jes.2024.11.025 10.1016/j.apcata.2018.11.035 10.1002/cjoc.202000357 10.1016/j.mcat.2020.111008 10.1002/cjoc.201600622 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION 7SR 8BQ 8FD H9R JG9 KA0 |
DOI | 10.1039/d5nj01499a |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Illustrata: Natural Sciences Materials Research Database ProQuest Illustrata: Technology Collection |
DatabaseTitle | CrossRef Materials Research Database ProQuest Illustrata: Natural Sciences Engineered Materials Abstracts ProQuest Illustrata: Technology Collection Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1369-9261 |
EndPage | 944 |
ExternalDocumentID | 10_1039_D5NJ01499A d5nj01499a |
GroupedDBID | --- -DZ -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABCQX ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I L7B N9A O9- P2P R56 R7B R7C R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SKH SLH TN5 TWZ VH6 YNT YQT AAYXX CITATION M4U 7SR 8BQ 8FD H9R JG9 KA0 |
ID | FETCH-LOGICAL-c242t-7a9171bb707448cde314aafc462f35a19088d8e04cba6a83a29e29a2d6638d4b3 |
ISSN | 1144-0546 |
IngestDate | Mon Jun 30 07:31:11 EDT 2025 Thu Aug 07 15:32:47 EDT 2025 Tue Jun 03 15:25:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c242t-7a9171bb707448cde314aafc462f35a19088d8e04cba6a83a29e29a2d6638d4b3 |
Notes | https://doi.org/10.1039/d5nj01499a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4131-3620 |
PQID | 3215036606 |
PQPubID | 2048886 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_D5NJ01499A rsc_primary_d5nj01499a proquest_journals_3215036606 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-03 |
PublicationDateYYYYMMDD | 2025-06-03 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | New journal of chemistry |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Shu (D5NJ01499A/cit37/1) 2025; 686 Liu (D5NJ01499A/cit3/1) 2020; 8 Song (D5NJ01499A/cit8/1) 2017; 19 Egorova (D5NJ01499A/cit50/1) 2014; 7 Bragato (D5NJ01499A/cit51/1) 2023; 25 Kulal (D5NJ01499A/cit13/1) 2019; 33 Taghavi (D5NJ01499A/cit42/1) 2021; 45 Hu (D5NJ01499A/cit30/1) 2024; 416 Li (D5NJ01499A/cit38/1) 2018; 36 Bansal (D5NJ01499A/cit23/1) 2020; 40 Qiao (D5NJ01499A/cit17/1) 2019; 37 Yang (D5NJ01499A/cit66/1) 2020; 480 Xue (D5NJ01499A/cit27/1) 2024; 12 Yue (D5NJ01499A/cit41/1) 2019; 251 Xiao (D5NJ01499A/cit53/1) 2011; 141 Guo (D5NJ01499A/cit31/1) 2023; 312 Grollier (D5NJ01499A/cit34/1) 2020; 362 Cui (D5NJ01499A/cit56/1) 2025; 358 Li (D5NJ01499A/cit26/1) 2025; 385 Sang (D5NJ01499A/cit32/1) 2022; 585 Sarkar (D5NJ01499A/cit7/1) 2024; 48 Wang (D5NJ01499A/cit47/1) 2019; 293 Moya (D5NJ01499A/cit43/1) 2018; 28 Liu (D5NJ01499A/cit65/1) 2015; 54 Zhu (D5NJ01499A/cit67/1) 2025; 511 Wang (D5NJ01499A/cit5/1) 2025; 155 Li (D5NJ01499A/cit22/1) 2025; 382 Chen (D5NJ01499A/cit28/1) 2024; 312 Zhang (D5NJ01499A/cit55/1) 2016; 14 Zou (D5NJ01499A/cit64/1) 2015; 329 Liu (D5NJ01499A/cit16/1) 2021; 39 Wu (D5NJ01499A/cit48/1) 2016; 418–419 Paninho (D5NJ01499A/cit45/1) 2021; 499 Kanti Das (D5NJ01499A/cit18/1) 2021; 45 Cui (D5NJ01499A/cit72/1) 2025; 361 Yang (D5NJ01499A/cit61/1) 2018; 450 Kim (D5NJ01499A/cit36/1) 2018; 6 Shang (D5NJ01499A/cit39/1) 2019; 283 Wen (D5NJ01499A/cit69/1) 2025; 359 Lian (D5NJ01499A/cit1/1) 2021; 99 Zhao (D5NJ01499A/cit25/1) 2018; 36 Helal (D5NJ01499A/cit14/1) 2020; 89 Sang (D5NJ01499A/cit10/1) 2025; 49 Valverde (D5NJ01499A/cit40/1) 2021; 9 Ma (D5NJ01499A/cit19/1) 2023; 11 Zheng (D5NJ01499A/cit4/1) 2025; 379 Li (D5NJ01499A/cit11/1) 2019; 106 Hui (D5NJ01499A/cit21/1) 2023; 11 Xie (D5NJ01499A/cit2/1) 2025; 149 Ge (D5NJ01499A/cit44/1) 2024; 12 Zhang (D5NJ01499A/cit60/1) 2019; 466 Kurisingal (D5NJ01499A/cit15/1) 2019; 571 Yan (D5NJ01499A/cit20/1) 2022; 27 Peng (D5NJ01499A/cit58/1) 2019; 330 Li (D5NJ01499A/cit59/1) 2019; 124 Cho (D5NJ01499A/cit49/1) 2008; 10 Wu (D5NJ01499A/cit63/1) 2021; 159 Chen (D5NJ01499A/cit54/1) 2025; 355 Luo (D5NJ01499A/cit12/1) 2017; 35 Shi (D5NJ01499A/cit24/1) 2020; 39 Li (D5NJ01499A/cit6/1) 2025; 154 Hernández (D5NJ01499A/cit35/1) 2021; 324 Xu (D5NJ01499A/cit71/1) 2025; 360 Monfared (D5NJ01499A/cit73/1) 2019; 9 Carvalho Rocha (D5NJ01499A/cit29/1) 2016; 333 Goodrich (D5NJ01499A/cit52/1) 2017; 5 Liu (D5NJ01499A/cit57/1) 2016; 412 Li (D5NJ01499A/cit68/1) 2023; 11 Qu (D5NJ01499A/cit46/1) 2024; 339 Kamphuis (D5NJ01499A/cit9/1) 2019; 21 Dokhaee (D5NJ01499A/cit33/1) 2020; 59 Liu (D5NJ01499A/cit70/1) 2020; 492 Li (D5NJ01499A/cit62/1) 2024; 12 |
References_xml | – volume: 141 start-page: 1838 year: 2011 ident: D5NJ01499A/cit53/1 publication-title: Catal. Lett. doi: 10.1007/s10562-011-0682-3 – volume: 450 start-page: 39 year: 2018 ident: D5NJ01499A/cit61/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2018.02.018 – volume: 159 start-page: 108235 year: 2021 ident: D5NJ01499A/cit63/1 publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2020.108235 – volume: 312 start-page: 127639 year: 2024 ident: D5NJ01499A/cit28/1 publication-title: Polymer doi: 10.1016/j.polymer.2024.127639 – volume: 37 start-page: 474 year: 2019 ident: D5NJ01499A/cit17/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201800587 – volume: 106 start-page: 70 year: 2019 ident: D5NJ01499A/cit11/1 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2019.05.031 – volume: 339 start-page: 126682 year: 2024 ident: D5NJ01499A/cit46/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.126682 – volume: 355 start-page: 129734 year: 2025 ident: D5NJ01499A/cit54/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.129734 – volume: 14 start-page: 76 year: 2016 ident: D5NJ01499A/cit55/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2016.03.001 – volume: 10 start-page: 67 year: 2008 ident: D5NJ01499A/cit49/1 publication-title: Green Chem. doi: 10.1039/B705520J – volume: 382 start-page: 133809 year: 2025 ident: D5NJ01499A/cit22/1 publication-title: Fuel doi: 10.1016/j.fuel.2024.133809 – volume: 40 start-page: 101189 year: 2020 ident: D5NJ01499A/cit23/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101189 – volume: 45 start-page: 9189 year: 2021 ident: D5NJ01499A/cit18/1 publication-title: New J. Chem. doi: 10.1039/D1NJ00601K – volume: 379 start-page: 133112 year: 2025 ident: D5NJ01499A/cit4/1 publication-title: Fuel doi: 10.1016/j.fuel.2024.133112 – volume: 39 start-page: 101162 year: 2020 ident: D5NJ01499A/cit24/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101162 – volume: 585 start-page: 152663 year: 2022 ident: D5NJ01499A/cit32/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.152663 – volume: 480 start-page: 110637 year: 2020 ident: D5NJ01499A/cit66/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2019.110637 – volume: 12 start-page: 114417 year: 2024 ident: D5NJ01499A/cit44/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2024.114417 – volume: 466 start-page: 37 year: 2019 ident: D5NJ01499A/cit60/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2019.01.001 – volume: 49 start-page: 7182 year: 2025 ident: D5NJ01499A/cit10/1 publication-title: New J. Chem. doi: 10.1039/D4NJ04877F – volume: 19 start-page: 3707 year: 2017 ident: D5NJ01499A/cit8/1 publication-title: Green Chem. doi: 10.1039/C7GC00199A – volume: 9 start-page: 3884 year: 2019 ident: D5NJ01499A/cit73/1 publication-title: RSC Adv. doi: 10.1039/C8RA10233C – volume: 25 start-page: 4849 year: 2023 ident: D5NJ01499A/cit51/1 publication-title: Green Chem. doi: 10.1039/D2GC04475G – volume: 5 start-page: 5635 year: 2017 ident: D5NJ01499A/cit52/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00355 – volume: 36 start-page: 293 year: 2018 ident: D5NJ01499A/cit38/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201700747 – volume: 28 start-page: 66 year: 2018 ident: D5NJ01499A/cit43/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2018.09.012 – volume: 45 start-page: 15405 year: 2021 ident: D5NJ01499A/cit42/1 publication-title: New J. Chem. doi: 10.1039/D1NJ02140K – volume: 312 start-page: 123375 year: 2023 ident: D5NJ01499A/cit31/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.123375 – volume: 416 start-page: 126423 year: 2024 ident: D5NJ01499A/cit30/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2024.126423 – volume: 412 start-page: 20 year: 2016 ident: D5NJ01499A/cit57/1 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2015.11.017 – volume: 333 start-page: 29 year: 2016 ident: D5NJ01499A/cit29/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2015.10.014 – volume: 329 start-page: 119 year: 2015 ident: D5NJ01499A/cit64/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2015.05.002 – volume: 8 start-page: 2910 year: 2020 ident: D5NJ01499A/cit3/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b07242 – volume: 54 start-page: 633 year: 2015 ident: D5NJ01499A/cit65/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie5042879 – volume: 499 start-page: 111292 year: 2021 ident: D5NJ01499A/cit45/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2020.111292 – volume: 12 start-page: 113718 year: 2024 ident: D5NJ01499A/cit27/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2024.113718 – volume: 11 start-page: 110438 year: 2023 ident: D5NJ01499A/cit68/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.110438 – volume: 330 start-page: 76 year: 2019 ident: D5NJ01499A/cit58/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.06.020 – volume: 33 start-page: 434 year: 2019 ident: D5NJ01499A/cit13/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.07.018 – volume: 362 start-page: 1696 year: 2020 ident: D5NJ01499A/cit34/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.202000032 – volume: 149 start-page: 177 year: 2025 ident: D5NJ01499A/cit2/1 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2023.10.018 – volume: 11 start-page: 6183 year: 2023 ident: D5NJ01499A/cit19/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c06816 – volume: 21 start-page: 406 year: 2019 ident: D5NJ01499A/cit9/1 publication-title: Green Chem. doi: 10.1039/C8GC03086C – volume: 359 start-page: 130579 year: 2025 ident: D5NJ01499A/cit69/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.130579 – volume: 360 start-page: 130922 year: 2025 ident: D5NJ01499A/cit71/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.130922 – volume: 385 start-page: 134057 year: 2025 ident: D5NJ01499A/cit26/1 publication-title: Fuel doi: 10.1016/j.fuel.2024.134057 – volume: 511 start-page: 161544 year: 2025 ident: D5NJ01499A/cit67/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2025.161544 – volume: 27 start-page: 6204 year: 2022 ident: D5NJ01499A/cit20/1 publication-title: Molecules doi: 10.3390/molecules27196204 – volume: 12 start-page: 111989 year: 2024 ident: D5NJ01499A/cit62/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2024.111989 – volume: 358 start-page: 130269 year: 2025 ident: D5NJ01499A/cit56/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.130269 – volume: 361 start-page: 131352 year: 2025 ident: D5NJ01499A/cit72/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2024.131352 – volume: 9 start-page: 2309 year: 2021 ident: D5NJ01499A/cit40/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c08388 – volume: 124 start-page: 118 year: 2019 ident: D5NJ01499A/cit59/1 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2019.03.012 – volume: 6 start-page: 14743 year: 2018 ident: D5NJ01499A/cit36/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b03296 – volume: 251 start-page: 233 year: 2019 ident: D5NJ01499A/cit41/1 publication-title: Fuel doi: 10.1016/j.fuel.2019.04.039 – volume: 283 start-page: 235 year: 2019 ident: D5NJ01499A/cit39/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.03.089 – volume: 418–419 start-page: 1 year: 2016 ident: D5NJ01499A/cit48/1 publication-title: J. Mol. Catal. A: Chem. – volume: 48 start-page: 10010 year: 2024 ident: D5NJ01499A/cit7/1 publication-title: New J. Chem. doi: 10.1039/D3NJ03851C – volume: 324 start-page: 114782 year: 2021 ident: D5NJ01499A/cit35/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.114782 – volume: 99 start-page: 281 year: 2021 ident: D5NJ01499A/cit1/1 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2020.06.034 – volume: 59 start-page: 12632 year: 2020 ident: D5NJ01499A/cit33/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c01050 – volume: 686 start-page: 162164 year: 2025 ident: D5NJ01499A/cit37/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2024.162164 – volume: 11 start-page: 273 year: 2023 ident: D5NJ01499A/cit21/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.109458 – volume: 36 start-page: 187 year: 2018 ident: D5NJ01499A/cit25/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201700573 – volume: 293 start-page: 111479 year: 2019 ident: D5NJ01499A/cit47/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111479 – volume: 154 start-page: 665 year: 2025 ident: D5NJ01499A/cit6/1 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2024.06.010 – volume: 89 start-page: 104 year: 2020 ident: D5NJ01499A/cit14/1 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2020.05.016 – volume: 7 start-page: 336 year: 2014 ident: D5NJ01499A/cit50/1 publication-title: ChemSusChem doi: 10.1002/cssc.201300459 – volume: 155 start-page: 37 year: 2025 ident: D5NJ01499A/cit5/1 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2024.11.025 – volume: 571 start-page: 1 year: 2019 ident: D5NJ01499A/cit15/1 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2018.11.035 – volume: 39 start-page: 440 year: 2021 ident: D5NJ01499A/cit16/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202000357 – volume: 492 start-page: 111008 year: 2020 ident: D5NJ01499A/cit70/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2020.111008 – volume: 35 start-page: 659 year: 2017 ident: D5NJ01499A/cit12/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201600622 |
SSID | ssj0011761 |
Score | 2.447723 |
Snippet | The rising level of atmospheric carbon dioxide (CO
2
) has become an important factor threatening environments and human health, so development of feasible... The rising level of atmospheric carbon dioxide (CO 2 ) has become an important factor threatening environments and human health, so development of feasible... The rising level of atmospheric carbon dioxide (CO2) has become an important factor threatening environments and human health, so development of feasible... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 9432 |
SubjectTerms | Carbon dioxide Carbonates Catalysts Catalytic activity Chemical synthesis Cycloaddition Hydroxy acids Hydroxyl groups Ionic liquids Reaction kinetics Reaction mechanisms Synergistic effect |
Title | Hydroxy acid-functionalized ionic liquids as green alternatives for carbonate synthesis from carbon dioxide and epoxide: catalytic and kinetic investigation |
URI | https://www.proquest.com/docview/3215036606 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELXS9gAXRIGKQEGW4BYtJGtvds0tKq1CBT2lIreVvfbCBrT9SCzR_hX4sczY3o9KQQIuK8fWRlHmaebNePxMyGuZlulYZjrKEo3bjIpFkpUKshQueVwkPOZ4UPjT2XR-zk-XyXIw-NnrWrIb9aa43Xqu5H-sCnNgVzwl-w-Wbb8UJmAM9oUnWBief2Xj-Y3GLpSRLCodYYTyhb3qFlhk5a62-V5d2Uqv8TaZL9hhM3K747VT-3ZKDChNrbCCblC8ANggCpS4Myd-YaSrix-V9psMQNZxjFUEV_a5adRevwFXxXHVqXYEc686daieSEXRXDPXOh3rS-FfrQyh1BX5vSNaWrOyHYo_Wxc3rGkx2VW93XUX_UpGnLiOK9ZzvpDcRUAhgzS2n2NTEYnYC7Y3HtuLnAZk-mPNwf8KHqqlJnzkW8PEmKHKqk7qFWaIohcM2xbFbnGH7MWQg4AT3ZsdLz58bDepJqmX421-dqN-y8Tb7u27fKdLYnaumxtmHJNZPCQPQgpCZx5P-2Rg6kfk3lFjksfkV8AV3YIr6nBFA66oXFOHK9rHFQVc0RZXtMUVRVyFBRpwRQE-NODqHW1R5aYDqugdVD0h5yfHi6N5FG7xiAqgf5solWKSTpRKgazyrNCGgRuQZcGncckSOcFGO52ZMS-UnMqMyViYWMhYAxfONFfsgOzWF7V5SqiA4MJNkqSYtAhZQqAuxRiPgoPDAaI6JK-a_zq_9GItuWuyYCJ_n5ydOovMhuSwMUMekL_OGVBfIHOQzg_JAZimfb-z5LM_LTwn9zs4H5LdzbU1L4CqbtTLAJnfsDmdzw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydroxy+acid-functionalized+ionic+liquids+as+green+alternatives+for+carbonate+synthesis+from+carbon+dioxide+and+epoxide%3A+catalytic+and+kinetic+investigation&rft.jtitle=New+journal+of+chemistry&rft.au=Yue%2C+Shuang&rft.au=Wang%2C+Xuejuan&rft.au=Wu%2C+Yuee&rft.au=Zhang%2C+Sining&rft.date=2025-06-03&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=49&rft.issue=22&rft.spage=9432&rft.epage=944&rft_id=info:doi/10.1039%2Fd5nj01499a&rft.externalDocID=d5nj01499a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon |