Hydroxy acid-functionalized ionic liquids as green alternatives for carbonate synthesis from carbon dioxide and epoxide: catalytic and kinetic investigation

The rising level of atmospheric carbon dioxide (CO 2 ) has become an important factor threatening environments and human health, so development of feasible methods for converting CO 2 into high-value-added chemicals stands out as a hot subject. In this study, an environmentally friendly catalytic sy...

Full description

Saved in:
Bibliographic Details
Published inNew journal of chemistry Vol. 49; no. 22; pp. 9432 - 944
Main Authors Yue, Shuang, Wang, Xuejuan, Wu, Yuee, Zhang, Sining
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 03.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rising level of atmospheric carbon dioxide (CO 2 ) has become an important factor threatening environments and human health, so development of feasible methods for converting CO 2 into high-value-added chemicals stands out as a hot subject. In this study, an environmentally friendly catalytic system, which consists of a novel hydroxyl acid ionic liquid was successfully prepared for the cycloaddition reaction of CO 2 and epoxides under mild conditions without solvent or co-catalyst. The different reaction variables that affect the cycloaddition reaction were also explored and discussed, including temperature, pressure, time, and amount of catalyst. Under designed reaction conditions, these hydroxyl acid-functionalized ionic liquids exhibited excellent catalytic activity towards various terminal epoxides, in which >99% selectivity of the corresponding cyclic carbonates was achieved. Meanwhile, the catalyst can be recycled at least six times without significant loss of its activity and selectivity. In addition, the reaction kinetics were studied, and the activation energy was determined to be 48.55 kJ mol −1 . Finally, a possible reaction mechanism was proposed, in which the synergistic effects involving the hydroxyl group on the cation and the COO − in functionalized ionic liquids guarantee the reaction to proceeds effectively. An environmentally friendly synthesis route of carbonates from CO 2 and epoxides catalysed by novel hydroxy acid ionic liquids under metal/halogen/cocatalyst/solvent-free conditions.
AbstractList The rising level of atmospheric carbon dioxide (CO 2 ) has become an important factor threatening environments and human health, so development of feasible methods for converting CO 2 into high-value-added chemicals stands out as a hot subject. In this study, an environmentally friendly catalytic system, which consists of a novel hydroxyl acid ionic liquid was successfully prepared for the cycloaddition reaction of CO 2 and epoxides under mild conditions without solvent or co-catalyst. The different reaction variables that affect the cycloaddition reaction were also explored and discussed, including temperature, pressure, time, and amount of catalyst. Under designed reaction conditions, these hydroxyl acid-functionalized ionic liquids exhibited excellent catalytic activity towards various terminal epoxides, in which >99% selectivity of the corresponding cyclic carbonates was achieved. Meanwhile, the catalyst can be recycled at least six times without significant loss of its activity and selectivity. In addition, the reaction kinetics were studied, and the activation energy was determined to be 48.55 kJ mol −1 . Finally, a possible reaction mechanism was proposed, in which the synergistic effects involving the hydroxyl group on the cation and the COO − in functionalized ionic liquids guarantee the reaction to proceeds effectively.
The rising level of atmospheric carbon dioxide (CO2) has become an important factor threatening environments and human health, so development of feasible methods for converting CO2 into high-value-added chemicals stands out as a hot subject. In this study, an environmentally friendly catalytic system, which consists of a novel hydroxyl acid ionic liquid was successfully prepared for the cycloaddition reaction of CO2 and epoxides under mild conditions without solvent or co-catalyst. The different reaction variables that affect the cycloaddition reaction were also explored and discussed, including temperature, pressure, time, and amount of catalyst. Under designed reaction conditions, these hydroxyl acid-functionalized ionic liquids exhibited excellent catalytic activity towards various terminal epoxides, in which >99% selectivity of the corresponding cyclic carbonates was achieved. Meanwhile, the catalyst can be recycled at least six times without significant loss of its activity and selectivity. In addition, the reaction kinetics were studied, and the activation energy was determined to be 48.55 kJ mol−1. Finally, a possible reaction mechanism was proposed, in which the synergistic effects involving the hydroxyl group on the cation and the COO− in functionalized ionic liquids guarantee the reaction to proceeds effectively.
The rising level of atmospheric carbon dioxide (CO 2 ) has become an important factor threatening environments and human health, so development of feasible methods for converting CO 2 into high-value-added chemicals stands out as a hot subject. In this study, an environmentally friendly catalytic system, which consists of a novel hydroxyl acid ionic liquid was successfully prepared for the cycloaddition reaction of CO 2 and epoxides under mild conditions without solvent or co-catalyst. The different reaction variables that affect the cycloaddition reaction were also explored and discussed, including temperature, pressure, time, and amount of catalyst. Under designed reaction conditions, these hydroxyl acid-functionalized ionic liquids exhibited excellent catalytic activity towards various terminal epoxides, in which >99% selectivity of the corresponding cyclic carbonates was achieved. Meanwhile, the catalyst can be recycled at least six times without significant loss of its activity and selectivity. In addition, the reaction kinetics were studied, and the activation energy was determined to be 48.55 kJ mol −1 . Finally, a possible reaction mechanism was proposed, in which the synergistic effects involving the hydroxyl group on the cation and the COO − in functionalized ionic liquids guarantee the reaction to proceeds effectively. An environmentally friendly synthesis route of carbonates from CO 2 and epoxides catalysed by novel hydroxy acid ionic liquids under metal/halogen/cocatalyst/solvent-free conditions.
Author Zhang, Sining
Wang, Xuejuan
Yue, Shuang
Wu, Yuee
AuthorAffiliation College of Chemistry
Institute of Rare and Scattered Elements Chemistry
Liaoning University
AuthorAffiliation_xml – name: Liaoning University
– name: College of Chemistry
– name: Institute of Rare and Scattered Elements Chemistry
Author_xml – sequence: 1
  givenname: Shuang
  surname: Yue
  fullname: Yue, Shuang
– sequence: 2
  givenname: Xuejuan
  surname: Wang
  fullname: Wang, Xuejuan
– sequence: 3
  givenname: Yuee
  surname: Wu
  fullname: Wu, Yuee
– sequence: 4
  givenname: Sining
  surname: Zhang
  fullname: Zhang, Sining
BookMark eNpFkU1PxCAQhonRRF29eDch8WZShUJp8Wb8Nhu96LmZAlXWCiuwxvpb_LGyrtHTvJl55nsbrTvvDEJ7lBxRwuSxrtyMUC4lrKEtyoQsZCnoetaU84JUXGyi7RhnhFBaC7qFvq5HHfzHiEFZXfQLp5L1Dgb7aTTOyio82LeF1RFDxE_BGIdhSCY4SPbdRNz7gBWELiclg-Po0rOJNvuDf_0NYG39h9UGg9PYzH_0SY4lGMaUGyzdL9aZpbYuF032CZZj7KCNHoZodn_tBD1eXjycXRfT-6ubs9NpoUpepqIGSWvadTWpOW-UNoxygF5xUfasAipJ0-jGEK46ENAwKKUpJZRaCNZo3rEJOljVnQf_tsj925lf5A2H2LKSVoQJQUSmDleUCj7GYPp2HuwrhLGlpF1evz2v7m5_rn-a4f0VHKL64_6_w74BVZ6HWw
Cites_doi 10.1007/s10562-011-0682-3
10.1016/j.mcat.2018.02.018
10.1016/j.cep.2020.108235
10.1016/j.polymer.2024.127639
10.1002/cjoc.201800587
10.1016/j.inoche.2019.05.031
10.1016/j.seppur.2024.126682
10.1016/j.seppur.2024.129734
10.1016/j.jcou.2016.03.001
10.1039/B705520J
10.1016/j.fuel.2024.133809
10.1016/j.jcou.2020.101189
10.1039/D1NJ00601K
10.1016/j.fuel.2024.133112
10.1016/j.jcou.2020.101162
10.1016/j.apsusc.2022.152663
10.1016/j.mcat.2019.110637
10.1016/j.jece.2024.114417
10.1016/j.mcat.2019.01.001
10.1039/D4NJ04877F
10.1039/C7GC00199A
10.1039/C8RA10233C
10.1039/D2GC04475G
10.1021/acssuschemeng.7b00355
10.1002/cjoc.201700747
10.1016/j.jcou.2018.09.012
10.1039/D1NJ02140K
10.1016/j.seppur.2023.123375
10.1016/j.molliq.2024.126423
10.1016/j.molcata.2015.11.017
10.1016/j.jcat.2015.10.014
10.1016/j.jcat.2015.05.002
10.1021/acssuschemeng.9b07242
10.1021/ie5042879
10.1016/j.mcat.2020.111292
10.1016/j.jece.2024.113718
10.1016/j.jece.2023.110438
10.1016/j.cattod.2018.06.020
10.1016/j.jcou.2019.07.018
10.1002/adsc.202000032
10.1016/j.jes.2023.10.018
10.1021/acssuschemeng.2c06816
10.1039/C8GC03086C
10.1016/j.seppur.2024.130579
10.1016/j.seppur.2024.130922
10.1016/j.fuel.2024.134057
10.1016/j.cej.2025.161544
10.3390/molecules27196204
10.1016/j.jece.2024.111989
10.1016/j.seppur.2024.130269
10.1016/j.seppur.2024.131352
10.1021/acssuschemeng.0c08388
10.1016/j.catcom.2019.03.012
10.1021/acssuschemeng.8b03296
10.1016/j.fuel.2019.04.039
10.1016/j.molliq.2019.03.089
10.1039/D3NJ03851C
10.1016/j.molliq.2020.114782
10.1016/j.jes.2020.06.034
10.1021/acs.iecr.0c01050
10.1016/j.apsusc.2024.162164
10.1016/j.jece.2023.109458
10.1002/cjoc.201700573
10.1016/j.molliq.2019.111479
10.1016/j.jes.2024.06.010
10.1016/j.jiec.2020.05.016
10.1002/cssc.201300459
10.1016/j.jes.2024.11.025
10.1016/j.apcata.2018.11.035
10.1002/cjoc.202000357
10.1016/j.mcat.2020.111008
10.1002/cjoc.201600622
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
7SR
8BQ
8FD
H9R
JG9
KA0
DOI 10.1039/d5nj01499a
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Illustrata: Natural Sciences
Materials Research Database
ProQuest Illustrata: Technology Collection
DatabaseTitle CrossRef
Materials Research Database
ProQuest Illustrata: Natural Sciences
Engineered Materials Abstracts
ProQuest Illustrata: Technology Collection
Technology Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1369-9261
EndPage 944
ExternalDocumentID 10_1039_D5NJ01499A
d5nj01499a
GroupedDBID ---
-DZ
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABCQX
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
L7B
N9A
O9-
P2P
R56
R7B
R7C
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SKH
SLH
TN5
TWZ
VH6
YNT
YQT
AAYXX
CITATION
M4U
7SR
8BQ
8FD
H9R
JG9
KA0
ID FETCH-LOGICAL-c242t-7a9171bb707448cde314aafc462f35a19088d8e04cba6a83a29e29a2d6638d4b3
ISSN 1144-0546
IngestDate Mon Jun 30 07:31:11 EDT 2025
Thu Aug 07 15:32:47 EDT 2025
Tue Jun 03 15:25:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c242t-7a9171bb707448cde314aafc462f35a19088d8e04cba6a83a29e29a2d6638d4b3
Notes https://doi.org/10.1039/d5nj01499a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4131-3620
PQID 3215036606
PQPubID 2048886
PageCount 9
ParticipantIDs crossref_primary_10_1039_D5NJ01499A
rsc_primary_d5nj01499a
proquest_journals_3215036606
PublicationCentury 2000
PublicationDate 2025-06-03
PublicationDateYYYYMMDD 2025-06-03
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-03
  day: 03
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle New journal of chemistry
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Shu (D5NJ01499A/cit37/1) 2025; 686
Liu (D5NJ01499A/cit3/1) 2020; 8
Song (D5NJ01499A/cit8/1) 2017; 19
Egorova (D5NJ01499A/cit50/1) 2014; 7
Bragato (D5NJ01499A/cit51/1) 2023; 25
Kulal (D5NJ01499A/cit13/1) 2019; 33
Taghavi (D5NJ01499A/cit42/1) 2021; 45
Hu (D5NJ01499A/cit30/1) 2024; 416
Li (D5NJ01499A/cit38/1) 2018; 36
Bansal (D5NJ01499A/cit23/1) 2020; 40
Qiao (D5NJ01499A/cit17/1) 2019; 37
Yang (D5NJ01499A/cit66/1) 2020; 480
Xue (D5NJ01499A/cit27/1) 2024; 12
Yue (D5NJ01499A/cit41/1) 2019; 251
Xiao (D5NJ01499A/cit53/1) 2011; 141
Guo (D5NJ01499A/cit31/1) 2023; 312
Grollier (D5NJ01499A/cit34/1) 2020; 362
Cui (D5NJ01499A/cit56/1) 2025; 358
Li (D5NJ01499A/cit26/1) 2025; 385
Sang (D5NJ01499A/cit32/1) 2022; 585
Sarkar (D5NJ01499A/cit7/1) 2024; 48
Wang (D5NJ01499A/cit47/1) 2019; 293
Moya (D5NJ01499A/cit43/1) 2018; 28
Liu (D5NJ01499A/cit65/1) 2015; 54
Zhu (D5NJ01499A/cit67/1) 2025; 511
Wang (D5NJ01499A/cit5/1) 2025; 155
Li (D5NJ01499A/cit22/1) 2025; 382
Chen (D5NJ01499A/cit28/1) 2024; 312
Zhang (D5NJ01499A/cit55/1) 2016; 14
Zou (D5NJ01499A/cit64/1) 2015; 329
Liu (D5NJ01499A/cit16/1) 2021; 39
Wu (D5NJ01499A/cit48/1) 2016; 418–419
Paninho (D5NJ01499A/cit45/1) 2021; 499
Kanti Das (D5NJ01499A/cit18/1) 2021; 45
Cui (D5NJ01499A/cit72/1) 2025; 361
Yang (D5NJ01499A/cit61/1) 2018; 450
Kim (D5NJ01499A/cit36/1) 2018; 6
Shang (D5NJ01499A/cit39/1) 2019; 283
Wen (D5NJ01499A/cit69/1) 2025; 359
Lian (D5NJ01499A/cit1/1) 2021; 99
Zhao (D5NJ01499A/cit25/1) 2018; 36
Helal (D5NJ01499A/cit14/1) 2020; 89
Sang (D5NJ01499A/cit10/1) 2025; 49
Valverde (D5NJ01499A/cit40/1) 2021; 9
Ma (D5NJ01499A/cit19/1) 2023; 11
Zheng (D5NJ01499A/cit4/1) 2025; 379
Li (D5NJ01499A/cit11/1) 2019; 106
Hui (D5NJ01499A/cit21/1) 2023; 11
Xie (D5NJ01499A/cit2/1) 2025; 149
Ge (D5NJ01499A/cit44/1) 2024; 12
Zhang (D5NJ01499A/cit60/1) 2019; 466
Kurisingal (D5NJ01499A/cit15/1) 2019; 571
Yan (D5NJ01499A/cit20/1) 2022; 27
Peng (D5NJ01499A/cit58/1) 2019; 330
Li (D5NJ01499A/cit59/1) 2019; 124
Cho (D5NJ01499A/cit49/1) 2008; 10
Wu (D5NJ01499A/cit63/1) 2021; 159
Chen (D5NJ01499A/cit54/1) 2025; 355
Luo (D5NJ01499A/cit12/1) 2017; 35
Shi (D5NJ01499A/cit24/1) 2020; 39
Li (D5NJ01499A/cit6/1) 2025; 154
Hernández (D5NJ01499A/cit35/1) 2021; 324
Xu (D5NJ01499A/cit71/1) 2025; 360
Monfared (D5NJ01499A/cit73/1) 2019; 9
Carvalho Rocha (D5NJ01499A/cit29/1) 2016; 333
Goodrich (D5NJ01499A/cit52/1) 2017; 5
Liu (D5NJ01499A/cit57/1) 2016; 412
Li (D5NJ01499A/cit68/1) 2023; 11
Qu (D5NJ01499A/cit46/1) 2024; 339
Kamphuis (D5NJ01499A/cit9/1) 2019; 21
Dokhaee (D5NJ01499A/cit33/1) 2020; 59
Liu (D5NJ01499A/cit70/1) 2020; 492
Li (D5NJ01499A/cit62/1) 2024; 12
References_xml – volume: 141
  start-page: 1838
  year: 2011
  ident: D5NJ01499A/cit53/1
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-011-0682-3
– volume: 450
  start-page: 39
  year: 2018
  ident: D5NJ01499A/cit61/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2018.02.018
– volume: 159
  start-page: 108235
  year: 2021
  ident: D5NJ01499A/cit63/1
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2020.108235
– volume: 312
  start-page: 127639
  year: 2024
  ident: D5NJ01499A/cit28/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2024.127639
– volume: 37
  start-page: 474
  year: 2019
  ident: D5NJ01499A/cit17/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201800587
– volume: 106
  start-page: 70
  year: 2019
  ident: D5NJ01499A/cit11/1
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2019.05.031
– volume: 339
  start-page: 126682
  year: 2024
  ident: D5NJ01499A/cit46/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.126682
– volume: 355
  start-page: 129734
  year: 2025
  ident: D5NJ01499A/cit54/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.129734
– volume: 14
  start-page: 76
  year: 2016
  ident: D5NJ01499A/cit55/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2016.03.001
– volume: 10
  start-page: 67
  year: 2008
  ident: D5NJ01499A/cit49/1
  publication-title: Green Chem.
  doi: 10.1039/B705520J
– volume: 382
  start-page: 133809
  year: 2025
  ident: D5NJ01499A/cit22/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2024.133809
– volume: 40
  start-page: 101189
  year: 2020
  ident: D5NJ01499A/cit23/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2020.101189
– volume: 45
  start-page: 9189
  year: 2021
  ident: D5NJ01499A/cit18/1
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ00601K
– volume: 379
  start-page: 133112
  year: 2025
  ident: D5NJ01499A/cit4/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2024.133112
– volume: 39
  start-page: 101162
  year: 2020
  ident: D5NJ01499A/cit24/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2020.101162
– volume: 585
  start-page: 152663
  year: 2022
  ident: D5NJ01499A/cit32/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.152663
– volume: 480
  start-page: 110637
  year: 2020
  ident: D5NJ01499A/cit66/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2019.110637
– volume: 12
  start-page: 114417
  year: 2024
  ident: D5NJ01499A/cit44/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2024.114417
– volume: 466
  start-page: 37
  year: 2019
  ident: D5NJ01499A/cit60/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2019.01.001
– volume: 49
  start-page: 7182
  year: 2025
  ident: D5NJ01499A/cit10/1
  publication-title: New J. Chem.
  doi: 10.1039/D4NJ04877F
– volume: 19
  start-page: 3707
  year: 2017
  ident: D5NJ01499A/cit8/1
  publication-title: Green Chem.
  doi: 10.1039/C7GC00199A
– volume: 9
  start-page: 3884
  year: 2019
  ident: D5NJ01499A/cit73/1
  publication-title: RSC Adv.
  doi: 10.1039/C8RA10233C
– volume: 25
  start-page: 4849
  year: 2023
  ident: D5NJ01499A/cit51/1
  publication-title: Green Chem.
  doi: 10.1039/D2GC04475G
– volume: 5
  start-page: 5635
  year: 2017
  ident: D5NJ01499A/cit52/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00355
– volume: 36
  start-page: 293
  year: 2018
  ident: D5NJ01499A/cit38/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201700747
– volume: 28
  start-page: 66
  year: 2018
  ident: D5NJ01499A/cit43/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2018.09.012
– volume: 45
  start-page: 15405
  year: 2021
  ident: D5NJ01499A/cit42/1
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ02140K
– volume: 312
  start-page: 123375
  year: 2023
  ident: D5NJ01499A/cit31/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.123375
– volume: 416
  start-page: 126423
  year: 2024
  ident: D5NJ01499A/cit30/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2024.126423
– volume: 412
  start-page: 20
  year: 2016
  ident: D5NJ01499A/cit57/1
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2015.11.017
– volume: 333
  start-page: 29
  year: 2016
  ident: D5NJ01499A/cit29/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.10.014
– volume: 329
  start-page: 119
  year: 2015
  ident: D5NJ01499A/cit64/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.05.002
– volume: 8
  start-page: 2910
  year: 2020
  ident: D5NJ01499A/cit3/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b07242
– volume: 54
  start-page: 633
  year: 2015
  ident: D5NJ01499A/cit65/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie5042879
– volume: 499
  start-page: 111292
  year: 2021
  ident: D5NJ01499A/cit45/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2020.111292
– volume: 12
  start-page: 113718
  year: 2024
  ident: D5NJ01499A/cit27/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2024.113718
– volume: 11
  start-page: 110438
  year: 2023
  ident: D5NJ01499A/cit68/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2023.110438
– volume: 330
  start-page: 76
  year: 2019
  ident: D5NJ01499A/cit58/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.06.020
– volume: 33
  start-page: 434
  year: 2019
  ident: D5NJ01499A/cit13/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2019.07.018
– volume: 362
  start-page: 1696
  year: 2020
  ident: D5NJ01499A/cit34/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202000032
– volume: 149
  start-page: 177
  year: 2025
  ident: D5NJ01499A/cit2/1
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2023.10.018
– volume: 11
  start-page: 6183
  year: 2023
  ident: D5NJ01499A/cit19/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c06816
– volume: 21
  start-page: 406
  year: 2019
  ident: D5NJ01499A/cit9/1
  publication-title: Green Chem.
  doi: 10.1039/C8GC03086C
– volume: 359
  start-page: 130579
  year: 2025
  ident: D5NJ01499A/cit69/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.130579
– volume: 360
  start-page: 130922
  year: 2025
  ident: D5NJ01499A/cit71/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.130922
– volume: 385
  start-page: 134057
  year: 2025
  ident: D5NJ01499A/cit26/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2024.134057
– volume: 511
  start-page: 161544
  year: 2025
  ident: D5NJ01499A/cit67/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2025.161544
– volume: 27
  start-page: 6204
  year: 2022
  ident: D5NJ01499A/cit20/1
  publication-title: Molecules
  doi: 10.3390/molecules27196204
– volume: 12
  start-page: 111989
  year: 2024
  ident: D5NJ01499A/cit62/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2024.111989
– volume: 358
  start-page: 130269
  year: 2025
  ident: D5NJ01499A/cit56/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.130269
– volume: 361
  start-page: 131352
  year: 2025
  ident: D5NJ01499A/cit72/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2024.131352
– volume: 9
  start-page: 2309
  year: 2021
  ident: D5NJ01499A/cit40/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c08388
– volume: 124
  start-page: 118
  year: 2019
  ident: D5NJ01499A/cit59/1
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2019.03.012
– volume: 6
  start-page: 14743
  year: 2018
  ident: D5NJ01499A/cit36/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03296
– volume: 251
  start-page: 233
  year: 2019
  ident: D5NJ01499A/cit41/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.04.039
– volume: 283
  start-page: 235
  year: 2019
  ident: D5NJ01499A/cit39/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.03.089
– volume: 418–419
  start-page: 1
  year: 2016
  ident: D5NJ01499A/cit48/1
  publication-title: J. Mol. Catal. A: Chem.
– volume: 48
  start-page: 10010
  year: 2024
  ident: D5NJ01499A/cit7/1
  publication-title: New J. Chem.
  doi: 10.1039/D3NJ03851C
– volume: 324
  start-page: 114782
  year: 2021
  ident: D5NJ01499A/cit35/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.114782
– volume: 99
  start-page: 281
  year: 2021
  ident: D5NJ01499A/cit1/1
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2020.06.034
– volume: 59
  start-page: 12632
  year: 2020
  ident: D5NJ01499A/cit33/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c01050
– volume: 686
  start-page: 162164
  year: 2025
  ident: D5NJ01499A/cit37/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2024.162164
– volume: 11
  start-page: 273
  year: 2023
  ident: D5NJ01499A/cit21/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2023.109458
– volume: 36
  start-page: 187
  year: 2018
  ident: D5NJ01499A/cit25/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201700573
– volume: 293
  start-page: 111479
  year: 2019
  ident: D5NJ01499A/cit47/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111479
– volume: 154
  start-page: 665
  year: 2025
  ident: D5NJ01499A/cit6/1
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2024.06.010
– volume: 89
  start-page: 104
  year: 2020
  ident: D5NJ01499A/cit14/1
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2020.05.016
– volume: 7
  start-page: 336
  year: 2014
  ident: D5NJ01499A/cit50/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300459
– volume: 155
  start-page: 37
  year: 2025
  ident: D5NJ01499A/cit5/1
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2024.11.025
– volume: 571
  start-page: 1
  year: 2019
  ident: D5NJ01499A/cit15/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2018.11.035
– volume: 39
  start-page: 440
  year: 2021
  ident: D5NJ01499A/cit16/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.202000357
– volume: 492
  start-page: 111008
  year: 2020
  ident: D5NJ01499A/cit70/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2020.111008
– volume: 35
  start-page: 659
  year: 2017
  ident: D5NJ01499A/cit12/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201600622
SSID ssj0011761
Score 2.447723
Snippet The rising level of atmospheric carbon dioxide (CO 2 ) has become an important factor threatening environments and human health, so development of feasible...
The rising level of atmospheric carbon dioxide (CO 2 ) has become an important factor threatening environments and human health, so development of feasible...
The rising level of atmospheric carbon dioxide (CO2) has become an important factor threatening environments and human health, so development of feasible...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 9432
SubjectTerms Carbon dioxide
Carbonates
Catalysts
Catalytic activity
Chemical synthesis
Cycloaddition
Hydroxy acids
Hydroxyl groups
Ionic liquids
Reaction kinetics
Reaction mechanisms
Synergistic effect
Title Hydroxy acid-functionalized ionic liquids as green alternatives for carbonate synthesis from carbon dioxide and epoxide: catalytic and kinetic investigation
URI https://www.proquest.com/docview/3215036606
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELXS9gAXRIGKQEGW4BYtJGtvds0tKq1CBT2lIreVvfbCBrT9SCzR_hX4sczY3o9KQQIuK8fWRlHmaebNePxMyGuZlulYZjrKEo3bjIpFkpUKshQueVwkPOZ4UPjT2XR-zk-XyXIw-NnrWrIb9aa43Xqu5H-sCnNgVzwl-w-Wbb8UJmAM9oUnWBief2Xj-Y3GLpSRLCodYYTyhb3qFlhk5a62-V5d2Uqv8TaZL9hhM3K747VT-3ZKDChNrbCCblC8ANggCpS4Myd-YaSrix-V9psMQNZxjFUEV_a5adRevwFXxXHVqXYEc686daieSEXRXDPXOh3rS-FfrQyh1BX5vSNaWrOyHYo_Wxc3rGkx2VW93XUX_UpGnLiOK9ZzvpDcRUAhgzS2n2NTEYnYC7Y3HtuLnAZk-mPNwf8KHqqlJnzkW8PEmKHKqk7qFWaIohcM2xbFbnGH7MWQg4AT3ZsdLz58bDepJqmX421-dqN-y8Tb7u27fKdLYnaumxtmHJNZPCQPQgpCZx5P-2Rg6kfk3lFjksfkV8AV3YIr6nBFA66oXFOHK9rHFQVc0RZXtMUVRVyFBRpwRQE-NODqHW1R5aYDqugdVD0h5yfHi6N5FG7xiAqgf5solWKSTpRKgazyrNCGgRuQZcGncckSOcFGO52ZMS-UnMqMyViYWMhYAxfONFfsgOzWF7V5SqiA4MJNkqSYtAhZQqAuxRiPgoPDAaI6JK-a_zq_9GItuWuyYCJ_n5ydOovMhuSwMUMekL_OGVBfIHOQzg_JAZimfb-z5LM_LTwn9zs4H5LdzbU1L4CqbtTLAJnfsDmdzw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydroxy+acid-functionalized+ionic+liquids+as+green+alternatives+for+carbonate+synthesis+from+carbon+dioxide+and+epoxide%3A+catalytic+and+kinetic+investigation&rft.jtitle=New+journal+of+chemistry&rft.au=Yue%2C+Shuang&rft.au=Wang%2C+Xuejuan&rft.au=Wu%2C+Yuee&rft.au=Zhang%2C+Sining&rft.date=2025-06-03&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=49&rft.issue=22&rft.spage=9432&rft.epage=944&rft_id=info:doi/10.1039%2Fd5nj01499a&rft.externalDocID=d5nj01499a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon