Advanced neural control technique for autonomous underwater vehicles using modified integral barrier Lyapunov function
This paper presents a novel approach for depth precision control of under-actuated autonomous underwater vehicles (AUV) subject to model uncertainties, ocean currents, and input constraints. Specifically, a transformation is made to convert the input constraint problem into a state constraint proble...
Saved in:
Published in | Ocean engineering Vol. 266; p. 112842 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents a novel approach for depth precision control of under-actuated autonomous underwater vehicles (AUV) subject to model uncertainties, ocean currents, and input constraints. Specifically, a transformation is made to convert the input constraint problem into a state constraint problem. Subsequently, an observer-based guidance law is developed to deal with the drift affected by unknown ocean currents by using an extended disturbance observer (EDO). An adaptive neural controller is then designed using the DSC technique and an advanced modified integral barrier Lyapunov function (mIBLF) to guarantee that all states are confined within the given constraint. Besides, a novel nonlinear disturbance observer is introduced to cope with external disturbances and neural network approximation errors. It is proved that all closed-loop signals are uniformly ultimately bounded by Lyapunov stability theory. Finally, comparative simulations are carried out to verify the effectiveness and outstanding characteristics of the proposed method.
•A new approach for depth control of AUV subject to model uncertainties, ocean currents, and input constraints is suggested.•A transform converts the input constraint into a state constraint problem. Then an EDO observer is constructed.•An adaptive neural learning law is designed using modified Lyapunov function (mIBLF) to ensure all states are confined.•A nonlinear disturbance observer is used to cope with external disturbances and neural-based approximation errors.•Comparative simulations are carried out to verify the effectiveness of the proposed neural control technique. |
---|---|
AbstractList | This paper presents a novel approach for depth precision control of under-actuated autonomous underwater vehicles (AUV) subject to model uncertainties, ocean currents, and input constraints. Specifically, a transformation is made to convert the input constraint problem into a state constraint problem. Subsequently, an observer-based guidance law is developed to deal with the drift affected by unknown ocean currents by using an extended disturbance observer (EDO). An adaptive neural controller is then designed using the DSC technique and an advanced modified integral barrier Lyapunov function (mIBLF) to guarantee that all states are confined within the given constraint. Besides, a novel nonlinear disturbance observer is introduced to cope with external disturbances and neural network approximation errors. It is proved that all closed-loop signals are uniformly ultimately bounded by Lyapunov stability theory. Finally, comparative simulations are carried out to verify the effectiveness and outstanding characteristics of the proposed method.
•A new approach for depth control of AUV subject to model uncertainties, ocean currents, and input constraints is suggested.•A transform converts the input constraint into a state constraint problem. Then an EDO observer is constructed.•An adaptive neural learning law is designed using modified Lyapunov function (mIBLF) to ensure all states are confined.•A nonlinear disturbance observer is used to cope with external disturbances and neural-based approximation errors.•Comparative simulations are carried out to verify the effectiveness of the proposed neural control technique. |
ArticleNumber | 112842 |
Author | Thanh, Pham Nguyen Nhut Anh, Ho Pham Huy |
Author_xml | – sequence: 1 givenname: Pham Nguyen Nhut surname: Thanh fullname: Thanh, Pham Nguyen Nhut email: pnnthanh.sdh21@hcmut.edu.vn organization: Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam – sequence: 2 givenname: Ho Pham Huy orcidid: 0000-0001-7353-8205 surname: Anh fullname: Anh, Ho Pham Huy email: hphanh@hcmut.edu.vn organization: Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam |
BookMark | eNqFkE1LJDEQQMPiwo6uf0HyB3rMR093BvagiLrCgBc9h7JSGTP0JG463eK_t5tZL17mFCjyHlXvlJ3EFImxCymWUsjmcrdMSBApbpdKKLWUUpla_WALaVpdrdTKnLCFEGpdGSHNL3ba9zshRNMIvWDjtRshIjkeacjQcUyx5NTxQvgaw7-BuE-Zw1BSTPs09HyIjvI7FMp8pNeAHU2zPsQt3ycXfJhUIRbazrIXyDlMHzcf8DbENHI_RCwhxd_sp4eup_P_7xl7vrt9uvlbbR7vH26uNxWqWpWqQVQrh16YGp0D3ejV2nvdkgLVAJIUYIz2sjUI0jdrMvVLC3XrtdBYG6fPWHPwYk59n8nbtxz2kD-sFHauZ3f2q56d69lDvQn88w3EUGBevWQI3XH86oDTdNw4JbA9Bpo7h0xYrEvhmOIT9cOWXA |
CitedBy_id | crossref_primary_10_1016_j_oceaneng_2023_114647 crossref_primary_10_1016_j_oceaneng_2023_115027 crossref_primary_10_1109_ACCESS_2024_3365542 crossref_primary_10_1109_TSMC_2024_3387435 crossref_primary_10_1016_j_oceaneng_2022_113503 crossref_primary_10_1515_dema_2023_0131 crossref_primary_10_1016_j_ejcon_2025_101183 crossref_primary_10_1016_j_conengprac_2024_105935 crossref_primary_10_1016_j_ins_2024_121060 |
Cites_doi | 10.1016/j.oceaneng.2019.01.025 10.1016/j.automatica.2011.01.025 10.1016/j.mechatronics.2016.11.006 10.1109/TIE.2017.2745451 10.1016/j.automatica.2008.11.017 10.1016/j.automatica.2019.04.018 10.1016/j.automatica.2018.11.008 10.1162/neco.1991.3.2.246 10.1109/TAC.2000.880994 10.1109/TCYB.2018.2890582 10.1016/j.oceaneng.2020.107150 10.1029/2004EO310002 10.1109/TMECH.2017.2756110 10.1016/j.oceaneng.2020.108193 10.3390/s18061837 10.1109/TIE.2018.2885726 10.1016/j.oceaneng.2020.108257 10.1016/j.oceaneng.2008.10.006 10.1016/j.oceaneng.2019.04.021 10.3233/JIFS-16501 10.3390/s16081335 10.1016/j.automatica.2016.06.020 10.1007/s11071-019-05388-6 10.1016/j.oceaneng.2018.07.019 10.1007/s40815-017-0401-3 10.1007/s10514-015-9510-8 10.1016/j.oceaneng.2019.106824 10.1109/JOE.2008.918689 10.1016/j.oceaneng.2020.106949 10.1016/j.oceaneng.2018.03.082 10.1016/j.oceaneng.2015.10.038 10.1109/ACC.2011.5990865 10.1007/s10846-008-9262-1 10.1109/CDC.1997.649499 10.1109/TIE.2013.2271597 10.1002/rnc.3338 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2022.112842 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2022_112842 S0029801822021254 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c242t-6cc25dcf084cdda36359ff37e2a26ace10a883f178ca1f69e84b7a47f303c48d3 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Tue Jul 01 02:15:02 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 Fri Feb 23 02:40:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Extended disturbance observer (EDO) Depth precision control Adaptive neural control technique Input constraint Autonomous underwater vehicles (AUV) Modified integral barrier Lyapunov function (mIBLF) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c242t-6cc25dcf084cdda36359ff37e2a26ace10a883f178ca1f69e84b7a47f303c48d3 |
ORCID | 0000-0001-7353-8205 |
ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2022_112842 crossref_citationtrail_10_1016_j_oceaneng_2022_112842 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_112842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-15 |
PublicationDateYYYYMMDD | 2022-12-15 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Tanakitkorn, Wilson, Turnock, Phillips (bib22) 2017; 41 Lei (bib13) 2020; 197 Yu, Xiang, Wilson, Zhang (bib35) 2020; 50 Belleter, Maghenem, Paliotta, Pettersen (bib3) 2019; 100 Tran, Pham, Choi (bib27) 2021; 220 Yu, Liu, Wu, Fang (bib34) 2018; 65 Von Ellenrieder (bib28) 2019; 105 Tee, Ge (bib23) 2012 Abdurahman, Savvaris, Tsourdos (bib1) 2019; 182 Du, Hu, Krstić, Sun (bib6) 2016; 73 Zhang, Xiang, Zhang, Li (bib37) 2020; 218 Peng, Wang, Han (bib18) 2019; 66 Xiang, Yu, Lapierre, Zhang, Zhang (bib33) 2018; 20 Ginoya, Shendge, Phadke (bib10) 2014; 61 Tee, Ge, Tay (bib24) 2009; 45 Londhe, Patre, Waghmare, Santhakumar (bib14) 2017; 32 Anderson, Chowdhary, Johnson (bib2) 2009; 54 Chen, Ge, Ren (bib4) 2011; 47 Wang, Wang, Wei, Zhang (bib29) 2020; 201 Yuan, Yi, Yu, Fan (bib36) 2011 Do (bib5) 2016; 111 Zou, Kumar, De Ruiter (bib40) 2020; 99 Kapoutsis, Chatzichristofis, Doitsidis, de Sousa, Pinto, Braga, Kosmatopoulos (bib11) 2015; 40 Swaroop, Hedrick, Yip, Gerdes (bib21) 2000; 45 Xiang, Yu, Niu, Zhang (bib32) 2016; 16 Zou, Kumar, De Ruiter (bib39) 2016; 26 Eichhorn, Ament, Jacobi, Pfuetzenreuter, Karimanzira, Bley, Boer, Wehde (bib7) 2018; 18 Moreira, Soares (bib15) 2008; 33 Singh, Can, Eustice, Lerner, McPhee, Roman (bib20) 2004; 85 Thanh, Anh (bib25) 2022 Fossen, Berge (bib9) 1997 Patre, Londhe, Waghmare, Mohan (bib17) 2018; 159 Xia, Xu, Li, Xu, Xiang (bib30) 2019; 174 Lapierre (bib12) 2009; 36 Thanh, Tam, Anh (bib26) 2021; 228 Xia, Xu, Wang, Xu, Xiang, Li (bib31) 2020; 198 Park, Sandberg (bib16) 1991; 3 Zheng, Feroskhan (bib38) 2017; 22 Fossen (bib8) 2011 Qiao, Ruan, Zhang, Zhang (bib19) 2018; 165 Patre (10.1016/j.oceaneng.2022.112842_bib17) 2018; 159 Tanakitkorn (10.1016/j.oceaneng.2022.112842_bib22) 2017; 41 Ginoya (10.1016/j.oceaneng.2022.112842_bib10) 2014; 61 Zheng (10.1016/j.oceaneng.2022.112842_bib38) 2017; 22 Wang (10.1016/j.oceaneng.2022.112842_bib29) 2020; 201 Peng (10.1016/j.oceaneng.2022.112842_bib18) 2019; 66 Xia (10.1016/j.oceaneng.2022.112842_bib30) 2019; 174 Abdurahman (10.1016/j.oceaneng.2022.112842_bib1) 2019; 182 Eichhorn (10.1016/j.oceaneng.2022.112842_bib7) 2018; 18 Swaroop (10.1016/j.oceaneng.2022.112842_bib21) 2000; 45 Zou (10.1016/j.oceaneng.2022.112842_bib40) 2020; 99 Do (10.1016/j.oceaneng.2022.112842_bib5) 2016; 111 Lapierre (10.1016/j.oceaneng.2022.112842_bib12) 2009; 36 Thanh (10.1016/j.oceaneng.2022.112842_bib26) 2021; 228 Zhang (10.1016/j.oceaneng.2022.112842_bib37) 2020; 218 Anderson (10.1016/j.oceaneng.2022.112842_bib2) 2009; 54 Yuan (10.1016/j.oceaneng.2022.112842_bib36) 2011 Du (10.1016/j.oceaneng.2022.112842_bib6) 2016; 73 Xiang (10.1016/j.oceaneng.2022.112842_bib33) 2018; 20 Zou (10.1016/j.oceaneng.2022.112842_bib39) 2016; 26 Chen (10.1016/j.oceaneng.2022.112842_bib4) 2011; 47 Tee (10.1016/j.oceaneng.2022.112842_bib24) 2009; 45 Londhe (10.1016/j.oceaneng.2022.112842_bib14) 2017; 32 Yu (10.1016/j.oceaneng.2022.112842_bib35) 2020; 50 Tee (10.1016/j.oceaneng.2022.112842_bib23) 2012 Tran (10.1016/j.oceaneng.2022.112842_bib27) 2021; 220 Von Ellenrieder (10.1016/j.oceaneng.2022.112842_bib28) 2019; 105 Lei (10.1016/j.oceaneng.2022.112842_bib13) 2020; 197 Moreira (10.1016/j.oceaneng.2022.112842_bib15) 2008; 33 Fossen (10.1016/j.oceaneng.2022.112842_bib9) 1997 Singh (10.1016/j.oceaneng.2022.112842_bib20) 2004; 85 Kapoutsis (10.1016/j.oceaneng.2022.112842_bib11) 2015; 40 Qiao (10.1016/j.oceaneng.2022.112842_bib19) 2018; 165 Park (10.1016/j.oceaneng.2022.112842_bib16) 1991; 3 Thanh (10.1016/j.oceaneng.2022.112842_bib25) 2022 Yu (10.1016/j.oceaneng.2022.112842_bib34) 2018; 65 Xia (10.1016/j.oceaneng.2022.112842_bib31) 2020; 198 Belleter (10.1016/j.oceaneng.2022.112842_bib3) 2019; 100 Xiang (10.1016/j.oceaneng.2022.112842_bib32) 2016; 16 Fossen (10.1016/j.oceaneng.2022.112842_bib8) 2011 |
References_xml | – volume: 33 start-page: 69 year: 2008 end-page: 88 ident: bib15 article-title: H publication-title: IEEE J. Ocean. Eng. – start-page: 3239 year: 2012 end-page: 3244 ident: bib23 article-title: Control of state-constrained nonlinear systems using integral barrier lyapunov functionals publication-title: Proc. 51st IEEE Conf. Decis. Control – start-page: 3536 year: 2011 end-page: 3541 ident: bib36 article-title: Adaptive controller design for uncertain nonlinear systems with input magnitude and rate limitations publication-title: Proc.2011 Am. Control Conf. – volume: 47 start-page: 452 year: 2011 end-page: 465 ident: bib4 article-title: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints publication-title: Automatica – volume: 201 year: 2020 ident: bib29 article-title: Filter-backstepping based neural adaptive formation control of leader-following multiple AUVs in three dimensional space publication-title: Ocean Eng. – volume: 228 year: 2021 ident: bib26 article-title: A new approach for three-dimensional trajectory tracking control of under-actuated AUVs with model uncertainties publication-title: Ocean Eng. – year: 2011 ident: bib8 article-title: Handbook of Marine Craft Hydrodynamics and Motion Control – volume: 182 start-page: 412 year: 2019 end-page: 426 ident: bib1 article-title: Switching LOS guidance with speed allocation and vertical course control for path-following of unmanned underwater vehicles under ocean current disturbances publication-title: Ocean Eng. – volume: 18 start-page: 1837 year: 2018 ident: bib7 article-title: Modular AUV system with integrated real-time water quality analysis publication-title: Sensors – volume: 22 start-page: 2564 year: 2017 end-page: 2575 ident: bib38 article-title: Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances publication-title: IEEE ASME Trans. Mechatron. – volume: 54 start-page: 183 year: 2009 end-page: 199 ident: bib2 article-title: Comparison of RBF and SHL neural network based adaptive control publication-title: J. Intell. Rob. Syst. – volume: 32 start-page: 2509 year: 2017 end-page: 2522 ident: bib14 article-title: Robust proportional derivative (PD)-like fuzzy control designs for diving and steering planes control of an autonomous underwater vehicle publication-title: J. Intell. Fuzzy Syst. – volume: 3 start-page: 246 year: 1991 end-page: 257 ident: bib16 article-title: Universal approximation using radial-basis-function networks publication-title: Neural Comput. – volume: 20 start-page: 572 year: 2018 end-page: 586 ident: bib33 article-title: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles publication-title: Int. J. Fuzzy Syst. – volume: 50 start-page: 1887 year: 2020 end-page: 1899 ident: bib35 article-title: Guidance-error-based robust fuzzy adaptive control for bottom following of a flight-style AUV with saturated actuator dynamics publication-title: IEEE Trans. Cybern. – volume: 218 year: 2020 ident: bib37 article-title: Neural network-based adaptive trajectory tracking control of underactuated AUVs with unknown asymmetrical actuator saturation and unknown dynamics publication-title: Ocean Eng. – volume: 99 start-page: 2201 year: 2020 end-page: 2217 ident: bib40 article-title: Finite-time spacecraft attitude control under input magnitude and rate saturation publication-title: Nonlinear Dynam. – volume: 73 start-page: 207 year: 2016 end-page: 214 ident: bib6 article-title: Robust dynamic positioning of ships with disturbances under input saturation publication-title: Automatica – volume: 36 start-page: 92 year: 2009 end-page: 104 ident: bib12 article-title: Robust diving control of an AUV publication-title: Ocean Eng. – volume: 100 start-page: 123 year: 2019 end-page: 134 ident: bib3 article-title: Observer based path following for underactuated marine vessels in the presence of ocean currents: a global approach publication-title: Automatica – volume: 66 start-page: 8724 year: 2019 end-page: 8732 ident: bib18 article-title: Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neuron-dynamic optimization publication-title: IEEE Trans. Ind. Electron. – volume: 174 start-page: 14 year: 2019 end-page: 30 ident: bib30 article-title: Improved line-of-sight trajectory tracking control of under-actuated AUV subjects to ocean currents and input saturation publication-title: Ocean Eng. – volume: 85 start-page: 289 year: 2004 end-page: 296 ident: bib20 article-title: Seabed AUV offers new platform for high-resolution imaging publication-title: Eos Trans. Am. Geophys Union – year: 2022 ident: bib25 article-title: Pitch control for autonomous underwater vehicle with model uncertainties and input constraints publication-title: The 6th Vietnam Int. Conf. Exhibit. Control Automat. (VCCA-2021) – volume: 165 start-page: 399 year: 2018 end-page: 409 ident: bib19 article-title: Robust H2 optimal depth control of an autonomous underwater vehicle with output disturbances and time delay publication-title: Ocean Eng. – volume: 197 year: 2020 ident: bib13 article-title: Nonlinear diving stability and control for an AUV via singular perturbation publication-title: Ocean Eng. – volume: 45 start-page: 1893 year: 2000 end-page: 1899 ident: bib21 article-title: Dynamic surface control for a class of nonlinear systems publication-title: IEEE Trans. Automat. Control – volume: 198 year: 2020 ident: bib31 article-title: Optimal robust trajectory tracking control of a X-rudder AUV with velocity sensor failures and uncertainties publication-title: Ocean Eng. – volume: 65 start-page: 2429 year: 2018 end-page: 2438 ident: bib34 article-title: Depth control of a bio-inspired robotic dolphin based on sliding-mode fuzzy control method publication-title: IEEE Trans. Ind. Electron. – start-page: 4237 year: 1997 end-page: 4242 ident: bib9 article-title: Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics publication-title: Proc. 36th IEEE Conf. Decis. Control – volume: 45 start-page: 918 year: 2009 end-page: 927 ident: bib24 article-title: Barrier lyapunov functions for the control of output-constrained nonlinear systems publication-title: Automatica – volume: 111 start-page: 267 year: 2016 end-page: 278 ident: bib5 article-title: Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances publication-title: Ocean Eng. – volume: 40 start-page: 987 year: 2015 end-page: 1015 ident: bib11 article-title: Real-time adaptive multi-robot exploration with application to underwater map construction publication-title: Aut. Robots – volume: 159 start-page: 372 year: 2018 end-page: 387 ident: bib17 article-title: Disturbance estimator based non-singular fast fuzzy terminal sliding mode control of an autonomous underwater vehicle publication-title: Ocean Eng. – volume: 61 start-page: 1983 year: 2014 end-page: 1992 ident: bib10 article-title: Sliding mode control for mismatched uncertain systems using an extended disturbance observer publication-title: IEEE Trans. Ind. Electron. – volume: 41 start-page: 67 year: 2017 end-page: 81 ident: bib22 article-title: Depth control for an over-actuated, hover-capable autonomous underwater vehicle with experimental verification publication-title: Mechatronics – volume: 16 start-page: 1335 year: 2016 ident: bib32 article-title: Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance publication-title: Sensors – volume: 220 year: 2021 ident: bib27 article-title: Robust depth control of a hybrid autonomous underwater vehicle with propeller torque's effect and model uncertainty publication-title: Ocean Eng. – volume: 105 start-page: 433 year: 2019 end-page: 442 ident: bib28 article-title: Dynamic surface control of trajectory tracking marine vehicles with actuator magnitude and rate limits publication-title: Automatica – volume: 26 start-page: 799 year: 2016 end-page: 815 ident: bib39 article-title: Robust attitude tracking control of spacecraft under control input magnitude and rate saturations publication-title: Int. J. Robust Nonlinear Control – volume: 174 start-page: 14 year: 2019 ident: 10.1016/j.oceaneng.2022.112842_bib30 article-title: Improved line-of-sight trajectory tracking control of under-actuated AUV subjects to ocean currents and input saturation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.01.025 – volume: 47 start-page: 452 issue: 3 year: 2011 ident: 10.1016/j.oceaneng.2022.112842_bib4 article-title: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints publication-title: Automatica doi: 10.1016/j.automatica.2011.01.025 – volume: 41 start-page: 67 issue: 3 year: 2017 ident: 10.1016/j.oceaneng.2022.112842_bib22 article-title: Depth control for an over-actuated, hover-capable autonomous underwater vehicle with experimental verification publication-title: Mechatronics doi: 10.1016/j.mechatronics.2016.11.006 – volume: 65 start-page: 2429 issue: 3 year: 2018 ident: 10.1016/j.oceaneng.2022.112842_bib34 article-title: Depth control of a bio-inspired robotic dolphin based on sliding-mode fuzzy control method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2745451 – volume: 45 start-page: 918 issue: 4 year: 2009 ident: 10.1016/j.oceaneng.2022.112842_bib24 article-title: Barrier lyapunov functions for the control of output-constrained nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2008.11.017 – volume: 105 start-page: 433 year: 2019 ident: 10.1016/j.oceaneng.2022.112842_bib28 article-title: Dynamic surface control of trajectory tracking marine vehicles with actuator magnitude and rate limits publication-title: Automatica doi: 10.1016/j.automatica.2019.04.018 – volume: 100 start-page: 123 year: 2019 ident: 10.1016/j.oceaneng.2022.112842_bib3 article-title: Observer based path following for underactuated marine vessels in the presence of ocean currents: a global approach publication-title: Automatica doi: 10.1016/j.automatica.2018.11.008 – volume: 3 start-page: 246 issue: 2 year: 1991 ident: 10.1016/j.oceaneng.2022.112842_bib16 article-title: Universal approximation using radial-basis-function networks publication-title: Neural Comput. doi: 10.1162/neco.1991.3.2.246 – volume: 45 start-page: 1893 issue: 10 year: 2000 ident: 10.1016/j.oceaneng.2022.112842_bib21 article-title: Dynamic surface control for a class of nonlinear systems publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2000.880994 – volume: 50 start-page: 1887 issue: 5 year: 2020 ident: 10.1016/j.oceaneng.2022.112842_bib35 article-title: Guidance-error-based robust fuzzy adaptive control for bottom following of a flight-style AUV with saturated actuator dynamics publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2890582 – start-page: 3239 year: 2012 ident: 10.1016/j.oceaneng.2022.112842_bib23 article-title: Control of state-constrained nonlinear systems using integral barrier lyapunov functionals publication-title: Proc. 51st IEEE Conf. Decis. Control – year: 2022 ident: 10.1016/j.oceaneng.2022.112842_bib25 article-title: Pitch control for autonomous underwater vehicle with model uncertainties and input constraints publication-title: The 6th Vietnam Int. Conf. Exhibit. Control Automat. (VCCA-2021) – volume: 201 year: 2020 ident: 10.1016/j.oceaneng.2022.112842_bib29 article-title: Filter-backstepping based neural adaptive formation control of leader-following multiple AUVs in three dimensional space publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107150 – volume: 85 start-page: 289 issue: 31 year: 2004 ident: 10.1016/j.oceaneng.2022.112842_bib20 article-title: Seabed AUV offers new platform for high-resolution imaging publication-title: Eos Trans. Am. Geophys Union doi: 10.1029/2004EO310002 – volume: 22 start-page: 2564 issue: 6 year: 2017 ident: 10.1016/j.oceaneng.2022.112842_bib38 article-title: Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances publication-title: IEEE ASME Trans. Mechatron. doi: 10.1109/TMECH.2017.2756110 – volume: 218 year: 2020 ident: 10.1016/j.oceaneng.2022.112842_bib37 article-title: Neural network-based adaptive trajectory tracking control of underactuated AUVs with unknown asymmetrical actuator saturation and unknown dynamics publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108193 – volume: 18 start-page: 1837 issue: 6 year: 2018 ident: 10.1016/j.oceaneng.2022.112842_bib7 article-title: Modular AUV system with integrated real-time water quality analysis publication-title: Sensors doi: 10.3390/s18061837 – volume: 66 start-page: 8724 issue: 11 year: 2019 ident: 10.1016/j.oceaneng.2022.112842_bib18 article-title: Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neuron-dynamic optimization publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2885726 – volume: 220 year: 2021 ident: 10.1016/j.oceaneng.2022.112842_bib27 article-title: Robust depth control of a hybrid autonomous underwater vehicle with propeller torque's effect and model uncertainty publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108257 – volume: 36 start-page: 92 issue: 1 year: 2009 ident: 10.1016/j.oceaneng.2022.112842_bib12 article-title: Robust diving control of an AUV publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2008.10.006 – volume: 182 start-page: 412 year: 2019 ident: 10.1016/j.oceaneng.2022.112842_bib1 article-title: Switching LOS guidance with speed allocation and vertical course control for path-following of unmanned underwater vehicles under ocean current disturbances publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.021 – volume: 32 start-page: 2509 issue: 3 year: 2017 ident: 10.1016/j.oceaneng.2022.112842_bib14 article-title: Robust proportional derivative (PD)-like fuzzy control designs for diving and steering planes control of an autonomous underwater vehicle publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-16501 – volume: 16 start-page: 1335 issue: 8 year: 2016 ident: 10.1016/j.oceaneng.2022.112842_bib32 article-title: Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance publication-title: Sensors doi: 10.3390/s16081335 – volume: 73 start-page: 207 year: 2016 ident: 10.1016/j.oceaneng.2022.112842_bib6 article-title: Robust dynamic positioning of ships with disturbances under input saturation publication-title: Automatica doi: 10.1016/j.automatica.2016.06.020 – volume: 99 start-page: 2201 issue: 3 year: 2020 ident: 10.1016/j.oceaneng.2022.112842_bib40 article-title: Finite-time spacecraft attitude control under input magnitude and rate saturation publication-title: Nonlinear Dynam. doi: 10.1007/s11071-019-05388-6 – volume: 165 start-page: 399 year: 2018 ident: 10.1016/j.oceaneng.2022.112842_bib19 article-title: Robust H2 optimal depth control of an autonomous underwater vehicle with output disturbances and time delay publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.07.019 – volume: 20 start-page: 572 year: 2018 ident: 10.1016/j.oceaneng.2022.112842_bib33 article-title: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-017-0401-3 – volume: 40 start-page: 987 year: 2015 ident: 10.1016/j.oceaneng.2022.112842_bib11 article-title: Real-time adaptive multi-robot exploration with application to underwater map construction publication-title: Aut. Robots doi: 10.1007/s10514-015-9510-8 – volume: 197 year: 2020 ident: 10.1016/j.oceaneng.2022.112842_bib13 article-title: Nonlinear diving stability and control for an AUV via singular perturbation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.106824 – year: 2011 ident: 10.1016/j.oceaneng.2022.112842_bib8 – volume: 33 start-page: 69 issue: 2 year: 2008 ident: 10.1016/j.oceaneng.2022.112842_bib15 article-title: H2 And H∞ designs for diving and course control of an autonomous underwater vehicle in presence of waves publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2008.918689 – volume: 198 year: 2020 ident: 10.1016/j.oceaneng.2022.112842_bib31 article-title: Optimal robust trajectory tracking control of a X-rudder AUV with velocity sensor failures and uncertainties publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.106949 – volume: 159 start-page: 372 year: 2018 ident: 10.1016/j.oceaneng.2022.112842_bib17 article-title: Disturbance estimator based non-singular fast fuzzy terminal sliding mode control of an autonomous underwater vehicle publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.03.082 – volume: 111 start-page: 267 year: 2016 ident: 10.1016/j.oceaneng.2022.112842_bib5 article-title: Global robust adaptive path-tracking control of underactuated ships under stochastic disturbances publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.10.038 – volume: 228 year: 2021 ident: 10.1016/j.oceaneng.2022.112842_bib26 article-title: A new approach for three-dimensional trajectory tracking control of under-actuated AUVs with model uncertainties publication-title: Ocean Eng. – start-page: 3536 year: 2011 ident: 10.1016/j.oceaneng.2022.112842_bib36 article-title: Adaptive controller design for uncertain nonlinear systems with input magnitude and rate limitations publication-title: Proc.2011 Am. Control Conf. doi: 10.1109/ACC.2011.5990865 – volume: 54 start-page: 183 year: 2009 ident: 10.1016/j.oceaneng.2022.112842_bib2 article-title: Comparison of RBF and SHL neural network based adaptive control publication-title: J. Intell. Rob. Syst. doi: 10.1007/s10846-008-9262-1 – start-page: 4237 year: 1997 ident: 10.1016/j.oceaneng.2022.112842_bib9 article-title: Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics publication-title: Proc. 36th IEEE Conf. Decis. Control doi: 10.1109/CDC.1997.649499 – volume: 61 start-page: 1983 issue: 4 year: 2014 ident: 10.1016/j.oceaneng.2022.112842_bib10 article-title: Sliding mode control for mismatched uncertain systems using an extended disturbance observer publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2271597 – volume: 26 start-page: 799 issue: 4 year: 2016 ident: 10.1016/j.oceaneng.2022.112842_bib39 article-title: Robust attitude tracking control of spacecraft under control input magnitude and rate saturations publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.3338 |
SSID | ssj0006603 |
Score | 2.4019787 |
Snippet | This paper presents a novel approach for depth precision control of under-actuated autonomous underwater vehicles (AUV) subject to model uncertainties, ocean... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112842 |
SubjectTerms | Adaptive neural control technique Autonomous underwater vehicles (AUV) Depth precision control Extended disturbance observer (EDO) Input constraint Modified integral barrier Lyapunov function (mIBLF) |
Title | Advanced neural control technique for autonomous underwater vehicles using modified integral barrier Lyapunov function |
URI | https://dx.doi.org/10.1016/j.oceaneng.2022.112842 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IXtTEKGrEH6QHr4Nt3dbuSIgEf-FFEm5Lt7YIwUEIYLz4t_sedIiJCQePW_aaZa9739fte18JuQ2V0To1oSMMTx0oePhKoRehy7TSKSqj8NPAczfq9IKHftgvkVbRC4OySlv71zV9Va3tmYZ9mo3pcIg9vjCyC_zYR5vyED1Bg4DjLK9__cg8oshlhcwDr97qEh7VASJkrvMBrBN9H7tpROD_DVBboNM-JkeWLdLm-oZOSEnnFXKw5SFYIYcvOLo1nj4ly6b9qU_RqRJirRadbsxaKdBUKhdz7GaAZT_FLrLZB1DOGV3qt5VKjqIafkDfJ2pogKJS6ykxpqmc4Q539OlTThf5ZEkRFjG1Z6TXvnttdRy7t4KTASjPHZRLhyozrggypSQD3hEbw7j2pR_JTHuuFIIZj4tMeiaKtQhSLgNuAPKyQCh2Tsr5JNcXhLoqlL4rOddATSQkWAnNMhZ7mmvhsbRKwuKBJpk1Hsf9L8ZJoTAbJUUiEkxEsk5ElTQ2cdO19cbOiLjIV_JrEiWADztiL_8Re0X28QhVLl54Tcrz2ULfAFeZp7XVZKyRveb9Y6f7Dajp7VQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEJ0gHvxIjKLGb_fgtdJ2u-1yJEQDCnjRhFuz7e4qRgshgPHfOyNbgomJB69tZtPsbOe9bd-8BbgS2hqTWeFJm2QeFjx6pciL0OdGm4yUUfRpoNeP20_R3UAMKtAqe2FIVulq_6Kmf1drd6XuZrM-Hg6pxxdH9pEfh2RTLqI1WCd3KlGF9Wbnvt1fFuQ49nmp9KCAlUbh12tECVWY4hm3imFIDTUyCn_HqBXcud2FHUcYWXPxTHtQMUUNtlZsBGuw_UCjO-_pfZg33X99RmaVGOvk6Gzp18qQqTI1m1JDA-78GTWSTT6QdU7Y3Lx8C-UYCeKf2ftIDy2yVOZsJd5YpiZ0yB3rfqrxrBjNGSEjZfcAnm5vHlttzx2v4OWIy1OPFNNC59aXUa614kg9GtbyxIQqjFVuAl9JyW2QyFwFNm4YGWWJihKLqJdHUvNDqBajwhwB87VQoa-SxCA7UZhjLQ3PeSMwiZEBz45BlBOa5s57nI7AeEtLkdlrWiYipUSki0QcQ30ZN164b_wZ0Sjzlf5YRylCxB-xJ_-IvYSN9mOvm3Y7_ftT2KQ7JHoJxBlUp5OZOUfqMs0u3NL8AsPt8AU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+neural+control+technique+for+autonomous+underwater+vehicles+using+modified+integral+barrier+Lyapunov+function&rft.jtitle=Ocean+engineering&rft.au=Thanh%2C+Pham+Nguyen+Nhut&rft.au=Anh%2C+Ho+Pham+Huy&rft.date=2022-12-15&rft.issn=0029-8018&rft.volume=266&rft.spage=112842&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.112842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2022_112842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |