Defect engineering and carrier dynamics in gallium-doped zinc oxide nanowires for light-emitting applications
Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence (CL) and transient photoluminescence (PL) spectroscopy, complemented by density functional theory (DFT). The results reveal that high doping lev...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 13; no. 11; pp. 5814 - 5822 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
13.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence (CL) and transient photoluminescence (PL) spectroscopy, complemented by density functional theory (DFT). The results reveal that high doping levels of Ga (>3 atom%) in ZnO nanowires grown in an oxygen-rich environment lead to the formation of Ga
Zn
-V
Zn
intraband states, which act as optically active luminescence centers. The emission lines of Ga-induced donor-bound excitons and acceptor-bound complexes confirm the formation of Ga
Zn
and Ga
Zn
-V
Zn
defects in Ga-doped ZnO nanowires. The presence of these bound complexes significantly reduces the bandgap and broadens the near-band edge (NBE) emission of ZnO. The formation of Ga
Zn
-V
Zn
defects significantly suppresses the characteristic V
Zn
-related green luminescence (GL) and introduces a new recombination channel of orange luminescence (OL). Temperature-dependent CL and time-resolved PL analyses reveal that this OL band, attributed to the Ga
Zn
-V
Zn
center laying at 0.62 eV over the valence band, exhibits a slow decay time constant of 5.4 μs. The simulation of the spectral line shape of this OL band using the Franck-Condon model reveals the thermodynamic transition level of 630 meV above the valence band and an electron-phonon coupling strength of 6.4 for this OL center. Ga-doped ZnO nanowire arrays are used to fabricate nanowire-based light-emitting diodes (LEDs), which show a low threshold voltage of 4.1 volts and intense orange electroluminescence. These Ga-doped ZnO nanowires grown in an oxygen-rich environment can be used as efficient orange-coloured light emitters in photonic and optoelectronic devices.
The high doping levels of Ga in ZnO nanowires grown in an oxygen-rich environment quench the V
Zn
-related green luminescence and lead to the formation of Ga
Zn
V
Zn
intraband states responsible for intense orange luminescence. |
---|---|
AbstractList | Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence (CL) and transient photoluminescence (PL) spectroscopy, complemented by density functional theory (DFT). The results reveal that high doping levels of Ga (>3 atom%) in ZnO nanowires grown in an oxygen-rich environment lead to the formation of Ga
Zn
-V
Zn
intraband states, which act as optically active luminescence centers. The emission lines of Ga-induced donor-bound excitons and acceptor-bound complexes confirm the formation of Ga
Zn
and Ga
Zn
-V
Zn
defects in Ga-doped ZnO nanowires. The presence of these bound complexes significantly reduces the bandgap and broadens the near-band edge (NBE) emission of ZnO. The formation of Ga
Zn
-V
Zn
defects significantly suppresses the characteristic V
Zn
-related green luminescence (GL) and introduces a new recombination channel of orange luminescence (OL). Temperature-dependent CL and time-resolved PL analyses reveal that this OL band, attributed to the Ga
Zn
-V
Zn
center laying at 0.62 eV over the valence band, exhibits a slow decay time constant of 5.4 μs. The simulation of the spectral line shape of this OL band using the Franck-Condon model reveals the thermodynamic transition level of 630 meV above the valence band and an electron-phonon coupling strength of 6.4 for this OL center. Ga-doped ZnO nanowire arrays are used to fabricate nanowire-based light-emitting diodes (LEDs), which show a low threshold voltage of 4.1 volts and intense orange electroluminescence. These Ga-doped ZnO nanowires grown in an oxygen-rich environment can be used as efficient orange-coloured light emitters in photonic and optoelectronic devices.
The high doping levels of Ga in ZnO nanowires grown in an oxygen-rich environment quench the V
Zn
-related green luminescence and lead to the formation of Ga
Zn
V
Zn
intraband states responsible for intense orange luminescence. Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence (CL) and transient photoluminescence (PL) spectroscopy, complemented by density functional theory (DFT). The results reveal that high doping levels of Ga (>3 atom%) in ZnO nanowires grown in an oxygen-rich environment lead to the formation of GaZn–VZn intraband states, which act as optically active luminescence centers. The emission lines of Ga-induced donor-bound excitons and acceptor-bound complexes confirm the formation of GaZn and GaZn–VZn defects in Ga-doped ZnO nanowires. The presence of these bound complexes significantly reduces the bandgap and broadens the near-band edge (NBE) emission of ZnO. The formation of GaZn–VZn defects significantly suppresses the characteristic VZn-related green luminescence (GL) and introduces a new recombination channel of orange luminescence (OL). Temperature-dependent CL and time-resolved PL analyses reveal that this OL band, attributed to the GaZn–VZn center laying at 0.62 eV over the valence band, exhibits a slow decay time constant of 5.4 μs. The simulation of the spectral line shape of this OL band using the Franck–Condon model reveals the thermodynamic transition level of 630 meV above the valence band and an electron–phonon coupling strength of 6.4 for this OL center. Ga-doped ZnO nanowire arrays are used to fabricate nanowire-based light-emitting diodes (LEDs), which show a low threshold voltage of 4.1 volts and intense orange electroluminescence. These Ga-doped ZnO nanowires grown in an oxygen-rich environment can be used as efficient orange-coloured light emitters in photonic and optoelectronic devices. Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence (CL) and transient photoluminescence (PL) spectroscopy, complemented by density functional theory (DFT). The results reveal that high doping levels of Ga (>3 atom%) in ZnO nanowires grown in an oxygen-rich environment lead to the formation of Ga Zn –V Zn intraband states, which act as optically active luminescence centers. The emission lines of Ga-induced donor-bound excitons and acceptor-bound complexes confirm the formation of Ga Zn and Ga Zn –V Zn defects in Ga-doped ZnO nanowires. The presence of these bound complexes significantly reduces the bandgap and broadens the near-band edge (NBE) emission of ZnO. The formation of Ga Zn –V Zn defects significantly suppresses the characteristic V Zn -related green luminescence (GL) and introduces a new recombination channel of orange luminescence (OL). Temperature-dependent CL and time-resolved PL analyses reveal that this OL band, attributed to the Ga Zn –V Zn center laying at 0.62 eV over the valence band, exhibits a slow decay time constant of 5.4 μs. The simulation of the spectral line shape of this OL band using the Franck–Condon model reveals the thermodynamic transition level of 630 meV above the valence band and an electron–phonon coupling strength of 6.4 for this OL center. Ga-doped ZnO nanowire arrays are used to fabricate nanowire-based light-emitting diodes (LEDs), which show a low threshold voltage of 4.1 volts and intense orange electroluminescence. These Ga-doped ZnO nanowires grown in an oxygen-rich environment can be used as efficient orange-coloured light emitters in photonic and optoelectronic devices. |
Author | Ton-That, Cuong Rabiur Rahaman, Md Azizar Rahman, M Pramanik, Tanmoy |
AuthorAffiliation | University of Technology Sydney Bangladesh University of Engineering and Technology School of Mathematical and Physical Sciences Department of Materials and Metallurgical Engineering Department of Physics |
AuthorAffiliation_xml | – name: Bangladesh University of Engineering and Technology – name: Department of Physics – name: Department of Materials and Metallurgical Engineering – name: School of Mathematical and Physical Sciences – name: University of Technology Sydney |
Author_xml | – sequence: 1 givenname: M surname: Azizar Rahman fullname: Azizar Rahman, M – sequence: 2 givenname: Md surname: Rabiur Rahaman fullname: Rabiur Rahaman, Md – sequence: 3 givenname: Tanmoy surname: Pramanik fullname: Pramanik, Tanmoy – sequence: 4 givenname: Cuong surname: Ton-That fullname: Ton-That, Cuong |
BookMark | eNpFkE1LAzEQhoNUsNZevAsBb8JqvjbZHkvrFxS81PMSs7Nrym6yJilaf71rK3Uu7xwe3mGeczRy3gFCl5TcUsJnd5VIhggiCn2CxozkJFM5F6PjzuQZmsa4IcMUVBZyNkbdEmowCYNrrAMI1jVYuwobHYKFgKud0501EVuHG922dttlle-hwt_WGey_bAXYaec_bYCIax9wa5v3lEFnU9q39X1rjU7Wu3iBTmvdRpj-5QS9PtyvF0_Z6uXxeTFfZYYJljIpgHEJSmgqoKg15LI2wKh6YwQkUXmujJJFXoAshm9zyTUYxhmAoEZXNZ-g60NvH_zHFmIqN34b3HCy5FQpQgnls4G6OVAm-BgD1GUfbKfDrqSk_DVaLsV6sTc6H-CrAxyiOXL_xvkPkgd1oA |
Cites_doi | 10.1016/j.optmat.2012.10.022 10.1103/PhysRevB.84.035313 10.1021/acs.jpcc.5b10689 10.1021/jp506953h 10.1103/PhysRevB.84.115202 10.1016/0031-8914(67)90062-6 10.1103/PhysRevB.94.035201 10.1103/PhysRevLett.99.127201 10.1039/C4TC02924K 10.1021/am401418b 10.1021/jp111167u 10.1016/S1005-0302(12)60064-4 10.1063/1.3080204 10.1021/jp8023099 10.1016/j.jallcom.2014.07.098 10.1021/nl060204z 10.1021/acsanm.3c02625 10.1016/j.optmat.2010.12.008 10.1063/1.4948245 10.1103/PhysRevB.84.075201 10.1017/S1431927603030204 10.1016/j.apsadv.2022.100334 10.1063/1.1627472 10.1016/j.materresbull.2015.06.003 10.1021/jp993327z 10.1063/1.2748333 10.1016/j.solidstatesciences.2008.10.016 10.1063/1.1566482 10.1038/s41598-019-40029-3 10.1063/1.1356432 10.1103/PhysRevLett.86.5723 10.1016/B978-008044722-3/50010-5 10.1002/pssb.200301962 10.1038/srep33983 10.1103/PhysRevB.72.085206 10.1016/S1005-0302(12)60164-9 10.1063/1.371242 10.1103/PhysRevB.80.155124 10.1016/j.jmst.2014.11.009 10.1063/1.363903 10.1063/1.2978374 10.1021/acsami.5b01496 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/d4tc04048a |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 5822 |
ExternalDocumentID | 10_1039_D4TC04048A d4tc04048a |
GroupedDBID | 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c242t-64e236e74a14e8fae56fce217b20e607557c76858e6848a563aec232ee41cadf3 |
ISSN | 2050-7526 |
IngestDate | Mon Jun 30 12:12:16 EDT 2025 Sun Jul 06 05:10:12 EDT 2025 Tue May 27 12:12:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c242t-64e236e74a14e8fae56fce217b20e607557c76858e6848a563aec232ee41cadf3 |
Notes | https://doi.org/10.1039/d4tc04048a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5433-4124 0000-0003-3276-1739 0009-0006-4188-2048 |
PQID | 3177010139 |
PQPubID | 2047521 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3177010139 crossref_primary_10_1039_D4TC04048A rsc_primary_d4tc04048a |
PublicationCentury | 2000 |
PublicationDate | 2025-03-13 |
PublicationDateYYYYMMDD | 2025-03-13 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Van Dijken (D4TC04048A/cit40/1) 2000; 104 Wang (D4TC04048A/cit14/1) 2006 Ravikumar (D4TC04048A/cit3/1) 2012; 28 Reshchikov (D4TC04048A/cit33/1) 2016; 94 Fang (D4TC04048A/cit34/1) 2008; 104 Reynolds (D4TC04048A/cit31/1) 2001; 89 Zhao (D4TC04048A/cit18/1) 2011; 33 Kodama (D4TC04048A/cit37/1) 2014; 118 Guo (D4TC04048A/cit38/1) 2003; 82 Ghosh (D4TC04048A/cit30/1) 2007; 90 Yan (D4TC04048A/cit4/1) 2001; 86 Demchenko (D4TC04048A/cit13/1) 2011; 84 Pan (D4TC04048A/cit1/1) 2007; 99 Ma (D4TC04048A/cit16/1) 2011; 115 Galdámez-Martínez (D4TC04048A/cit42/1) 2022; 12 Lee (D4TC04048A/cit12/1) 2014; 616 Pauporté (D4TC04048A/cit9/1) 2015; 7 Shi (D4TC04048A/cit29/1) 2016; 120 Foreman (D4TC04048A/cit39/1) 2006; 6 Hong (D4TC04048A/cit41/1) 2003; 83 Chen (D4TC04048A/cit10/1) 2013; 5 Wang (D4TC04048A/cit21/1) 2019; 9 Look (D4TC04048A/cit5/1) 2011; 84 Phillips (D4TC04048A/cit43/1) 2003; 9 Wang (D4TC04048A/cit6/1) 2015; 31 Demchenko (D4TC04048A/cit19/1) 2011; 84 Tuomisto (D4TC04048A/cit45/1) 2005; 72 Rahman (D4TC04048A/cit7/1) 2012; 28 Zhang (D4TC04048A/cit22/1) 2009; 11 Meyer (D4TC04048A/cit23/1) 2004; 241 Wagner (D4TC04048A/cit24/1) 2011; 84 Varshni (D4TC04048A/cit27/1) 1967; 34 Alkauskas (D4TC04048A/cit32/1) 2016; 119 Wróbel (D4TC04048A/cit20/1) 2009; 80 Yang (D4TC04048A/cit8/1) 2009; 94 He (D4TC04048A/cit35/1) 2008; 112 Yang (D4TC04048A/cit25/1) 2009; 94 Liu (D4TC04048A/cit2/1) 2015; 3 Wu (D4TC04048A/cit17/1) 2013; 35 Krustok (D4TC04048A/cit26/1) 1997; 81 Chebil (D4TC04048A/cit36/1) 2015; 70 Segall (D4TC04048A/cit15/1) 2002; 14 Leroux (D4TC04048A/cit44/1) 1999; 86 Rahman (D4TC04048A/cit11/1) 2023; 6 Cao (D4TC04048A/cit28/1) 2016; 6 |
References_xml | – issn: 2006 end-page: p 339-370 publication-title: Zinc oxide bulk, thin films and nanostructures doi: Wang – volume: 35 start-page: 509 year: 2013 ident: D4TC04048A/cit17/1 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2012.10.022 – volume: 84 start-page: 035313 year: 2011 ident: D4TC04048A/cit24/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.035313 – volume: 120 start-page: 4504 year: 2016 ident: D4TC04048A/cit29/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10689 – volume: 118 start-page: 23977 year: 2014 ident: D4TC04048A/cit37/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp506953h – volume: 84 start-page: 115202 year: 2011 ident: D4TC04048A/cit5/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.115202 – volume: 34 start-page: 149 year: 1967 ident: D4TC04048A/cit27/1 publication-title: Physica doi: 10.1016/0031-8914(67)90062-6 – volume: 94 start-page: 035201 year: 2016 ident: D4TC04048A/cit33/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.035201 – volume: 99 start-page: 127201 year: 2007 ident: D4TC04048A/cit1/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.127201 – volume: 3 start-page: 2557 year: 2015 ident: D4TC04048A/cit2/1 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC02924K – volume: 5 start-page: 6354 year: 2013 ident: D4TC04048A/cit10/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401418b – volume: 115 start-page: 4680 year: 2011 ident: D4TC04048A/cit16/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp111167u – volume: 28 start-page: 329 year: 2012 ident: D4TC04048A/cit7/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/S1005-0302(12)60064-4 – volume: 94 start-page: 072101 year: 2009 ident: D4TC04048A/cit25/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3080204 – volume: 112 start-page: 14262 year: 2008 ident: D4TC04048A/cit35/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp8023099 – volume: 616 start-page: 122 year: 2014 ident: D4TC04048A/cit12/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.07.098 – volume: 14 start-page: 2717 year: 2002 ident: D4TC04048A/cit15/1 publication-title: J. Phys.: Condens. Matter – volume: 6 start-page: 1126 year: 2006 ident: D4TC04048A/cit39/1 publication-title: Nano Lett. doi: 10.1021/nl060204z – volume: 6 start-page: 15757 year: 2023 ident: D4TC04048A/cit11/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c02625 – volume: 33 start-page: 768 year: 2011 ident: D4TC04048A/cit18/1 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2010.12.008 – volume: 119 start-page: 181101 year: 2016 ident: D4TC04048A/cit32/1 publication-title: J. Appl. Phys. doi: 10.1063/1.4948245 – volume: 84 start-page: 075201 year: 2011 ident: D4TC04048A/cit13/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.075201 – volume: 9 start-page: 144 year: 2003 ident: D4TC04048A/cit43/1 publication-title: Microsc. Microanal. doi: 10.1017/S1431927603030204 – volume: 12 start-page: 100334 year: 2022 ident: D4TC04048A/cit42/1 publication-title: Appl. Surf. Sci. Adv. doi: 10.1016/j.apsadv.2022.100334 – volume: 83 start-page: 4157 year: 2003 ident: D4TC04048A/cit41/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1627472 – volume: 70 start-page: 719 year: 2015 ident: D4TC04048A/cit36/1 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2015.06.003 – volume: 104 start-page: 1715 year: 2000 ident: D4TC04048A/cit40/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp993327z – volume: 90 start-page: 243106 year: 2007 ident: D4TC04048A/cit30/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2748333 – volume: 11 start-page: 865 year: 2009 ident: D4TC04048A/cit22/1 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2008.10.016 – volume: 82 start-page: 2290 year: 2003 ident: D4TC04048A/cit38/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1566482 – volume: 9 start-page: 3534 year: 2019 ident: D4TC04048A/cit21/1 publication-title: Sci. Rep. doi: 10.1038/s41598-019-40029-3 – volume: 89 start-page: 6189 year: 2001 ident: D4TC04048A/cit31/1 publication-title: J. Appl. Phys. doi: 10.1063/1.1356432 – volume: 86 start-page: 5723 year: 2001 ident: D4TC04048A/cit4/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.5723 – start-page: 339 volume-title: Zinc oxide bulk, thin films and nanostructures year: 2006 ident: D4TC04048A/cit14/1 doi: 10.1016/B978-008044722-3/50010-5 – volume: 94 start-page: 072101 year: 2009 ident: D4TC04048A/cit8/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3080204 – volume: 84 start-page: 075201 year: 2011 ident: D4TC04048A/cit19/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.075201 – volume: 241 start-page: 231 year: 2004 ident: D4TC04048A/cit23/1 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.200301962 – volume: 6 start-page: 33983 year: 2016 ident: D4TC04048A/cit28/1 publication-title: Sci. Rep. doi: 10.1038/srep33983 – volume: 72 start-page: 085206 year: 2005 ident: D4TC04048A/cit45/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.72.085206 – volume: 28 start-page: 999 year: 2012 ident: D4TC04048A/cit3/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/S1005-0302(12)60164-9 – volume: 86 start-page: 3721 year: 1999 ident: D4TC04048A/cit44/1 publication-title: J. Appl. Phys. doi: 10.1063/1.371242 – volume: 80 start-page: 155124 year: 2009 ident: D4TC04048A/cit20/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.80.155124 – volume: 31 start-page: 175 year: 2015 ident: D4TC04048A/cit6/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2014.11.009 – volume: 81 start-page: 1442 year: 1997 ident: D4TC04048A/cit26/1 publication-title: J. Appl. Phys. doi: 10.1063/1.363903 – volume: 104 start-page: 063707 year: 2008 ident: D4TC04048A/cit34/1 publication-title: J. Appl. Phys. doi: 10.1063/1.2978374 – volume: 7 start-page: 11871 year: 2015 ident: D4TC04048A/cit9/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01496 |
SSID | ssj0000816869 |
Score | 2.2923465 |
Snippet | Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5814 |
SubjectTerms | Cathodoluminescence Defects Density functional theory Electrons Emission Emitters Excitons Gallium Light emitting diodes Line shape Line spectra Luminescence Nanowires Optical activity Optoelectronic devices Oxygen Photoluminescence Temperature dependence Threshold voltage Time constant Valence band Wurtzite Zinc oxide Zinc oxides |
Title | Defect engineering and carrier dynamics in gallium-doped zinc oxide nanowires for light-emitting applications |
URI | https://www.proquest.com/docview/3177010139 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVpymB7GFu3smzdEGxvxl1iSbbzGNKUbqTdGA70zUiyTA2LHVIHRn7rfsyuJdlW2AfbXkywsLF1T-Qj6dxzEXoXiclEBpL5JKbUp1RIXygq_BzIggCICaWLwVzfhFcr-vGW3Q4G3x3V0q4W53L_y7yS_4kqnIO4Nlmy_xDZ7qZwAn5DfOEIEYbjX8X4QmnrYdV7Cpo0Nb7VdegyU21eK16bDfZit_azagMUc1-U0qu-FZnySl5WjV-x9mXwvmpfEbUujBza3d7-DY0Fxmte1ZNt7bhzb27SgNqW5s7Vpu6MCZzaO5nSQ1W_3XRnl2Svvdm-2POt08Lbpsz7wkWx69o-b5umwoi-ebmuun2CpCr95I4bbcuusp9pu8oRsEbmZZJUrTyqWUtphaxaqGJfqR8vgzEb-xELrLO2e86ul7YDPnGBPXGGbxabjFZLBVhscqZ_-syMSePSmtFawhhIY-dj2goIbj6ll6vlMk0Wt8kROg5gEhMM0fFskXxYdmuAuuiJrrrYPXvroEum7_vbH3KmfiJ0tG2r1Gg2lDxBj2388cxg8ikaqPIEPXLMLU_QAy0ulvfP0NrgFDs4xQADbHGKW5ziosQHOMUNTrHGKe5wigFN-BCn2MXpc7S6XCTzK9-W-fAl8MPaD6kKSKgiyidUxTlXLMylgqmyCMYqBErLIhk1ZRJUGENnsJBwJWEioBSdSJ7l5BQNy6pULxA8N48IEOBYUUkpFzwkKhehnGaMTEUuR-ht25Hpxri5pFqFQabpBU3murtnI3TW9nFq_-33KfDsqPFjJNMROoV-767vw_Tyz9e9Qg97ZJ-hYb3dqdfAaGvxxgLjB21OqmI |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+engineering+and+carrier+dynamics+in+gallium-doped+zinc+oxide+nanowires+for+light-emitting+applications&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Rahman%2C+M+Azizar&rft.au=Rahaman%2C+Md+Rabiur&rft.au=Pramanik%2C+Tanmoy&rft.au=Ton-That%2C+Cuong&rft.date=2025-03-13&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=13&rft.issue=11&rft.spage=5814&rft.epage=5822&rft_id=info:doi/10.1039%2Fd4tc04048a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |