Defect engineering and carrier dynamics in gallium-doped zinc oxide nanowires for light-emitting applications

Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence (CL) and transient photoluminescence (PL) spectroscopy, complemented by density functional theory (DFT). The results reveal that high doping lev...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 13; no. 11; pp. 5814 - 5822
Main Authors Azizar Rahman, M, Rabiur Rahaman, Md, Pramanik, Tanmoy, Ton-That, Cuong
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 13.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence (CL) and transient photoluminescence (PL) spectroscopy, complemented by density functional theory (DFT). The results reveal that high doping levels of Ga (>3 atom%) in ZnO nanowires grown in an oxygen-rich environment lead to the formation of Ga Zn -V Zn intraband states, which act as optically active luminescence centers. The emission lines of Ga-induced donor-bound excitons and acceptor-bound complexes confirm the formation of Ga Zn and Ga Zn -V Zn defects in Ga-doped ZnO nanowires. The presence of these bound complexes significantly reduces the bandgap and broadens the near-band edge (NBE) emission of ZnO. The formation of Ga Zn -V Zn defects significantly suppresses the characteristic V Zn -related green luminescence (GL) and introduces a new recombination channel of orange luminescence (OL). Temperature-dependent CL and time-resolved PL analyses reveal that this OL band, attributed to the Ga Zn -V Zn center laying at 0.62 eV over the valence band, exhibits a slow decay time constant of 5.4 μs. The simulation of the spectral line shape of this OL band using the Franck-Condon model reveals the thermodynamic transition level of 630 meV above the valence band and an electron-phonon coupling strength of 6.4 for this OL center. Ga-doped ZnO nanowire arrays are used to fabricate nanowire-based light-emitting diodes (LEDs), which show a low threshold voltage of 4.1 volts and intense orange electroluminescence. These Ga-doped ZnO nanowires grown in an oxygen-rich environment can be used as efficient orange-coloured light emitters in photonic and optoelectronic devices. The high doping levels of Ga in ZnO nanowires grown in an oxygen-rich environment quench the V Zn -related green luminescence and lead to the formation of Ga Zn V Zn intraband states responsible for intense orange luminescence.
AbstractList Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence (CL) and transient photoluminescence (PL) spectroscopy, complemented by density functional theory (DFT). The results reveal that high doping levels of Ga (>3 atom%) in ZnO nanowires grown in an oxygen-rich environment lead to the formation of Ga Zn -V Zn intraband states, which act as optically active luminescence centers. The emission lines of Ga-induced donor-bound excitons and acceptor-bound complexes confirm the formation of Ga Zn and Ga Zn -V Zn defects in Ga-doped ZnO nanowires. The presence of these bound complexes significantly reduces the bandgap and broadens the near-band edge (NBE) emission of ZnO. The formation of Ga Zn -V Zn defects significantly suppresses the characteristic V Zn -related green luminescence (GL) and introduces a new recombination channel of orange luminescence (OL). Temperature-dependent CL and time-resolved PL analyses reveal that this OL band, attributed to the Ga Zn -V Zn center laying at 0.62 eV over the valence band, exhibits a slow decay time constant of 5.4 μs. The simulation of the spectral line shape of this OL band using the Franck-Condon model reveals the thermodynamic transition level of 630 meV above the valence band and an electron-phonon coupling strength of 6.4 for this OL center. Ga-doped ZnO nanowire arrays are used to fabricate nanowire-based light-emitting diodes (LEDs), which show a low threshold voltage of 4.1 volts and intense orange electroluminescence. These Ga-doped ZnO nanowires grown in an oxygen-rich environment can be used as efficient orange-coloured light emitters in photonic and optoelectronic devices. The high doping levels of Ga in ZnO nanowires grown in an oxygen-rich environment quench the V Zn -related green luminescence and lead to the formation of Ga Zn V Zn intraband states responsible for intense orange luminescence.
Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence (CL) and transient photoluminescence (PL) spectroscopy, complemented by density functional theory (DFT). The results reveal that high doping levels of Ga (>3 atom%) in ZnO nanowires grown in an oxygen-rich environment lead to the formation of GaZn–VZn intraband states, which act as optically active luminescence centers. The emission lines of Ga-induced donor-bound excitons and acceptor-bound complexes confirm the formation of GaZn and GaZn–VZn defects in Ga-doped ZnO nanowires. The presence of these bound complexes significantly reduces the bandgap and broadens the near-band edge (NBE) emission of ZnO. The formation of GaZn–VZn defects significantly suppresses the characteristic VZn-related green luminescence (GL) and introduces a new recombination channel of orange luminescence (OL). Temperature-dependent CL and time-resolved PL analyses reveal that this OL band, attributed to the GaZn–VZn center laying at 0.62 eV over the valence band, exhibits a slow decay time constant of 5.4 μs. The simulation of the spectral line shape of this OL band using the Franck–Condon model reveals the thermodynamic transition level of 630 meV above the valence band and an electron–phonon coupling strength of 6.4 for this OL center. Ga-doped ZnO nanowire arrays are used to fabricate nanowire-based light-emitting diodes (LEDs), which show a low threshold voltage of 4.1 volts and intense orange electroluminescence. These Ga-doped ZnO nanowires grown in an oxygen-rich environment can be used as efficient orange-coloured light emitters in photonic and optoelectronic devices.
Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence (CL) and transient photoluminescence (PL) spectroscopy, complemented by density functional theory (DFT). The results reveal that high doping levels of Ga (>3 atom%) in ZnO nanowires grown in an oxygen-rich environment lead to the formation of Ga Zn –V Zn intraband states, which act as optically active luminescence centers. The emission lines of Ga-induced donor-bound excitons and acceptor-bound complexes confirm the formation of Ga Zn and Ga Zn –V Zn defects in Ga-doped ZnO nanowires. The presence of these bound complexes significantly reduces the bandgap and broadens the near-band edge (NBE) emission of ZnO. The formation of Ga Zn –V Zn defects significantly suppresses the characteristic V Zn -related green luminescence (GL) and introduces a new recombination channel of orange luminescence (OL). Temperature-dependent CL and time-resolved PL analyses reveal that this OL band, attributed to the Ga Zn –V Zn center laying at 0.62 eV over the valence band, exhibits a slow decay time constant of 5.4 μs. The simulation of the spectral line shape of this OL band using the Franck–Condon model reveals the thermodynamic transition level of 630 meV above the valence band and an electron–phonon coupling strength of 6.4 for this OL center. Ga-doped ZnO nanowire arrays are used to fabricate nanowire-based light-emitting diodes (LEDs), which show a low threshold voltage of 4.1 volts and intense orange electroluminescence. These Ga-doped ZnO nanowires grown in an oxygen-rich environment can be used as efficient orange-coloured light emitters in photonic and optoelectronic devices.
Author Ton-That, Cuong
Rabiur Rahaman, Md
Azizar Rahman, M
Pramanik, Tanmoy
AuthorAffiliation University of Technology Sydney
Bangladesh University of Engineering and Technology
School of Mathematical and Physical Sciences
Department of Materials and Metallurgical Engineering
Department of Physics
AuthorAffiliation_xml – name: Bangladesh University of Engineering and Technology
– name: Department of Physics
– name: Department of Materials and Metallurgical Engineering
– name: School of Mathematical and Physical Sciences
– name: University of Technology Sydney
Author_xml – sequence: 1
  givenname: M
  surname: Azizar Rahman
  fullname: Azizar Rahman, M
– sequence: 2
  givenname: Md
  surname: Rabiur Rahaman
  fullname: Rabiur Rahaman, Md
– sequence: 3
  givenname: Tanmoy
  surname: Pramanik
  fullname: Pramanik, Tanmoy
– sequence: 4
  givenname: Cuong
  surname: Ton-That
  fullname: Ton-That, Cuong
BookMark eNpFkE1LAzEQhoNUsNZevAsBb8JqvjbZHkvrFxS81PMSs7Nrym6yJilaf71rK3Uu7xwe3mGeczRy3gFCl5TcUsJnd5VIhggiCn2CxozkJFM5F6PjzuQZmsa4IcMUVBZyNkbdEmowCYNrrAMI1jVYuwobHYKFgKud0501EVuHG922dttlle-hwt_WGey_bAXYaec_bYCIax9wa5v3lEFnU9q39X1rjU7Wu3iBTmvdRpj-5QS9PtyvF0_Z6uXxeTFfZYYJljIpgHEJSmgqoKg15LI2wKh6YwQkUXmujJJFXoAshm9zyTUYxhmAoEZXNZ-g60NvH_zHFmIqN34b3HCy5FQpQgnls4G6OVAm-BgD1GUfbKfDrqSk_DVaLsV6sTc6H-CrAxyiOXL_xvkPkgd1oA
Cites_doi 10.1016/j.optmat.2012.10.022
10.1103/PhysRevB.84.035313
10.1021/acs.jpcc.5b10689
10.1021/jp506953h
10.1103/PhysRevB.84.115202
10.1016/0031-8914(67)90062-6
10.1103/PhysRevB.94.035201
10.1103/PhysRevLett.99.127201
10.1039/C4TC02924K
10.1021/am401418b
10.1021/jp111167u
10.1016/S1005-0302(12)60064-4
10.1063/1.3080204
10.1021/jp8023099
10.1016/j.jallcom.2014.07.098
10.1021/nl060204z
10.1021/acsanm.3c02625
10.1016/j.optmat.2010.12.008
10.1063/1.4948245
10.1103/PhysRevB.84.075201
10.1017/S1431927603030204
10.1016/j.apsadv.2022.100334
10.1063/1.1627472
10.1016/j.materresbull.2015.06.003
10.1021/jp993327z
10.1063/1.2748333
10.1016/j.solidstatesciences.2008.10.016
10.1063/1.1566482
10.1038/s41598-019-40029-3
10.1063/1.1356432
10.1103/PhysRevLett.86.5723
10.1016/B978-008044722-3/50010-5
10.1002/pssb.200301962
10.1038/srep33983
10.1103/PhysRevB.72.085206
10.1016/S1005-0302(12)60164-9
10.1063/1.371242
10.1103/PhysRevB.80.155124
10.1016/j.jmst.2014.11.009
10.1063/1.363903
10.1063/1.2978374
10.1021/acsami.5b01496
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d4tc04048a
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 5822
ExternalDocumentID 10_1039_D4TC04048A
d4tc04048a
GroupedDBID 0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c242t-64e236e74a14e8fae56fce217b20e607557c76858e6848a563aec232ee41cadf3
ISSN 2050-7526
IngestDate Mon Jun 30 12:12:16 EDT 2025
Sun Jul 06 05:10:12 EDT 2025
Tue May 27 12:12:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c242t-64e236e74a14e8fae56fce217b20e607557c76858e6848a563aec232ee41cadf3
Notes https://doi.org/10.1039/d4tc04048a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5433-4124
0000-0003-3276-1739
0009-0006-4188-2048
PQID 3177010139
PQPubID 2047521
PageCount 9
ParticipantIDs proquest_journals_3177010139
crossref_primary_10_1039_D4TC04048A
rsc_primary_d4tc04048a
PublicationCentury 2000
PublicationDate 2025-03-13
PublicationDateYYYYMMDD 2025-03-13
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-13
  day: 13
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Van Dijken (D4TC04048A/cit40/1) 2000; 104
Wang (D4TC04048A/cit14/1) 2006
Ravikumar (D4TC04048A/cit3/1) 2012; 28
Reshchikov (D4TC04048A/cit33/1) 2016; 94
Fang (D4TC04048A/cit34/1) 2008; 104
Reynolds (D4TC04048A/cit31/1) 2001; 89
Zhao (D4TC04048A/cit18/1) 2011; 33
Kodama (D4TC04048A/cit37/1) 2014; 118
Guo (D4TC04048A/cit38/1) 2003; 82
Ghosh (D4TC04048A/cit30/1) 2007; 90
Yan (D4TC04048A/cit4/1) 2001; 86
Demchenko (D4TC04048A/cit13/1) 2011; 84
Pan (D4TC04048A/cit1/1) 2007; 99
Ma (D4TC04048A/cit16/1) 2011; 115
Galdámez-Martínez (D4TC04048A/cit42/1) 2022; 12
Lee (D4TC04048A/cit12/1) 2014; 616
Pauporté (D4TC04048A/cit9/1) 2015; 7
Shi (D4TC04048A/cit29/1) 2016; 120
Foreman (D4TC04048A/cit39/1) 2006; 6
Hong (D4TC04048A/cit41/1) 2003; 83
Chen (D4TC04048A/cit10/1) 2013; 5
Wang (D4TC04048A/cit21/1) 2019; 9
Look (D4TC04048A/cit5/1) 2011; 84
Phillips (D4TC04048A/cit43/1) 2003; 9
Wang (D4TC04048A/cit6/1) 2015; 31
Demchenko (D4TC04048A/cit19/1) 2011; 84
Tuomisto (D4TC04048A/cit45/1) 2005; 72
Rahman (D4TC04048A/cit7/1) 2012; 28
Zhang (D4TC04048A/cit22/1) 2009; 11
Meyer (D4TC04048A/cit23/1) 2004; 241
Wagner (D4TC04048A/cit24/1) 2011; 84
Varshni (D4TC04048A/cit27/1) 1967; 34
Alkauskas (D4TC04048A/cit32/1) 2016; 119
Wróbel (D4TC04048A/cit20/1) 2009; 80
Yang (D4TC04048A/cit8/1) 2009; 94
He (D4TC04048A/cit35/1) 2008; 112
Yang (D4TC04048A/cit25/1) 2009; 94
Liu (D4TC04048A/cit2/1) 2015; 3
Wu (D4TC04048A/cit17/1) 2013; 35
Krustok (D4TC04048A/cit26/1) 1997; 81
Chebil (D4TC04048A/cit36/1) 2015; 70
Segall (D4TC04048A/cit15/1) 2002; 14
Leroux (D4TC04048A/cit44/1) 1999; 86
Rahman (D4TC04048A/cit11/1) 2023; 6
Cao (D4TC04048A/cit28/1) 2016; 6
References_xml – issn: 2006
  end-page: p 339-370
  publication-title: Zinc oxide bulk, thin films and nanostructures
  doi: Wang
– volume: 35
  start-page: 509
  year: 2013
  ident: D4TC04048A/cit17/1
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2012.10.022
– volume: 84
  start-page: 035313
  year: 2011
  ident: D4TC04048A/cit24/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.84.035313
– volume: 120
  start-page: 4504
  year: 2016
  ident: D4TC04048A/cit29/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10689
– volume: 118
  start-page: 23977
  year: 2014
  ident: D4TC04048A/cit37/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp506953h
– volume: 84
  start-page: 115202
  year: 2011
  ident: D4TC04048A/cit5/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.84.115202
– volume: 34
  start-page: 149
  year: 1967
  ident: D4TC04048A/cit27/1
  publication-title: Physica
  doi: 10.1016/0031-8914(67)90062-6
– volume: 94
  start-page: 035201
  year: 2016
  ident: D4TC04048A/cit33/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.035201
– volume: 99
  start-page: 127201
  year: 2007
  ident: D4TC04048A/cit1/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.127201
– volume: 3
  start-page: 2557
  year: 2015
  ident: D4TC04048A/cit2/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC02924K
– volume: 5
  start-page: 6354
  year: 2013
  ident: D4TC04048A/cit10/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401418b
– volume: 115
  start-page: 4680
  year: 2011
  ident: D4TC04048A/cit16/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp111167u
– volume: 28
  start-page: 329
  year: 2012
  ident: D4TC04048A/cit7/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(12)60064-4
– volume: 94
  start-page: 072101
  year: 2009
  ident: D4TC04048A/cit25/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3080204
– volume: 112
  start-page: 14262
  year: 2008
  ident: D4TC04048A/cit35/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8023099
– volume: 616
  start-page: 122
  year: 2014
  ident: D4TC04048A/cit12/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.07.098
– volume: 14
  start-page: 2717
  year: 2002
  ident: D4TC04048A/cit15/1
  publication-title: J. Phys.: Condens. Matter
– volume: 6
  start-page: 1126
  year: 2006
  ident: D4TC04048A/cit39/1
  publication-title: Nano Lett.
  doi: 10.1021/nl060204z
– volume: 6
  start-page: 15757
  year: 2023
  ident: D4TC04048A/cit11/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c02625
– volume: 33
  start-page: 768
  year: 2011
  ident: D4TC04048A/cit18/1
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2010.12.008
– volume: 119
  start-page: 181101
  year: 2016
  ident: D4TC04048A/cit32/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4948245
– volume: 84
  start-page: 075201
  year: 2011
  ident: D4TC04048A/cit13/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.84.075201
– volume: 9
  start-page: 144
  year: 2003
  ident: D4TC04048A/cit43/1
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927603030204
– volume: 12
  start-page: 100334
  year: 2022
  ident: D4TC04048A/cit42/1
  publication-title: Appl. Surf. Sci. Adv.
  doi: 10.1016/j.apsadv.2022.100334
– volume: 83
  start-page: 4157
  year: 2003
  ident: D4TC04048A/cit41/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1627472
– volume: 70
  start-page: 719
  year: 2015
  ident: D4TC04048A/cit36/1
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2015.06.003
– volume: 104
  start-page: 1715
  year: 2000
  ident: D4TC04048A/cit40/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp993327z
– volume: 90
  start-page: 243106
  year: 2007
  ident: D4TC04048A/cit30/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2748333
– volume: 11
  start-page: 865
  year: 2009
  ident: D4TC04048A/cit22/1
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2008.10.016
– volume: 82
  start-page: 2290
  year: 2003
  ident: D4TC04048A/cit38/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1566482
– volume: 9
  start-page: 3534
  year: 2019
  ident: D4TC04048A/cit21/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-40029-3
– volume: 89
  start-page: 6189
  year: 2001
  ident: D4TC04048A/cit31/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1356432
– volume: 86
  start-page: 5723
  year: 2001
  ident: D4TC04048A/cit4/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.5723
– start-page: 339
  volume-title: Zinc oxide bulk, thin films and nanostructures
  year: 2006
  ident: D4TC04048A/cit14/1
  doi: 10.1016/B978-008044722-3/50010-5
– volume: 94
  start-page: 072101
  year: 2009
  ident: D4TC04048A/cit8/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3080204
– volume: 84
  start-page: 075201
  year: 2011
  ident: D4TC04048A/cit19/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.84.075201
– volume: 241
  start-page: 231
  year: 2004
  ident: D4TC04048A/cit23/1
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.200301962
– volume: 6
  start-page: 33983
  year: 2016
  ident: D4TC04048A/cit28/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep33983
– volume: 72
  start-page: 085206
  year: 2005
  ident: D4TC04048A/cit45/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.72.085206
– volume: 28
  start-page: 999
  year: 2012
  ident: D4TC04048A/cit3/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(12)60164-9
– volume: 86
  start-page: 3721
  year: 1999
  ident: D4TC04048A/cit44/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371242
– volume: 80
  start-page: 155124
  year: 2009
  ident: D4TC04048A/cit20/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.80.155124
– volume: 31
  start-page: 175
  year: 2015
  ident: D4TC04048A/cit6/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2014.11.009
– volume: 81
  start-page: 1442
  year: 1997
  ident: D4TC04048A/cit26/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363903
– volume: 104
  start-page: 063707
  year: 2008
  ident: D4TC04048A/cit34/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2978374
– volume: 7
  start-page: 11871
  year: 2015
  ident: D4TC04048A/cit9/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01496
SSID ssj0000816869
Score 2.2923465
Snippet Gallium (Ga) dopant-induced modulation of defects and recombination dynamics in wurtzite zinc oxide (ZnO) nanowires are investigated by cathodoluminescence...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 5814
SubjectTerms Cathodoluminescence
Defects
Density functional theory
Electrons
Emission
Emitters
Excitons
Gallium
Light emitting diodes
Line shape
Line spectra
Luminescence
Nanowires
Optical activity
Optoelectronic devices
Oxygen
Photoluminescence
Temperature dependence
Threshold voltage
Time constant
Valence band
Wurtzite
Zinc oxide
Zinc oxides
Title Defect engineering and carrier dynamics in gallium-doped zinc oxide nanowires for light-emitting applications
URI https://www.proquest.com/docview/3177010139
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBVpymB7GFu3smzdEGxvxl1iSbbzGNKUbqTdGA70zUiyTA2LHVIHRn7rfsyuJdlW2AfbXkywsLF1T-Qj6dxzEXoXiclEBpL5JKbUp1RIXygq_BzIggCICaWLwVzfhFcr-vGW3Q4G3x3V0q4W53L_y7yS_4kqnIO4Nlmy_xDZ7qZwAn5DfOEIEYbjX8X4QmnrYdV7Cpo0Nb7VdegyU21eK16bDfZit_azagMUc1-U0qu-FZnySl5WjV-x9mXwvmpfEbUujBza3d7-DY0Fxmte1ZNt7bhzb27SgNqW5s7Vpu6MCZzaO5nSQ1W_3XRnl2Svvdm-2POt08Lbpsz7wkWx69o-b5umwoi-ebmuun2CpCr95I4bbcuusp9pu8oRsEbmZZJUrTyqWUtphaxaqGJfqR8vgzEb-xELrLO2e86ul7YDPnGBPXGGbxabjFZLBVhscqZ_-syMSePSmtFawhhIY-dj2goIbj6ll6vlMk0Wt8kROg5gEhMM0fFskXxYdmuAuuiJrrrYPXvroEum7_vbH3KmfiJ0tG2r1Gg2lDxBj2388cxg8ikaqPIEPXLMLU_QAy0ulvfP0NrgFDs4xQADbHGKW5ziosQHOMUNTrHGKe5wigFN-BCn2MXpc7S6XCTzK9-W-fAl8MPaD6kKSKgiyidUxTlXLMylgqmyCMYqBErLIhk1ZRJUGENnsJBwJWEioBSdSJ7l5BQNy6pULxA8N48IEOBYUUkpFzwkKhehnGaMTEUuR-ht25Hpxri5pFqFQabpBU3murtnI3TW9nFq_-33KfDsqPFjJNMROoV-767vw_Tyz9e9Qg97ZJ-hYb3dqdfAaGvxxgLjB21OqmI
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+engineering+and+carrier+dynamics+in+gallium-doped+zinc+oxide+nanowires+for+light-emitting+applications&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Rahman%2C+M+Azizar&rft.au=Rahaman%2C+Md+Rabiur&rft.au=Pramanik%2C+Tanmoy&rft.au=Ton-That%2C+Cuong&rft.date=2025-03-13&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=13&rft.issue=11&rft.spage=5814&rft.epage=5822&rft_id=info:doi/10.1039%2Fd4tc04048a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon