A novel vanadium redox flow battery modelling method using honey badger optimization assisted CNN-BiLSTM

This research proposes a highly accurate data-driven vanadium redox flow battery (VRB) modelling approach for power engineering applications. The proposed approach addresses the common problem of excessive model dependency in the existing electrochemical principle or equivalent circuit based VRB mod...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 558; p. 232610
Main Authors Liu, Yulin, Li, Ran, Xiong, Binyu, Zhang, Shaofeng, Zhang, Xinan, Iu, Herbert, Fernando, Tyrone
Format Journal Article
LanguageEnglish
Published Elsevier B.V 28.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This research proposes a highly accurate data-driven vanadium redox flow battery (VRB) modelling approach for power engineering applications. The proposed approach addresses the common problem of excessive model dependency in the existing electrochemical principle or equivalent circuit based VRB modelling methods. Furthermore, a honey badger algorithm optimized CNN-BiLSTM is applied to directly learn the behavioural relationship between VRB current, flow rate, state-of-charge, and voltage with excellent accuracy, avoiding the usage of model parameters that are subject to variations. Besides, an outstanding modelling accuracy is obtained under variable current and flow rate. Once trained, the honey badger algorithm optimized CNN-BiLSTM neural network becomes mathematically very simple and thus, can be easily implemented in simulation studies. This contributes to substantially simplify the analysis of electrical systems with VRB. The validity of the proposed approach is verified experimentally. •People without any background in electrochemistry can use it.•It does not require any knowledge of VRB system dynamics.•It further considers the influences of variable flow rate and current.•It has superior accuracy and avoids tedious hyperparameter tuning process.
AbstractList This research proposes a highly accurate data-driven vanadium redox flow battery (VRB) modelling approach for power engineering applications. The proposed approach addresses the common problem of excessive model dependency in the existing electrochemical principle or equivalent circuit based VRB modelling methods. Furthermore, a honey badger algorithm optimized CNN-BiLSTM is applied to directly learn the behavioural relationship between VRB current, flow rate, state-of-charge, and voltage with excellent accuracy, avoiding the usage of model parameters that are subject to variations. Besides, an outstanding modelling accuracy is obtained under variable current and flow rate. Once trained, the honey badger algorithm optimized CNN-BiLSTM neural network becomes mathematically very simple and thus, can be easily implemented in simulation studies. This contributes to substantially simplify the analysis of electrical systems with VRB. The validity of the proposed approach is verified experimentally. •People without any background in electrochemistry can use it.•It does not require any knowledge of VRB system dynamics.•It further considers the influences of variable flow rate and current.•It has superior accuracy and avoids tedious hyperparameter tuning process.
ArticleNumber 232610
Author Zhang, Xinan
Iu, Herbert
Fernando, Tyrone
Liu, Yulin
Li, Ran
Xiong, Binyu
Zhang, Shaofeng
Author_xml – sequence: 1
  givenname: Yulin
  surname: Liu
  fullname: Liu, Yulin
  organization: School of Engineering, University of Western Australia, Perth, Australia
– sequence: 2
  givenname: Ran
  surname: Li
  fullname: Li, Ran
  organization: School of Engineering, University of Western Australia, Perth, Australia
– sequence: 3
  givenname: Binyu
  surname: Xiong
  fullname: Xiong, Binyu
  organization: School of Automation, Wuhan University of Technology, Wuhan, China
– sequence: 4
  givenname: Shaofeng
  surname: Zhang
  fullname: Zhang, Shaofeng
  organization: School of Automation, Wuhan University of Technology, Wuhan, China
– sequence: 5
  givenname: Xinan
  orcidid: 0000-0002-9472-8785
  surname: Zhang
  fullname: Zhang, Xinan
  email: xinan.zhang@uwa.edu.au
  organization: School of Engineering, University of Western Australia, Perth, Australia
– sequence: 6
  givenname: Herbert
  surname: Iu
  fullname: Iu, Herbert
  organization: School of Engineering, University of Western Australia, Perth, Australia
– sequence: 7
  givenname: Tyrone
  surname: Fernando
  fullname: Fernando, Tyrone
  organization: School of Engineering, University of Western Australia, Perth, Australia
BookMark eNqFkF1PwjAUhhuDiYD-BdM_MGzXbd0SL0TiV4J4IV43XXsGJdtK2gLir3eI3njD1clJzvPmvM8A9VrbAkLXlIwoodnNarRa2523GzeKSRyPYhZnlJyhPs05i2Kepj3UJ4znEecpu0AD71eEEEo56aPlGLd2CzXeylZqs2mwA20_cVXbHS5lCOD2uLEa6tq0C9xAWFqNN_6wLLs_9t2RXoDDdh1MY75kMLbF0nvjA2g8mc2iezN9n79eovNK1h6ufucQfTw-zCfP0fTt6WUynkYqTuIQMV0VVMqMMa65YlwVlVSZThiQJK8SVaaMQJ4XkpcAuS4ylVVAS8IVSVIJGRui7JirnPXeQSXWzjTS7QUl4uBLrMSfL3HwJY6-OvD2H6hM-KkTnDT1afzuiENXbmvACa8MtAq0caCC0NacivgGVbaQmA
CitedBy_id crossref_primary_10_1016_j_energy_2024_133467
crossref_primary_10_1002_bte2_20240036
crossref_primary_10_1109_TIM_2023_3324341
crossref_primary_10_1109_ACCESS_2023_3313416
crossref_primary_10_1016_j_trpro_2025_03_073
crossref_primary_10_1016_j_eswa_2023_119941
crossref_primary_10_1016_j_fraope_2024_100141
crossref_primary_10_1016_j_apenergy_2024_124385
crossref_primary_10_1016_j_est_2024_114029
crossref_primary_10_1007_s12206_024_0710_z
crossref_primary_10_1007_s11814_024_00152_y
crossref_primary_10_1016_j_neucom_2024_127284
crossref_primary_10_1038_s41598_025_92838_4
crossref_primary_10_1016_j_est_2023_109537
crossref_primary_10_1016_j_jpowsour_2023_233769
Cites_doi 10.1002/adts.201900167
10.1016/j.apenergy.2018.02.042
10.1016/j.apenergy.2018.06.148
10.1016/j.jpowsour.2015.04.169
10.1149/2.0681809jes
10.1016/j.jpowsour.2015.08.100
10.1038/nature14539
10.1016/j.jpowsour.2022.231147
10.1016/j.apenergy.2018.06.094
10.1016/j.jpowsour.2019.227684
10.1016/j.jpowsour.2020.229142
10.1016/j.est.2021.102587
10.1016/j.est.2019.100844
10.1016/j.jpowsour.2022.231807
10.1016/j.matcom.2021.08.013
10.1016/j.applthermaleng.2019.02.037
10.1016/j.apenergy.2020.115530
10.1016/j.jpowsour.2016.09.123
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2022.232610
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
ExternalDocumentID 10_1016_j_jpowsour_2022_232610
S0378775322015877
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SAC
SCB
SCE
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c242t-3df91aa6337d7c37c9fac6d43e048f4cb530e889a7bee8d96c6fe1b07c045ae63
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Thu Apr 24 22:53:47 EDT 2025
Tue Jul 01 01:40:52 EDT 2025
Fri Feb 23 02:38:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CNN-BiLSTM
Vanadium redox flow battery
Learning-based
Honey badger optimization
Battery modelling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-3df91aa6337d7c37c9fac6d43e048f4cb530e889a7bee8d96c6fe1b07c045ae63
ORCID 0000-0002-9472-8785
ParticipantIDs crossref_primary_10_1016_j_jpowsour_2022_232610
crossref_citationtrail_10_1016_j_jpowsour_2022_232610
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2022_232610
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-28
PublicationDateYYYYMMDD 2023-02-28
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-28
  day: 28
PublicationDecade 2020
PublicationTitle Journal of power sources
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lei, Zhang, Bai, Zhao (b2) 2015; 299
Lei, Zhang, Zhang, Bai, Zhao (b3) 2018; 215
J. Bao, V. Murugesan, C.J. Kamp, Y. Shao, L. Yan, W. Wang, Machine Learning Coupled Multi-Scale Modeling for Redox Flow Batteries, Adv. Theory Simul. 3 (2) 1900167.
Lourenssen, Williams, Ahmadpour, Clemmer, Tasnim (b1) 2019; 25
Khaki, Das (b11) 2021; 39
He, Stinis, Tartakovsky (b13) 2022; 528
He, Fu, Stinis, Tartakovsky (b14) 2022; 542
LeCun, Bengio, Hinton (b16) 2015; 521
Choi, Kim, Kim, Choi (b10) 2020; 450
Kim, Yoon, Lee, Kim (b20) 2018; 228
Messaggi, Canzi, Mereu, Baricci, Inzoli, Casalegno, Zago (b4) 2018; 228
Zhang, Lei, Bai, Xu, Zhao (b5) 2019; 151
Zhang, Zhao, Wang, Skyllas-Kazacos, Xiong, Badrinarayanan (b8) 2015; 290
Wei, Tseng, Wai, Lim, Skyllas-Kazacos (b9) 2016; 332
(b15) 2022; 542
Murthy, Sharma, Choo, Birgersson (b19) 2018; 165
Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (b18) 2022; 192
Delgado, Monteiro, Abdollahzadeh, Ribeirinha, Bentien, Mendes (b6) 2020; 480
Cheng, Tenny, Pizzolato, Forner-Cuenca, Verda, Chiang, Brushett, Behrou (b7) 2020; 279
A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM networks, in: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, Vol. 4, 2005, pp. 2047–2052.
Lei (10.1016/j.jpowsour.2022.232610_b3) 2018; 215
LeCun (10.1016/j.jpowsour.2022.232610_b16) 2015; 521
(10.1016/j.jpowsour.2022.232610_b15) 2022; 542
10.1016/j.jpowsour.2022.232610_b17
Murthy (10.1016/j.jpowsour.2022.232610_b19) 2018; 165
He (10.1016/j.jpowsour.2022.232610_b14) 2022; 542
Messaggi (10.1016/j.jpowsour.2022.232610_b4) 2018; 228
10.1016/j.jpowsour.2022.232610_b12
Lourenssen (10.1016/j.jpowsour.2022.232610_b1) 2019; 25
Lei (10.1016/j.jpowsour.2022.232610_b2) 2015; 299
Khaki (10.1016/j.jpowsour.2022.232610_b11) 2021; 39
Choi (10.1016/j.jpowsour.2022.232610_b10) 2020; 450
Kim (10.1016/j.jpowsour.2022.232610_b20) 2018; 228
He (10.1016/j.jpowsour.2022.232610_b13) 2022; 528
Zhang (10.1016/j.jpowsour.2022.232610_b5) 2019; 151
Cheng (10.1016/j.jpowsour.2022.232610_b7) 2020; 279
Wei (10.1016/j.jpowsour.2022.232610_b9) 2016; 332
Zhang (10.1016/j.jpowsour.2022.232610_b8) 2015; 290
Hashim (10.1016/j.jpowsour.2022.232610_b18) 2022; 192
Delgado (10.1016/j.jpowsour.2022.232610_b6) 2020; 480
References_xml – volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b16
  article-title: Deep learning
  publication-title: Nature
– volume: 450
  year: 2020
  ident: b10
  article-title: Multiple parameter identification using genetic algorithm in vanadium redox flow batteries
  publication-title: J. Power Sources
– volume: 165
  start-page: A1746
  year: 2018
  end-page: A1752
  ident: b19
  article-title: Analysis of concentration overpotential in an all-vanadium redox flow battery
  publication-title: J. Electrochem. Soc.
– volume: 215
  start-page: 591
  year: 2018
  end-page: 601
  ident: b3
  article-title: An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries
  publication-title: Appl. Energy
– volume: 151
  start-page: 495
  year: 2019
  end-page: 505
  ident: b5
  article-title: A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame
  publication-title: Appl. Therm. Eng.
– volume: 299
  start-page: 202
  year: 2015
  end-page: 211
  ident: b2
  article-title: A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries
  publication-title: J. Power Sources
– reference: A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM networks, in: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, Vol. 4, 2005, pp. 2047–2052.
– volume: 279
  year: 2020
  ident: b7
  article-title: Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods
  publication-title: Appl. Energy
– volume: 528
  year: 2022
  ident: b13
  article-title: Physics-constrained deep neural network method for estimating parameters in a redox flow battery
  publication-title: J. Power Sources
– volume: 480
  year: 2020
  ident: b6
  article-title: 2D-dynamic phenomenological modelling of vanadium redox flow batteries – Analysis of the mass transport related overpotentials
  publication-title: J. Power Sources
– volume: 25
  year: 2019
  ident: b1
  article-title: Vanadium redox flow batteries: A comprehensive review
  publication-title: J. Energy Storage
– volume: 542
  year: 2022
  ident: b14
  article-title: Enhanced physics-constrained deep neural networks for modeling vanadium redox flow battery
  publication-title: J. Power Sources
– volume: 290
  start-page: 14
  year: 2015
  end-page: 24
  ident: b8
  article-title: A comprehensive equivalent circuit model of all-vanadium redox flow battery for power system analysis
  publication-title: J. Power Sources
– volume: 332
  start-page: 389
  year: 2016
  end-page: 398
  ident: b9
  article-title: Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery
  publication-title: J. Power Sources
– reference: J. Bao, V. Murugesan, C.J. Kamp, Y. Shao, L. Yan, W. Wang, Machine Learning Coupled Multi-Scale Modeling for Redox Flow Batteries, Adv. Theory Simul. 3 (2) 1900167.
– volume: 192
  start-page: 84
  year: 2022
  end-page: 110
  ident: b18
  article-title: Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems
  publication-title: Math. Comput. Simulation
– volume: 39
  year: 2021
  ident: b11
  article-title: An equivalent circuit model for Vanadium Redox Batteries via hybrid extended Kalman filter and Particle filter methods
  publication-title: J. Energy Storage
– volume: 542
  year: 2022
  ident: b15
  article-title: Physics-informed CoKriging model of a redox flow battery
  publication-title: J. Power Sources
– volume: 228
  start-page: 1057
  year: 2018
  end-page: 1070
  ident: b4
  article-title: Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation
  publication-title: Appl. Energy
– volume: 228
  start-page: 891
  year: 2018
  end-page: 901
  ident: b20
  article-title: Parametric study and flow rate optimization of all-vanadium redox flow batteries
  publication-title: Appl. Energy
– volume: 542
  year: 2022
  ident: 10.1016/j.jpowsour.2022.232610_b15
  article-title: Physics-informed CoKriging model of a redox flow battery
  publication-title: J. Power Sources
– ident: 10.1016/j.jpowsour.2022.232610_b12
  doi: 10.1002/adts.201900167
– volume: 215
  start-page: 591
  year: 2018
  ident: 10.1016/j.jpowsour.2022.232610_b3
  article-title: An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.042
– volume: 228
  start-page: 1057
  year: 2018
  ident: 10.1016/j.jpowsour.2022.232610_b4
  article-title: Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.148
– volume: 290
  start-page: 14
  year: 2015
  ident: 10.1016/j.jpowsour.2022.232610_b8
  article-title: A comprehensive equivalent circuit model of all-vanadium redox flow battery for power system analysis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.169
– ident: 10.1016/j.jpowsour.2022.232610_b17
– volume: 165
  start-page: A1746
  issue: 9
  year: 2018
  ident: 10.1016/j.jpowsour.2022.232610_b19
  article-title: Analysis of concentration overpotential in an all-vanadium redox flow battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0681809jes
– volume: 299
  start-page: 202
  year: 2015
  ident: 10.1016/j.jpowsour.2022.232610_b2
  article-title: A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.08.100
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.jpowsour.2022.232610_b16
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 528
  year: 2022
  ident: 10.1016/j.jpowsour.2022.232610_b13
  article-title: Physics-constrained deep neural network method for estimating parameters in a redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231147
– volume: 228
  start-page: 891
  year: 2018
  ident: 10.1016/j.jpowsour.2022.232610_b20
  article-title: Parametric study and flow rate optimization of all-vanadium redox flow batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.094
– volume: 450
  year: 2020
  ident: 10.1016/j.jpowsour.2022.232610_b10
  article-title: Multiple parameter identification using genetic algorithm in vanadium redox flow batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227684
– volume: 480
  year: 2020
  ident: 10.1016/j.jpowsour.2022.232610_b6
  article-title: 2D-dynamic phenomenological modelling of vanadium redox flow batteries – Analysis of the mass transport related overpotentials
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229142
– volume: 39
  year: 2021
  ident: 10.1016/j.jpowsour.2022.232610_b11
  article-title: An equivalent circuit model for Vanadium Redox Batteries via hybrid extended Kalman filter and Particle filter methods
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102587
– volume: 25
  year: 2019
  ident: 10.1016/j.jpowsour.2022.232610_b1
  article-title: Vanadium redox flow batteries: A comprehensive review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.100844
– volume: 542
  year: 2022
  ident: 10.1016/j.jpowsour.2022.232610_b14
  article-title: Enhanced physics-constrained deep neural networks for modeling vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231807
– volume: 192
  start-page: 84
  year: 2022
  ident: 10.1016/j.jpowsour.2022.232610_b18
  article-title: Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2021.08.013
– volume: 151
  start-page: 495
  year: 2019
  ident: 10.1016/j.jpowsour.2022.232610_b5
  article-title: A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.02.037
– volume: 279
  year: 2020
  ident: 10.1016/j.jpowsour.2022.232610_b7
  article-title: Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115530
– volume: 332
  start-page: 389
  year: 2016
  ident: 10.1016/j.jpowsour.2022.232610_b9
  article-title: Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.123
SSID ssj0001170
Score 2.5026906
Snippet This research proposes a highly accurate data-driven vanadium redox flow battery (VRB) modelling approach for power engineering applications. The proposed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 232610
SubjectTerms Battery modelling
CNN-BiLSTM
Honey badger optimization
Learning-based
Vanadium redox flow battery
Title A novel vanadium redox flow battery modelling method using honey badger optimization assisted CNN-BiLSTM
URI https://dx.doi.org/10.1016/j.jpowsour.2022.232610
Volume 558
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnuItD6xpk9ix47FUVOXVhVZii-IXtGqTCpWWLvx2znlAkZAY2KLIJ1nn8z2S--5D6DJwtO1wsnDTAuFRxSIP8mbhSRPyKIWKg2gHFH7ose6A3j5FT2uoXWNhXFtl5ftLn1546-pNs9JmczocNh99AsYG2XYIMSyCJ4dgp9xZeePju83DMasUfxKgWnKrV1DCo8Zomi_cR3KoE8OwAckFc0ja3wLUStDp7KDtKlvErXJDu2jNZHtoa2WG4D56aeEsn5sxnhftW28T7EaAvmM7zhdYFtMzl7jgu3HAc1wyRmPX7v6MX_LMLGGRfjavOAfnMalQmRhSanf-Grd7Pe9qeP_YfzhAg851v931KvoET0HcnXlEWxGkKSOEa64IV8KmimlKDNxaS5WMiG_iWKRcGhNrwRSzJpA-V5DmpYaRQ7SewT6OELbC-laFPuWaUR3I2LdQRqaMitgoSfUximqdJaqaLe4oLsZJ3UQ2SmpdJ07XSanrY9T8kpuW0zX-lBD1kSQ_7CSBEPCH7Mk_ZE_RpiOaL8HsZ2h99vpmziEdmcmLwt4u0Ebr5q7b-wR73uG5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-NAEB7xKA6KExwg4HhscZRObO967S0oeCpAkoYg0fnsfUCiEEdcIJeGP8UfZNYPCBISBaKzLI-1-nY8D-_MfAB_PEvbjjuLX5onHCZ54GDcLJxU-2GQYMZBlW0UbrV544qdXwfXM_Bc9cLYssrS9hc2PbfW5Z16iWZ92O3WL12KyobRto8-LMCrsrLyQk_GmLf92z87xk3e8_3Tk85RwympBRyJPmnkUGWElySc0lCFkoZSmERyxahGjTZMpgF1dRSJJEy1jpTgkhvtpW4oMQRKNKf43lmYZ2guLG1C7emtrsRSueRHF5ie2eVNtSX3ar1hNrZ_5TEx9f0aRjPctu5-5BGnvNzpEvwsw1NyUCCwDDN68AsWp4YWrsDtARlkj7pPHvN6sYc7YmeO_iemn41Jmo_rnJCcYMd2upOCoprY-vobcpsN9AQfUjf6nmRore7KNlCCMbxVOEWO2m3nsNu87LRW4epbQF2DuQGuYx2IEcY10ndZqDhTXhq5BvPWhDMRaZkytQFBhVksy2HmllOjH1dVa724wjq2WMcF1htQf5UbFuM8PpUQ1ZbE7xQzRp_ziezmF2R34Uej02rGzbP2xW9YsCz3RSf9FsyN7h_0NsZCo3Qn1z0Cf79b2V8Ae9QeyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+vanadium+redox+flow+battery+modelling+method+using+honey+badger+optimization+assisted+CNN-BiLSTM&rft.jtitle=Journal+of+power+sources&rft.au=Liu%2C+Yulin&rft.au=Li%2C+Ran&rft.au=Xiong%2C+Binyu&rft.au=Zhang%2C+Shaofeng&rft.date=2023-02-28&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=558&rft_id=info:doi/10.1016%2Fj.jpowsour.2022.232610&rft.externalDocID=S0378775322015877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon