A novel vanadium redox flow battery modelling method using honey badger optimization assisted CNN-BiLSTM
This research proposes a highly accurate data-driven vanadium redox flow battery (VRB) modelling approach for power engineering applications. The proposed approach addresses the common problem of excessive model dependency in the existing electrochemical principle or equivalent circuit based VRB mod...
Saved in:
Published in | Journal of power sources Vol. 558; p. 232610 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
28.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This research proposes a highly accurate data-driven vanadium redox flow battery (VRB) modelling approach for power engineering applications. The proposed approach addresses the common problem of excessive model dependency in the existing electrochemical principle or equivalent circuit based VRB modelling methods. Furthermore, a honey badger algorithm optimized CNN-BiLSTM is applied to directly learn the behavioural relationship between VRB current, flow rate, state-of-charge, and voltage with excellent accuracy, avoiding the usage of model parameters that are subject to variations. Besides, an outstanding modelling accuracy is obtained under variable current and flow rate. Once trained, the honey badger algorithm optimized CNN-BiLSTM neural network becomes mathematically very simple and thus, can be easily implemented in simulation studies. This contributes to substantially simplify the analysis of electrical systems with VRB. The validity of the proposed approach is verified experimentally.
•People without any background in electrochemistry can use it.•It does not require any knowledge of VRB system dynamics.•It further considers the influences of variable flow rate and current.•It has superior accuracy and avoids tedious hyperparameter tuning process. |
---|---|
AbstractList | This research proposes a highly accurate data-driven vanadium redox flow battery (VRB) modelling approach for power engineering applications. The proposed approach addresses the common problem of excessive model dependency in the existing electrochemical principle or equivalent circuit based VRB modelling methods. Furthermore, a honey badger algorithm optimized CNN-BiLSTM is applied to directly learn the behavioural relationship between VRB current, flow rate, state-of-charge, and voltage with excellent accuracy, avoiding the usage of model parameters that are subject to variations. Besides, an outstanding modelling accuracy is obtained under variable current and flow rate. Once trained, the honey badger algorithm optimized CNN-BiLSTM neural network becomes mathematically very simple and thus, can be easily implemented in simulation studies. This contributes to substantially simplify the analysis of electrical systems with VRB. The validity of the proposed approach is verified experimentally.
•People without any background in electrochemistry can use it.•It does not require any knowledge of VRB system dynamics.•It further considers the influences of variable flow rate and current.•It has superior accuracy and avoids tedious hyperparameter tuning process. |
ArticleNumber | 232610 |
Author | Zhang, Xinan Iu, Herbert Fernando, Tyrone Liu, Yulin Li, Ran Xiong, Binyu Zhang, Shaofeng |
Author_xml | – sequence: 1 givenname: Yulin surname: Liu fullname: Liu, Yulin organization: School of Engineering, University of Western Australia, Perth, Australia – sequence: 2 givenname: Ran surname: Li fullname: Li, Ran organization: School of Engineering, University of Western Australia, Perth, Australia – sequence: 3 givenname: Binyu surname: Xiong fullname: Xiong, Binyu organization: School of Automation, Wuhan University of Technology, Wuhan, China – sequence: 4 givenname: Shaofeng surname: Zhang fullname: Zhang, Shaofeng organization: School of Automation, Wuhan University of Technology, Wuhan, China – sequence: 5 givenname: Xinan orcidid: 0000-0002-9472-8785 surname: Zhang fullname: Zhang, Xinan email: xinan.zhang@uwa.edu.au organization: School of Engineering, University of Western Australia, Perth, Australia – sequence: 6 givenname: Herbert surname: Iu fullname: Iu, Herbert organization: School of Engineering, University of Western Australia, Perth, Australia – sequence: 7 givenname: Tyrone surname: Fernando fullname: Fernando, Tyrone organization: School of Engineering, University of Western Australia, Perth, Australia |
BookMark | eNqFkF1PwjAUhhuDiYD-BdM_MGzXbd0SL0TiV4J4IV43XXsGJdtK2gLir3eI3njD1clJzvPmvM8A9VrbAkLXlIwoodnNarRa2523GzeKSRyPYhZnlJyhPs05i2Kepj3UJ4znEecpu0AD71eEEEo56aPlGLd2CzXeylZqs2mwA20_cVXbHS5lCOD2uLEa6tq0C9xAWFqNN_6wLLs_9t2RXoDDdh1MY75kMLbF0nvjA2g8mc2iezN9n79eovNK1h6ufucQfTw-zCfP0fTt6WUynkYqTuIQMV0VVMqMMa65YlwVlVSZThiQJK8SVaaMQJ4XkpcAuS4ylVVAS8IVSVIJGRui7JirnPXeQSXWzjTS7QUl4uBLrMSfL3HwJY6-OvD2H6hM-KkTnDT1afzuiENXbmvACa8MtAq0caCC0NacivgGVbaQmA |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_133467 crossref_primary_10_1002_bte2_20240036 crossref_primary_10_1109_TIM_2023_3324341 crossref_primary_10_1109_ACCESS_2023_3313416 crossref_primary_10_1016_j_trpro_2025_03_073 crossref_primary_10_1016_j_eswa_2023_119941 crossref_primary_10_1016_j_fraope_2024_100141 crossref_primary_10_1016_j_apenergy_2024_124385 crossref_primary_10_1016_j_est_2024_114029 crossref_primary_10_1007_s12206_024_0710_z crossref_primary_10_1007_s11814_024_00152_y crossref_primary_10_1016_j_neucom_2024_127284 crossref_primary_10_1038_s41598_025_92838_4 crossref_primary_10_1016_j_est_2023_109537 crossref_primary_10_1016_j_jpowsour_2023_233769 |
Cites_doi | 10.1002/adts.201900167 10.1016/j.apenergy.2018.02.042 10.1016/j.apenergy.2018.06.148 10.1016/j.jpowsour.2015.04.169 10.1149/2.0681809jes 10.1016/j.jpowsour.2015.08.100 10.1038/nature14539 10.1016/j.jpowsour.2022.231147 10.1016/j.apenergy.2018.06.094 10.1016/j.jpowsour.2019.227684 10.1016/j.jpowsour.2020.229142 10.1016/j.est.2021.102587 10.1016/j.est.2019.100844 10.1016/j.jpowsour.2022.231807 10.1016/j.matcom.2021.08.013 10.1016/j.applthermaleng.2019.02.037 10.1016/j.apenergy.2020.115530 10.1016/j.jpowsour.2016.09.123 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpowsour.2022.232610 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
ExternalDocumentID | 10_1016_j_jpowsour_2022_232610 S0378775322015877 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- RIG SAC SCB SCE SSH T9H VH1 VOH WUQ |
ID | FETCH-LOGICAL-c242t-3df91aa6337d7c37c9fac6d43e048f4cb530e889a7bee8d96c6fe1b07c045ae63 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Thu Apr 24 22:53:47 EDT 2025 Tue Jul 01 01:40:52 EDT 2025 Fri Feb 23 02:38:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CNN-BiLSTM Vanadium redox flow battery Learning-based Honey badger optimization Battery modelling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c242t-3df91aa6337d7c37c9fac6d43e048f4cb530e889a7bee8d96c6fe1b07c045ae63 |
ORCID | 0000-0002-9472-8785 |
ParticipantIDs | crossref_primary_10_1016_j_jpowsour_2022_232610 crossref_citationtrail_10_1016_j_jpowsour_2022_232610 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2022_232610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-28 |
PublicationDateYYYYMMDD | 2023-02-28 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Journal of power sources |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lei, Zhang, Bai, Zhao (b2) 2015; 299 Lei, Zhang, Zhang, Bai, Zhao (b3) 2018; 215 J. Bao, V. Murugesan, C.J. Kamp, Y. Shao, L. Yan, W. Wang, Machine Learning Coupled Multi-Scale Modeling for Redox Flow Batteries, Adv. Theory Simul. 3 (2) 1900167. Lourenssen, Williams, Ahmadpour, Clemmer, Tasnim (b1) 2019; 25 Khaki, Das (b11) 2021; 39 He, Stinis, Tartakovsky (b13) 2022; 528 He, Fu, Stinis, Tartakovsky (b14) 2022; 542 LeCun, Bengio, Hinton (b16) 2015; 521 Choi, Kim, Kim, Choi (b10) 2020; 450 Kim, Yoon, Lee, Kim (b20) 2018; 228 Messaggi, Canzi, Mereu, Baricci, Inzoli, Casalegno, Zago (b4) 2018; 228 Zhang, Lei, Bai, Xu, Zhao (b5) 2019; 151 Zhang, Zhao, Wang, Skyllas-Kazacos, Xiong, Badrinarayanan (b8) 2015; 290 Wei, Tseng, Wai, Lim, Skyllas-Kazacos (b9) 2016; 332 (b15) 2022; 542 Murthy, Sharma, Choo, Birgersson (b19) 2018; 165 Hashim, Houssein, Hussain, Mabrouk, Al-Atabany (b18) 2022; 192 Delgado, Monteiro, Abdollahzadeh, Ribeirinha, Bentien, Mendes (b6) 2020; 480 Cheng, Tenny, Pizzolato, Forner-Cuenca, Verda, Chiang, Brushett, Behrou (b7) 2020; 279 A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM networks, in: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, Vol. 4, 2005, pp. 2047–2052. Lei (10.1016/j.jpowsour.2022.232610_b3) 2018; 215 LeCun (10.1016/j.jpowsour.2022.232610_b16) 2015; 521 (10.1016/j.jpowsour.2022.232610_b15) 2022; 542 10.1016/j.jpowsour.2022.232610_b17 Murthy (10.1016/j.jpowsour.2022.232610_b19) 2018; 165 He (10.1016/j.jpowsour.2022.232610_b14) 2022; 542 Messaggi (10.1016/j.jpowsour.2022.232610_b4) 2018; 228 10.1016/j.jpowsour.2022.232610_b12 Lourenssen (10.1016/j.jpowsour.2022.232610_b1) 2019; 25 Lei (10.1016/j.jpowsour.2022.232610_b2) 2015; 299 Khaki (10.1016/j.jpowsour.2022.232610_b11) 2021; 39 Choi (10.1016/j.jpowsour.2022.232610_b10) 2020; 450 Kim (10.1016/j.jpowsour.2022.232610_b20) 2018; 228 He (10.1016/j.jpowsour.2022.232610_b13) 2022; 528 Zhang (10.1016/j.jpowsour.2022.232610_b5) 2019; 151 Cheng (10.1016/j.jpowsour.2022.232610_b7) 2020; 279 Wei (10.1016/j.jpowsour.2022.232610_b9) 2016; 332 Zhang (10.1016/j.jpowsour.2022.232610_b8) 2015; 290 Hashim (10.1016/j.jpowsour.2022.232610_b18) 2022; 192 Delgado (10.1016/j.jpowsour.2022.232610_b6) 2020; 480 |
References_xml | – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b16 article-title: Deep learning publication-title: Nature – volume: 450 year: 2020 ident: b10 article-title: Multiple parameter identification using genetic algorithm in vanadium redox flow batteries publication-title: J. Power Sources – volume: 165 start-page: A1746 year: 2018 end-page: A1752 ident: b19 article-title: Analysis of concentration overpotential in an all-vanadium redox flow battery publication-title: J. Electrochem. Soc. – volume: 215 start-page: 591 year: 2018 end-page: 601 ident: b3 article-title: An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries publication-title: Appl. Energy – volume: 151 start-page: 495 year: 2019 end-page: 505 ident: b5 article-title: A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame publication-title: Appl. Therm. Eng. – volume: 299 start-page: 202 year: 2015 end-page: 211 ident: b2 article-title: A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries publication-title: J. Power Sources – reference: A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM networks, in: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005, Vol. 4, 2005, pp. 2047–2052. – volume: 279 year: 2020 ident: b7 article-title: Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods publication-title: Appl. Energy – volume: 528 year: 2022 ident: b13 article-title: Physics-constrained deep neural network method for estimating parameters in a redox flow battery publication-title: J. Power Sources – volume: 480 year: 2020 ident: b6 article-title: 2D-dynamic phenomenological modelling of vanadium redox flow batteries – Analysis of the mass transport related overpotentials publication-title: J. Power Sources – volume: 25 year: 2019 ident: b1 article-title: Vanadium redox flow batteries: A comprehensive review publication-title: J. Energy Storage – volume: 542 year: 2022 ident: b14 article-title: Enhanced physics-constrained deep neural networks for modeling vanadium redox flow battery publication-title: J. Power Sources – volume: 290 start-page: 14 year: 2015 end-page: 24 ident: b8 article-title: A comprehensive equivalent circuit model of all-vanadium redox flow battery for power system analysis publication-title: J. Power Sources – volume: 332 start-page: 389 year: 2016 end-page: 398 ident: b9 article-title: Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery publication-title: J. Power Sources – reference: J. Bao, V. Murugesan, C.J. Kamp, Y. Shao, L. Yan, W. Wang, Machine Learning Coupled Multi-Scale Modeling for Redox Flow Batteries, Adv. Theory Simul. 3 (2) 1900167. – volume: 192 start-page: 84 year: 2022 end-page: 110 ident: b18 article-title: Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems publication-title: Math. Comput. Simulation – volume: 39 year: 2021 ident: b11 article-title: An equivalent circuit model for Vanadium Redox Batteries via hybrid extended Kalman filter and Particle filter methods publication-title: J. Energy Storage – volume: 542 year: 2022 ident: b15 article-title: Physics-informed CoKriging model of a redox flow battery publication-title: J. Power Sources – volume: 228 start-page: 1057 year: 2018 end-page: 1070 ident: b4 article-title: Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation publication-title: Appl. Energy – volume: 228 start-page: 891 year: 2018 end-page: 901 ident: b20 article-title: Parametric study and flow rate optimization of all-vanadium redox flow batteries publication-title: Appl. Energy – volume: 542 year: 2022 ident: 10.1016/j.jpowsour.2022.232610_b15 article-title: Physics-informed CoKriging model of a redox flow battery publication-title: J. Power Sources – ident: 10.1016/j.jpowsour.2022.232610_b12 doi: 10.1002/adts.201900167 – volume: 215 start-page: 591 year: 2018 ident: 10.1016/j.jpowsour.2022.232610_b3 article-title: An improved model of ion selective adsorption in membrane and its application in vanadium redox flow batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.042 – volume: 228 start-page: 1057 year: 2018 ident: 10.1016/j.jpowsour.2022.232610_b4 article-title: Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.148 – volume: 290 start-page: 14 year: 2015 ident: 10.1016/j.jpowsour.2022.232610_b8 article-title: A comprehensive equivalent circuit model of all-vanadium redox flow battery for power system analysis publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.04.169 – ident: 10.1016/j.jpowsour.2022.232610_b17 – volume: 165 start-page: A1746 issue: 9 year: 2018 ident: 10.1016/j.jpowsour.2022.232610_b19 article-title: Analysis of concentration overpotential in an all-vanadium redox flow battery publication-title: J. Electrochem. Soc. doi: 10.1149/2.0681809jes – volume: 299 start-page: 202 year: 2015 ident: 10.1016/j.jpowsour.2022.232610_b2 article-title: A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.08.100 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.jpowsour.2022.232610_b16 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 528 year: 2022 ident: 10.1016/j.jpowsour.2022.232610_b13 article-title: Physics-constrained deep neural network method for estimating parameters in a redox flow battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231147 – volume: 228 start-page: 891 year: 2018 ident: 10.1016/j.jpowsour.2022.232610_b20 article-title: Parametric study and flow rate optimization of all-vanadium redox flow batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.094 – volume: 450 year: 2020 ident: 10.1016/j.jpowsour.2022.232610_b10 article-title: Multiple parameter identification using genetic algorithm in vanadium redox flow batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227684 – volume: 480 year: 2020 ident: 10.1016/j.jpowsour.2022.232610_b6 article-title: 2D-dynamic phenomenological modelling of vanadium redox flow batteries – Analysis of the mass transport related overpotentials publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229142 – volume: 39 year: 2021 ident: 10.1016/j.jpowsour.2022.232610_b11 article-title: An equivalent circuit model for Vanadium Redox Batteries via hybrid extended Kalman filter and Particle filter methods publication-title: J. Energy Storage doi: 10.1016/j.est.2021.102587 – volume: 25 year: 2019 ident: 10.1016/j.jpowsour.2022.232610_b1 article-title: Vanadium redox flow batteries: A comprehensive review publication-title: J. Energy Storage doi: 10.1016/j.est.2019.100844 – volume: 542 year: 2022 ident: 10.1016/j.jpowsour.2022.232610_b14 article-title: Enhanced physics-constrained deep neural networks for modeling vanadium redox flow battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231807 – volume: 192 start-page: 84 year: 2022 ident: 10.1016/j.jpowsour.2022.232610_b18 article-title: Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2021.08.013 – volume: 151 start-page: 495 year: 2019 ident: 10.1016/j.jpowsour.2022.232610_b5 article-title: A two-dimensional mathematical model for vanadium redox flow battery stacks incorporating nonuniform electrolyte distribution in the flow frame publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.02.037 – volume: 279 year: 2020 ident: 10.1016/j.jpowsour.2022.232610_b7 article-title: Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115530 – volume: 332 start-page: 389 year: 2016 ident: 10.1016/j.jpowsour.2022.232610_b9 article-title: Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.09.123 |
SSID | ssj0001170 |
Score | 2.5026906 |
Snippet | This research proposes a highly accurate data-driven vanadium redox flow battery (VRB) modelling approach for power engineering applications. The proposed... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 232610 |
SubjectTerms | Battery modelling CNN-BiLSTM Honey badger optimization Learning-based Vanadium redox flow battery |
Title | A novel vanadium redox flow battery modelling method using honey badger optimization assisted CNN-BiLSTM |
URI | https://dx.doi.org/10.1016/j.jpowsour.2022.232610 |
Volume | 558 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnuItD6xpk9ix47FUVOXVhVZii-IXtGqTCpWWLvx2znlAkZAY2KLIJ1nn8z2S--5D6DJwtO1wsnDTAuFRxSIP8mbhSRPyKIWKg2gHFH7ose6A3j5FT2uoXWNhXFtl5ftLn1546-pNs9JmczocNh99AsYG2XYIMSyCJ4dgp9xZeePju83DMasUfxKgWnKrV1DCo8Zomi_cR3KoE8OwAckFc0ja3wLUStDp7KDtKlvErXJDu2jNZHtoa2WG4D56aeEsn5sxnhftW28T7EaAvmM7zhdYFtMzl7jgu3HAc1wyRmPX7v6MX_LMLGGRfjavOAfnMalQmRhSanf-Grd7Pe9qeP_YfzhAg851v931KvoET0HcnXlEWxGkKSOEa64IV8KmimlKDNxaS5WMiG_iWKRcGhNrwRSzJpA-V5DmpYaRQ7SewT6OELbC-laFPuWaUR3I2LdQRqaMitgoSfUximqdJaqaLe4oLsZJ3UQ2SmpdJ07XSanrY9T8kpuW0zX-lBD1kSQ_7CSBEPCH7Mk_ZE_RpiOaL8HsZ2h99vpmziEdmcmLwt4u0Ebr5q7b-wR73uG5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T-NAEB7xKA6KExwg4HhscZRObO967S0oeCpAkoYg0fnsfUCiEEdcIJeGP8UfZNYPCBISBaKzLI-1-nY8D-_MfAB_PEvbjjuLX5onHCZ54GDcLJxU-2GQYMZBlW0UbrV544qdXwfXM_Bc9cLYssrS9hc2PbfW5Z16iWZ92O3WL12KyobRto8-LMCrsrLyQk_GmLf92z87xk3e8_3Tk85RwympBRyJPmnkUGWElySc0lCFkoZSmERyxahGjTZMpgF1dRSJJEy1jpTgkhvtpW4oMQRKNKf43lmYZ2guLG1C7emtrsRSueRHF5ie2eVNtSX3ar1hNrZ_5TEx9f0aRjPctu5-5BGnvNzpEvwsw1NyUCCwDDN68AsWp4YWrsDtARlkj7pPHvN6sYc7YmeO_iemn41Jmo_rnJCcYMd2upOCoprY-vobcpsN9AQfUjf6nmRore7KNlCCMbxVOEWO2m3nsNu87LRW4epbQF2DuQGuYx2IEcY10ndZqDhTXhq5BvPWhDMRaZkytQFBhVksy2HmllOjH1dVa724wjq2WMcF1htQf5UbFuM8PpUQ1ZbE7xQzRp_ziezmF2R34Uej02rGzbP2xW9YsCz3RSf9FsyN7h_0NsZCo3Qn1z0Cf79b2V8Ae9QeyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+vanadium+redox+flow+battery+modelling+method+using+honey+badger+optimization+assisted+CNN-BiLSTM&rft.jtitle=Journal+of+power+sources&rft.au=Liu%2C+Yulin&rft.au=Li%2C+Ran&rft.au=Xiong%2C+Binyu&rft.au=Zhang%2C+Shaofeng&rft.date=2023-02-28&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=558&rft_id=info:doi/10.1016%2Fj.jpowsour.2022.232610&rft.externalDocID=S0378775322015877 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |