Neighborhood scale traffic pollutant dispersion subject to different wind-buoyancy ratios: A LES case study in Singapore
This study explores the buoyancy effect on traffic pollutant dispersion at neighborhood scale, in which a wide range of wind-buoyancy ratios is examined. Pollutant dispersion is solved using a Large Eddy Simulation (LES) turbulence model, where realistic urban morphology and historical traffic pollu...
Saved in:
Published in | Building and environment Vol. 228; p. 109831 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study explores the buoyancy effect on traffic pollutant dispersion at neighborhood scale, in which a wide range of wind-buoyancy ratios is examined. Pollutant dispersion is solved using a Large Eddy Simulation (LES) turbulence model, where realistic urban morphology and historical traffic pollutant emission data are adopted. For no incoming wind condition, thermal plumes develop and entrain horizontal flow near ground level. This neighborhood scale buoyancy-driven flow leads to air pollutant dispersion, which is as strong as wind-driven dispersion in the target area. As a result, urban air pollutant accumulation is limited due to buoyancy, regardless of ambient wind conditions. A light incoming wind can flush upward thermal plumes downstream when the Richardson number (Ri) reaches 25.5. The interplay of the approaching wind and upward plumes from urban surfaces leads to an oscillatory flow, which intensifies local turbulence and enhances the pollutant removal rate. At the pedestrian level, the neighborhood scale average NO2 concentration due to the traffic emission ranges from 4.1μg/m3 to 4.8μg/m3. The minimum value is found for a weak incoming wind condition, (coupling with buoyancy, Ri = 25.5) and the maximum value is observed for the no incoming wind condition (Ri = ∞). The modelling result analysis clarifies how buoyancy-related dispersion, emission location, surrounding urban density, and incoming wind affect local pollutant concentrations. The research outputs highlight the importance of these coupling effects in the air pollutant dispersion evaluation in real urban areas.
•Large variations in wind-buoyancy ratio (Ri=1.0∼∞) are considered.•Neighborhood scale buoyancy is strong enough to drive traffic pollutants removal.•Maximum urban air pollutant concentration is limited due to thermal buoyancy.•Minimum pollutant concentration is observed in light wind and strong buoyancy.•Pollutants at pedestrian level show little dependence on wind when heat condition is severe. |
---|---|
AbstractList | This study explores the buoyancy effect on traffic pollutant dispersion at neighborhood scale, in which a wide range of wind-buoyancy ratios is examined. Pollutant dispersion is solved using a Large Eddy Simulation (LES) turbulence model, where realistic urban morphology and historical traffic pollutant emission data are adopted. For no incoming wind condition, thermal plumes develop and entrain horizontal flow near ground level. This neighborhood scale buoyancy-driven flow leads to air pollutant dispersion, which is as strong as wind-driven dispersion in the target area. As a result, urban air pollutant accumulation is limited due to buoyancy, regardless of ambient wind conditions. A light incoming wind can flush upward thermal plumes downstream when the Richardson number (Ri) reaches 25.5. The interplay of the approaching wind and upward plumes from urban surfaces leads to an oscillatory flow, which intensifies local turbulence and enhances the pollutant removal rate. At the pedestrian level, the neighborhood scale average NO2 concentration due to the traffic emission ranges from 4.1μg/m3 to 4.8μg/m3. The minimum value is found for a weak incoming wind condition, (coupling with buoyancy, Ri = 25.5) and the maximum value is observed for the no incoming wind condition (Ri = ∞). The modelling result analysis clarifies how buoyancy-related dispersion, emission location, surrounding urban density, and incoming wind affect local pollutant concentrations. The research outputs highlight the importance of these coupling effects in the air pollutant dispersion evaluation in real urban areas.
•Large variations in wind-buoyancy ratio (Ri=1.0∼∞) are considered.•Neighborhood scale buoyancy is strong enough to drive traffic pollutants removal.•Maximum urban air pollutant concentration is limited due to thermal buoyancy.•Minimum pollutant concentration is observed in light wind and strong buoyancy.•Pollutants at pedestrian level show little dependence on wind when heat condition is severe. |
ArticleNumber | 109831 |
Author | Zhao, Yongling Mei, Shuo-Jun Yuan, Chao Talwar, Tanya Carmeliet, Jan |
Author_xml | – sequence: 1 givenname: Shuo-Jun orcidid: 0000-0002-4294-4005 surname: Mei fullname: Mei, Shuo-Jun organization: Department of Architecture, National University of Singapore, Singapore – sequence: 2 givenname: Yongling surname: Zhao fullname: Zhao, Yongling organization: Department of Mechanical and Process Engineering, ETH Zürich, Switzerland – sequence: 3 givenname: Tanya orcidid: 0000-0001-7927-5426 surname: Talwar fullname: Talwar, Tanya organization: Department of Architecture, National University of Singapore, Singapore – sequence: 4 givenname: Jan surname: Carmeliet fullname: Carmeliet, Jan organization: Department of Mechanical and Process Engineering, ETH Zürich, Switzerland – sequence: 5 givenname: Chao orcidid: 0000-0001-5404-5050 surname: Yuan fullname: Yuan, Chao email: akiyuan@nus.edu.sg organization: Department of Architecture, National University of Singapore, Singapore |
BookMark | eNqFkMtKAzEUhoNUsK2-guQFpuYynYu4sJR6gaKLKrgLmeRMmzImJclU5-2dUt246erAf_h-zvlGaGCdBYSuKZlQQrOb7aRqTaPB7ieMMNaHZcHpGRrSIudJVqQfAzQkPCMJ5YxfoFEIW9KDJU-H6PsFzHpTOb9xTuOgZAM4elnXRuGda5o2ShuxNmEHPhhncWirLaiIo-vTugYP_f7LWJ1UreukVR32MhoXbvEMLxcrrGQAHGKrO2wsXhm7ljvn4RKd17IJcPU7x-j9YfE2f0qWr4_P89kyUSxlMeFSAs1pWpOyAkryvM5ylcuqrPS0ANA6KwpaTBnJOANaKqAaKOMp05SmSqZ8jO6Ovcq7EDzUQpl4OND2b5pGUCIOFsVW_FkUB4viaLHHs3_4zptP6bvT4P0RhP65vQEvgjJgFWjje39CO3Oq4geTWZWO |
CitedBy_id | crossref_primary_10_1016_j_scs_2022_104327 crossref_primary_10_1016_j_jweia_2024_105757 crossref_primary_10_1016_j_uclim_2024_102193 crossref_primary_10_1016_j_dib_2024_110467 crossref_primary_10_1016_j_buildenv_2024_111929 crossref_primary_10_1007_s12273_024_1210_x crossref_primary_10_1016_j_buildenv_2023_110733 crossref_primary_10_3390_toxics11110927 crossref_primary_10_1016_j_buildenv_2024_111746 crossref_primary_10_1007_s11012_024_01826_x crossref_primary_10_1016_j_buildenv_2025_112769 crossref_primary_10_1016_j_scs_2024_106022 crossref_primary_10_1016_j_uclim_2023_101659 crossref_primary_10_1016_j_buildenv_2024_112202 crossref_primary_10_1016_j_apenergy_2024_123205 crossref_primary_10_1016_j_buildenv_2023_111076 crossref_primary_10_1016_j_buildenv_2024_112285 crossref_primary_10_1016_j_scs_2024_105989 |
Cites_doi | 10.1016/j.scitotenv.2016.05.150 10.1016/1352-2310(95)00321-5 10.1017/S0022112003005019 10.1007/s10546-015-0004-1 10.1016/j.enbuild.2022.112171 10.1016/j.scs.2019.101700 10.1016/0004-6981(73)90140-6 10.1016/j.buildenv.2012.03.023 10.1016/0167-6105(93)90124-7 10.1016/j.buildenv.2011.10.023 10.1504/IJEP.2011.038443 10.1016/j.scitotenv.2018.07.409 10.1016/j.compfluid.2015.02.018 10.1063/1.2813043 10.1016/j.buildenv.2017.12.035 10.1016/j.jweia.2020.104468 10.2514/8.3713 10.1016/j.scitotenv.2021.149067 10.1016/j.buildenv.2021.108708 10.1016/j.atmosenv.2020.118127 10.1016/j.jweia.2008.02.058 10.1016/j.buildenv.2018.06.015 10.1016/j.atmosenv.2008.02.032 10.1007/s10494-008-9151-5 10.1016/j.enbuild.2020.110613 10.1016/j.atmosenv.2012.01.010 10.1016/j.compfluid.2016.05.019 10.1016/j.atmosenv.2011.07.008 10.1016/j.atmosenv.2005.01.043 10.1016/j.jweia.2012.01.007 10.1175/1520-0450(1999)038<1249:ANSOTE>2.0.CO;2 10.1016/j.buildenv.2021.108097 10.1016/j.buildenv.2018.11.039 10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2 10.1016/j.scitotenv.2021.148138 10.1016/j.atmosenv.2010.02.022 10.1002/joc.1364 10.1115/1.1863275 10.1016/j.buildenv.2007.01.041 10.1016/0004-6981(89)90161-3 10.1038/s41467-020-15218-8 10.1016/j.jweia.2010.12.012 10.1016/j.cpc.2019.01.016 10.1146/annurev.fluid.35.101101.161147 10.1016/j.buildenv.2013.10.008 10.1016/0021-9991(86)90099-9 10.1038/nclimate2623 10.1016/j.buildenv.2009.11.019 10.1016/j.renene.2015.10.010 10.1016/j.solener.2008.02.008 10.1023/A:1022063608237 10.1016/j.buildenv.2018.12.050 10.1017/S0022112003007250 10.1016/S0140-6736(14)60617-6 10.1016/j.apm.2014.04.041 10.1016/j.envpol.2021.118336 10.1016/j.rser.2022.112540 10.1016/j.jweia.2020.104380 10.1016/j.envsoft.2012.03.009 10.1016/j.buildenv.2015.04.018 10.1016/j.buildenv.2018.09.023 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.buildenv.2022.109831 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-684X |
ExternalDocumentID | 10_1016_j_buildenv_2022_109831 S0360132322010617 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SEN SES SPC SPCBC SSJ SSR SST SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SAC SET SEW SSH VH1 WUQ ZMT |
ID | FETCH-LOGICAL-c242t-3aae1714f09be1077f67c7ab9bd58eedd68818520632e19ce1de12342d114ca43 |
IEDL.DBID | .~1 |
ISSN | 0360-1323 |
IngestDate | Thu Apr 24 23:13:01 EDT 2025 Tue Jul 01 00:25:18 EDT 2025 Sat Apr 20 15:59:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neighborhood scale Extreme low wind Buoyancy effect Large-eddy simulation Traffic pollutant dispersion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c242t-3aae1714f09be1077f67c7ab9bd58eedd68818520632e19ce1de12342d114ca43 |
ORCID | 0000-0001-5404-5050 0000-0002-4294-4005 0000-0001-7927-5426 |
ParticipantIDs | crossref_citationtrail_10_1016_j_buildenv_2022_109831 crossref_primary_10_1016_j_buildenv_2022_109831 elsevier_sciencedirect_doi_10_1016_j_buildenv_2022_109831 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-15 |
PublicationDateYYYYMMDD | 2023-01-15 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Building and environment |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yuan, Shan, Zhang, Li, Yin, Hang, Norford (bib35) 2019; 647 Zhao, Li, Kubilay, Carmeliet (bib25) 2021; 797 Soulhac, Salizzoni, Cierco, Perkins (bib36) 2011; 45 Jiang, Yoshie (bib15) 2018; 142 Cai (bib28) 2012; 51 Mei, Yuan (bib13) 2021; 203 Buccolieri, Sandberg, Di Sabatino (bib7) 2010; 44 Goulart, Reis, Lavor, Castro, Santos, Xie (bib61) 2019; 147 Martin, Chong, Biljecki, Miller (bib65) 2022; 165 Hang, Li, Sandberg, Claesson (bib64) 2010; 45 Wang, Brimblecombe, Ngan (bib31) 2021; 791 Ramponi, Blocken, de Coo, Janssen (bib10) 2015; 92 Yuan, Ng (bib8) 2012; 50 Grimmond, Oke (bib41) 1999; 38 Britter, Hanna (bib29) 2003; 35 Madalozzo, Braun, Awruch, Morsch (bib19) 2014; 38 Xie, Castro (bib53) 2008; 81 Pant, Bhattacharya (bib22) 2016; 134–135 Lauriks, Longo, Baetens, Derudi, Parente, Bellemans, van Beeck, Denys (bib32) 2021; 246 Boddy, Smalley, Dixon, Tate, Tomlin (bib44) 2005; 39 Sini, Anquetin, Mestayer (bib18) 1996; 30 Mei, Yuan (bib56) 2021; 231 Belcher, Jerram, Hunt (bib33) 2003; 488 Georgakis, Santamouris (bib5) 2008; 43 Karthikeya, Negi, Srikanth (bib42) 2016; 87 Gousseau, Blocken, Stathopoulos, van Heijst (bib49) 2015; 114 Priyadarsini, Hien, Wai David (bib43) 2008; 82 Estoque, Ooba, Seposo, Togawa, Hijioka, Takahashi, Nakamura (bib1) 2020; 11 Solazzo, Cai, Vardoulakis (bib17) 2008; 42 Kaye, Linden (bib26) 2004; 502 Chow, Roth (bib39) 2006; 26 Kim, Baik (bib20) 1999; 38 Moonen, Dorer, Carmeliet (bib63) 2011; 99 Chang, Hanna (bib58) 2004; 87 Hu, Yoshie (bib14) 2020; 207 Van Driest (bib52) 1956; 23 Moonen, Dorer, Carmeliet (bib6) 2012; 104–106 Pham, Plourde, Doan (bib24) 2007; 19 Hilderman, Chong (bib57) 2007 Franke, Hellsten, Schlunzen, Carissimo (bib47) 2011; 44 Tominaga, Mochida, Yoshie, Kataoka, Nozu, Yoshikawa, Shirasawa (bib48) 2008; 96 Mei, Hu, Liu, Zhao, Li, Wang (bib12) 2019; 149 Mei, Hu, Liu, Zhao, Li, Wang (bib38) 2018; 131 Hanna (bib59) 1989; 23 Pham, Plourde, Kim (bib23) 2005; 127 Yuan, Ng, Norford (bib46) 2014; 71 Carpentieri, Salizzoni, Robins, Soulhac (bib30) 2012; 37 Suhas (bib55) 1980 Mei, Liu, Liu, Zhao, Wang, Li (bib21) 2016; 565 Richards, Hoxey (bib40) 1993; 46–47 Mei, Luo, Zhao, Wang (bib62) 2019; 50 Oke (bib37) 1973; 7 Mukha, Rezaeiravesh, Liefvendahl (bib51) 2019; 239 Cheng, Porté-Agel (bib34) 2015; 155 Issa (bib54) 1986; 62 Hang, Li, Sandberg, Buccolieri, Di Sabatino (bib11) 2012; 56 Di Sabatino, Kastner-Klein, Berkowicz, Britter, Fedorovich (bib16) 2003; 3 Yin, Li, Fan, Sandberg (bib60) 2019; 149 Mei, Yuan (bib50) 2022; 210 Zander, Botzen, Oppermann, Kjellstrom, Garnett (bib2) 2015; 5 Xu, Wang, Liu, Li, Lei, Ren, Deng, Guo, Wu (bib4) 2022; 292 Guarnieri, Balmes (bib3) 2014; 383 Kluková, Nosek, Fuka, Jaňour, Chaloupecká, Ďoubalová (bib9) 2021; 208 Yuan, Zhu, Tong, Mei, Zhu (bib27) 2022; 268 Williams, Minjares (bib45) 2017 Pant (10.1016/j.buildenv.2022.109831_bib22) 2016; 134–135 Hang (10.1016/j.buildenv.2022.109831_bib64) 2010; 45 Franke (10.1016/j.buildenv.2022.109831_bib47) 2011; 44 Lauriks (10.1016/j.buildenv.2022.109831_bib32) 2021; 246 Sini (10.1016/j.buildenv.2022.109831_bib18) 1996; 30 Mei (10.1016/j.buildenv.2022.109831_bib38) 2018; 131 Grimmond (10.1016/j.buildenv.2022.109831_bib41) 1999; 38 Zhao (10.1016/j.buildenv.2022.109831_bib25) 2021; 797 Yuan (10.1016/j.buildenv.2022.109831_bib46) 2014; 71 Hang (10.1016/j.buildenv.2022.109831_bib11) 2012; 56 Mei (10.1016/j.buildenv.2022.109831_bib13) 2021; 203 Richards (10.1016/j.buildenv.2022.109831_bib40) 1993; 46–47 Yuan (10.1016/j.buildenv.2022.109831_bib8) 2012; 50 Soulhac (10.1016/j.buildenv.2022.109831_bib36) 2011; 45 Kluková (10.1016/j.buildenv.2022.109831_bib9) 2021; 208 Jiang (10.1016/j.buildenv.2022.109831_bib15) 2018; 142 Ramponi (10.1016/j.buildenv.2022.109831_bib10) 2015; 92 Mei (10.1016/j.buildenv.2022.109831_bib50) 2022; 210 Chow (10.1016/j.buildenv.2022.109831_bib39) 2006; 26 Yin (10.1016/j.buildenv.2022.109831_bib60) 2019; 149 Carpentieri (10.1016/j.buildenv.2022.109831_bib30) 2012; 37 Pham (10.1016/j.buildenv.2022.109831_bib23) 2005; 127 Moonen (10.1016/j.buildenv.2022.109831_bib63) 2011; 99 Hanna (10.1016/j.buildenv.2022.109831_bib59) 1989; 23 Mei (10.1016/j.buildenv.2022.109831_bib21) 2016; 565 Wang (10.1016/j.buildenv.2022.109831_bib31) 2021; 791 Cheng (10.1016/j.buildenv.2022.109831_bib34) 2015; 155 Belcher (10.1016/j.buildenv.2022.109831_bib33) 2003; 488 Xu (10.1016/j.buildenv.2022.109831_bib4) 2022; 292 Moonen (10.1016/j.buildenv.2022.109831_bib6) 2012; 104–106 Issa (10.1016/j.buildenv.2022.109831_bib54) 1986; 62 Yuan (10.1016/j.buildenv.2022.109831_bib27) 2022; 268 Goulart (10.1016/j.buildenv.2022.109831_bib61) 2019; 147 Van Driest (10.1016/j.buildenv.2022.109831_bib52) 1956; 23 Suhas (10.1016/j.buildenv.2022.109831_bib55) 1980 Estoque (10.1016/j.buildenv.2022.109831_bib1) 2020; 11 Georgakis (10.1016/j.buildenv.2022.109831_bib5) 2008; 43 Xie (10.1016/j.buildenv.2022.109831_bib53) 2008; 81 Madalozzo (10.1016/j.buildenv.2022.109831_bib19) 2014; 38 Kaye (10.1016/j.buildenv.2022.109831_bib26) 2004; 502 Gousseau (10.1016/j.buildenv.2022.109831_bib49) 2015; 114 Mei (10.1016/j.buildenv.2022.109831_bib62) 2019; 50 Oke (10.1016/j.buildenv.2022.109831_bib37) 1973; 7 Yuan (10.1016/j.buildenv.2022.109831_bib35) 2019; 647 Hu (10.1016/j.buildenv.2022.109831_bib14) 2020; 207 Kim (10.1016/j.buildenv.2022.109831_bib20) 1999; 38 Mukha (10.1016/j.buildenv.2022.109831_bib51) 2019; 239 Tominaga (10.1016/j.buildenv.2022.109831_bib48) 2008; 96 Solazzo (10.1016/j.buildenv.2022.109831_bib17) 2008; 42 Cai (10.1016/j.buildenv.2022.109831_bib28) 2012; 51 Karthikeya (10.1016/j.buildenv.2022.109831_bib42) 2016; 87 Williams (10.1016/j.buildenv.2022.109831_bib45) 2017 Chang (10.1016/j.buildenv.2022.109831_bib58) 2004; 87 Buccolieri (10.1016/j.buildenv.2022.109831_bib7) 2010; 44 Guarnieri (10.1016/j.buildenv.2022.109831_bib3) 2014; 383 Di Sabatino (10.1016/j.buildenv.2022.109831_bib16) 2003; 3 Mei (10.1016/j.buildenv.2022.109831_bib56) 2021; 231 Britter (10.1016/j.buildenv.2022.109831_bib29) 2003; 35 Martin (10.1016/j.buildenv.2022.109831_bib65) 2022; 165 Priyadarsini (10.1016/j.buildenv.2022.109831_bib43) 2008; 82 Pham (10.1016/j.buildenv.2022.109831_bib24) 2007; 19 Hilderman (10.1016/j.buildenv.2022.109831_bib57) 2007 Zander (10.1016/j.buildenv.2022.109831_bib2) 2015; 5 Mei (10.1016/j.buildenv.2022.109831_bib12) 2019; 149 Boddy (10.1016/j.buildenv.2022.109831_bib44) 2005; 39 |
References_xml | – volume: 92 start-page: 152 year: 2015 end-page: 166 ident: bib10 article-title: CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths publication-title: Build. Environ. – volume: 23 start-page: 1385 year: 1989 end-page: 1398 ident: bib59 article-title: Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods publication-title: Atmos. Environ. – volume: 45 start-page: 7379 year: 2011 end-page: 7395 ident: bib36 article-title: The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model publication-title: Atmos. Environ. – volume: 131 start-page: 32 year: 2018 end-page: 43 ident: bib38 article-title: Thermal buoyancy driven canyon airflows inside the compact urban blocks saturated with very weak synoptic wind: plume merging mechanism publication-title: Build. Environ. – year: 1980 ident: bib55 article-title: Numerical Heat Transfer and Fluid Flow – volume: 207 year: 2020 ident: bib14 article-title: Effect of atmospheric stability on air pollutant concentration and its generalization for real and idealized urban block models based on field observation data and wind tunnel experiments publication-title: J. Wind Eng. Ind. Aerod. – volume: 46–47 start-page: 145 year: 1993 end-page: 153 ident: bib40 article-title: Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model publication-title: J. Wind Eng. Ind. Aerod. – volume: 231 year: 2021 ident: bib56 article-title: Analytical and numerical study on transient urban street air warming induced by anthropogenic heat emission publication-title: Energy Build. – volume: 45 start-page: 1353 year: 2010 end-page: 1365 ident: bib64 article-title: Wind conditions and ventilation in high-rise long street models publication-title: Build. Environ. – volume: 149 start-page: 79 year: 2019 end-page: 89 ident: bib60 article-title: Experimental investigation of near-field stream-wise flow development and spatial structure in triple buoyant plumes publication-title: Build. Environ. – volume: 81 start-page: 449 year: 2008 end-page: 470 ident: bib53 article-title: Efficient generation of inflow conditions for large eddy simulation of street-scale flows publication-title: Flow, Turbul. Combust. – volume: 62 start-page: 40 year: 1986 end-page: 65 ident: bib54 article-title: Solution of the implicitly discretised fluid flow equations by operator-splitting publication-title: J. Comput. Phys. – volume: 42 start-page: 4918 year: 2008 end-page: 4931 ident: bib17 article-title: Modelling wind flow and vehicle-induced turbulence in urban streets publication-title: Atmos. Environ. – volume: 210 year: 2022 ident: bib50 article-title: Urban buoyancy-driven air flow and modelling method: a critical review publication-title: Build. Environ. – volume: 50 start-page: 176 year: 2012 end-page: 189 ident: bib8 article-title: Building porosity for better urban ventilation in high-density cities - a computational parametric study publication-title: Build. Environ. – volume: 23 start-page: 1007 year: 1956 end-page: 1011 ident: bib52 article-title: On turbulent flow near a wall publication-title: J. Aeronaut. Sci. – volume: 114 start-page: 151 year: 2015 end-page: 162 ident: bib49 article-title: Near-field pollutant dispersion in an actual urban area: analysis of the mass transport mechanism by high-resolution Large Eddy Simulations publication-title: Comput. Fluids – volume: 565 start-page: 1102 year: 2016 end-page: 1115 ident: bib21 article-title: Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications publication-title: Sci. Total Environ. – volume: 142 start-page: 47 year: 2018 end-page: 57 ident: bib15 article-title: Large-eddy simulation of flow and pollutant dispersion in a 3D urban street model located in an unstable boundary layer publication-title: Build. Environ. – volume: 791 year: 2021 ident: bib31 article-title: A numerical study of local traffic volume and air quality within urban street canyons publication-title: Sci. Total Environ. – volume: 43 start-page: 1404 year: 2008 end-page: 1410 ident: bib5 article-title: On the estimation of wind speed in urban canyons for ventilation purposes-Part 1: coupling between the undisturbed wind speed and the canyon wind publication-title: Build. Environ. – volume: 11 start-page: 1581 year: 2020 ident: bib1 article-title: Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators publication-title: Nat. Commun. – volume: 38 start-page: 1262 year: 1999 ident: bib41 article-title: Aerodynamic properties of urban areas derived from analysis of surface form publication-title: J. Appl. Meteorol. – volume: 147 start-page: 23 year: 2019 end-page: 34 ident: bib61 article-title: Local and non-local effects of building arrangements on pollutant fluxes within the urban canopy publication-title: Build. Environ. – volume: 7 start-page: 769 year: 1973 end-page: 779 ident: bib37 article-title: City size and the urban heat island publication-title: Atmos. Environ. – volume: 38 start-page: 1249 year: 1999 end-page: 1261 ident: bib20 article-title: A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons publication-title: J. Appl. Meteorol. – volume: 19 year: 2007 ident: bib24 article-title: Direct and large-eddy simulations of a pure thermal plume publication-title: Phys. Fluids – volume: 239 start-page: 204 year: 2019 end-page: 224 ident: bib51 article-title: A library for wall-modelled large-eddy simulation based on OpenFOAM technology publication-title: Comput. Phys. Commun. – volume: 134–135 start-page: 177 year: 2016 end-page: 189 ident: bib22 article-title: A viscous sponge layer formulation for robust large eddy simulation of thermal plumes publication-title: Comput. Fluids – volume: 50 year: 2019 ident: bib62 article-title: Street canyon ventilation and airborne pollutant dispersion: 2-D versus 3-D CFD simulations publication-title: Sustain. Cities Soc. – volume: 208 year: 2021 ident: bib9 article-title: The combining effect of the roof shape, roof-height non-uniformity and source position on the pollutant transport between a street canyon and 3D urban array publication-title: J. Wind Eng. Ind. Aerod. – volume: 51 start-page: 268 year: 2012 end-page: 277 ident: bib28 article-title: Effects of differential wall heating in street canyons on dispersion and ventilation characteristics of a passive scalar publication-title: Atmos. Environ. – volume: 37 start-page: 110 year: 2012 end-page: 124 ident: bib30 article-title: Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind tunnel data publication-title: Environ. Model. Software – volume: 96 start-page: 1749 year: 2008 end-page: 1761 ident: bib48 article-title: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings publication-title: J. Wind Eng. Ind. Aerod. – volume: 502 start-page: 41 year: 2004 end-page: 63 ident: bib26 article-title: Coalescing axisymmetric turbulent plumes publication-title: J. Fluid Mech. – volume: 268 year: 2022 ident: bib27 article-title: Impact of anthropogenic heat from air-conditioning on air temperature of naturally ventilated apartments at high-density tropical cities publication-title: Energy Build. – volume: 44 start-page: 419 year: 2011 end-page: 427 ident: bib47 article-title: The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary publication-title: Int. J. Environ. Pollut. – year: 2007 ident: bib57 article-title: A Laboratory Study of Momentum and Passive Scalar Transport and Diffusion within and above a Model Urban Canopy - Final Report Defence R & D Canada – volume: 99 start-page: 414 year: 2011 end-page: 423 ident: bib63 article-title: Evaluation of the ventilation potential of courtyards and urban street canyons using RANS and LES publication-title: J. Wind Eng. Ind. Aerod. – volume: 26 start-page: 2243 year: 2006 end-page: 2260 ident: bib39 article-title: Temporal dynamics of the urban heat island of Singapore publication-title: Int. J. Climatol. – volume: 203 year: 2021 ident: bib13 article-title: Three-dimensional simulation of building thermal plumes merging in calm conditions: turbulence model evaluation and turbulence structure analysis publication-title: Build. Environ. – volume: 647 start-page: 255 year: 2019 end-page: 267 ident: bib35 article-title: Multilayer urban canopy modelling and mapping for traffic pollutant dispersion at high density urban areas publication-title: Sci. Total Environ. – volume: 30 start-page: 2659 year: 1996 end-page: 2677 ident: bib18 article-title: Pollutant dispersion and thermal effects in urban street canyons publication-title: Atmos. Environ. – volume: 87 start-page: 403 year: 2016 end-page: 414 ident: bib42 article-title: Wind resource assessment for urban renewable energy application in Singapore publication-title: Renew. Energy – volume: 71 start-page: 245 year: 2014 end-page: 258 ident: bib46 article-title: Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies publication-title: Build. Environ. – volume: 149 start-page: 592 year: 2019 end-page: 606 ident: bib12 article-title: Airborne pollutant dilution inside the deep street canyons subjecting to thermal buoyancy driven flows: effects of representative urban skylines publication-title: Build. Environ. – volume: 35 start-page: 469 year: 2003 end-page: 496 ident: bib29 article-title: Flow and dispersion in urban areas publication-title: Annu. Rev. Fluid Mech. – volume: 246 year: 2021 ident: bib32 article-title: Application of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban street publication-title: Atmos. Environ. – volume: 104–106 start-page: 389 year: 2012 end-page: 396 ident: bib6 article-title: Effect of flow unsteadiness on the mean wind flow pattern in an idealized urban environment publication-title: J. Wind Eng. Ind. Aerod. – volume: 5 start-page: 647 year: 2015 end-page: 651 ident: bib2 article-title: Heat stress causes substantial labour productivity loss in Australia publication-title: Nat. Clim. Change – year: 2017 ident: bib45 article-title: A Technical Summary of Euro 6/VI Vehicle Emission Standards – volume: 38 start-page: 5883 year: 2014 end-page: 5909 ident: bib19 article-title: Numerical simulation of pollutant dispersion in street canyons: geometric and thermal effects publication-title: Appl. Math. Model. – volume: 39 start-page: 3147 year: 2005 end-page: 3161 ident: bib44 article-title: The spatial variability in concentrations of a traffic-related pollutant in two street canyons in York, UK-Part I: the influence of background winds publication-title: Atmos. Environ. – volume: 44 start-page: 1894 year: 2010 end-page: 1903 ident: bib7 article-title: City breathability and its link to pollutant concentration distribution within urban-like geometries publication-title: Atmos. Environ. – volume: 87 start-page: 167 year: 2004 end-page: 196 ident: bib58 article-title: Air quality model performance evaluation publication-title: Meteorol. Atmos. Phys. – volume: 292 year: 2022 ident: bib4 article-title: Association between gaseous air pollutants and biomarkers of systemic inflammation: a systematic review and meta-analysis publication-title: Environ. Pollut. – volume: 56 start-page: 346 year: 2012 end-page: 360 ident: bib11 article-title: The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas publication-title: Build. Environ. – volume: 165 year: 2022 ident: bib65 article-title: Infrared thermography in the built environment: a multi-scale review publication-title: Renew. Sustain. Energy Rev. – volume: 127 start-page: 624 year: 2005 end-page: 636 ident: bib23 article-title: Three-Dimensional characterization of a pure thermal plume publication-title: J. Heat Tran. – volume: 488 start-page: 369 year: 2003 end-page: 398 ident: bib33 article-title: Adjustment of a turbulent boundary layer to a canopy of roughness elements publication-title: J. Fluid Mech. – volume: 383 start-page: 1581 year: 2014 end-page: 1592 ident: bib3 article-title: Outdoor air pollution and asthma publication-title: Lancet – volume: 155 start-page: 249 year: 2015 end-page: 270 ident: bib34 article-title: Adjustment of turbulent boundary-layer flow to idealized urban surfaces: a large-eddy simulation study publication-title: Boundary-Layer Meteorol. – volume: 82 start-page: 727 year: 2008 end-page: 745 ident: bib43 article-title: Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island publication-title: Sol. Energy – volume: 797 year: 2021 ident: bib25 article-title: Buoyancy effects on the flows around flat and steep street canyons in simplified urban settings subject to a neutral approaching boundary layer: wind tunnel PIV measurements publication-title: Sci. Total Environ. – volume: 3 start-page: 129 year: 2003 end-page: 143 ident: bib16 article-title: The modelling of turbulence from traffic in urban dispersion models - Part I: theoretical considerations publication-title: Environ. Fluid Mech. – volume: 565 start-page: 1102 year: 2016 ident: 10.1016/j.buildenv.2022.109831_bib21 article-title: Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.05.150 – volume: 30 start-page: 2659 issue: 15 year: 1996 ident: 10.1016/j.buildenv.2022.109831_bib18 article-title: Pollutant dispersion and thermal effects in urban street canyons publication-title: Atmos. Environ. doi: 10.1016/1352-2310(95)00321-5 – volume: 488 start-page: 369 year: 2003 ident: 10.1016/j.buildenv.2022.109831_bib33 article-title: Adjustment of a turbulent boundary layer to a canopy of roughness elements publication-title: J. Fluid Mech. doi: 10.1017/S0022112003005019 – volume: 155 start-page: 249 issue: 2 year: 2015 ident: 10.1016/j.buildenv.2022.109831_bib34 article-title: Adjustment of turbulent boundary-layer flow to idealized urban surfaces: a large-eddy simulation study publication-title: Boundary-Layer Meteorol. doi: 10.1007/s10546-015-0004-1 – volume: 268 year: 2022 ident: 10.1016/j.buildenv.2022.109831_bib27 article-title: Impact of anthropogenic heat from air-conditioning on air temperature of naturally ventilated apartments at high-density tropical cities publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112171 – volume: 87 start-page: 167 issue: 1 year: 2004 ident: 10.1016/j.buildenv.2022.109831_bib58 article-title: Air quality model performance evaluation publication-title: Meteorol. Atmos. Phys. – volume: 50 year: 2019 ident: 10.1016/j.buildenv.2022.109831_bib62 article-title: Street canyon ventilation and airborne pollutant dispersion: 2-D versus 3-D CFD simulations publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101700 – year: 2007 ident: 10.1016/j.buildenv.2022.109831_bib57 – volume: 7 start-page: 769 issue: 8 year: 1973 ident: 10.1016/j.buildenv.2022.109831_bib37 article-title: City size and the urban heat island publication-title: Atmos. Environ. doi: 10.1016/0004-6981(73)90140-6 – volume: 56 start-page: 346 year: 2012 ident: 10.1016/j.buildenv.2022.109831_bib11 article-title: The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.03.023 – volume: 46–47 start-page: 145 year: 1993 ident: 10.1016/j.buildenv.2022.109831_bib40 article-title: Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/0167-6105(93)90124-7 – volume: 50 start-page: 176 year: 2012 ident: 10.1016/j.buildenv.2022.109831_bib8 article-title: Building porosity for better urban ventilation in high-density cities - a computational parametric study publication-title: Build. Environ. doi: 10.1016/j.buildenv.2011.10.023 – volume: 44 start-page: 419 issue: 1–4 year: 2011 ident: 10.1016/j.buildenv.2022.109831_bib47 article-title: The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary publication-title: Int. J. Environ. Pollut. doi: 10.1504/IJEP.2011.038443 – volume: 647 start-page: 255 year: 2019 ident: 10.1016/j.buildenv.2022.109831_bib35 article-title: Multilayer urban canopy modelling and mapping for traffic pollutant dispersion at high density urban areas publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.409 – volume: 114 start-page: 151 year: 2015 ident: 10.1016/j.buildenv.2022.109831_bib49 article-title: Near-field pollutant dispersion in an actual urban area: analysis of the mass transport mechanism by high-resolution Large Eddy Simulations publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.02.018 – volume: 19 issue: 12 year: 2007 ident: 10.1016/j.buildenv.2022.109831_bib24 article-title: Direct and large-eddy simulations of a pure thermal plume publication-title: Phys. Fluids doi: 10.1063/1.2813043 – volume: 131 start-page: 32 year: 2018 ident: 10.1016/j.buildenv.2022.109831_bib38 article-title: Thermal buoyancy driven canyon airflows inside the compact urban blocks saturated with very weak synoptic wind: plume merging mechanism publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.12.035 – volume: 208 year: 2021 ident: 10.1016/j.buildenv.2022.109831_bib9 article-title: The combining effect of the roof shape, roof-height non-uniformity and source position on the pollutant transport between a street canyon and 3D urban array publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2020.104468 – volume: 23 start-page: 1007 issue: 11 year: 1956 ident: 10.1016/j.buildenv.2022.109831_bib52 article-title: On turbulent flow near a wall publication-title: J. Aeronaut. Sci. doi: 10.2514/8.3713 – volume: 797 year: 2021 ident: 10.1016/j.buildenv.2022.109831_bib25 article-title: Buoyancy effects on the flows around flat and steep street canyons in simplified urban settings subject to a neutral approaching boundary layer: wind tunnel PIV measurements publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149067 – volume: 210 year: 2022 ident: 10.1016/j.buildenv.2022.109831_bib50 article-title: Urban buoyancy-driven air flow and modelling method: a critical review publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108708 – volume: 246 year: 2021 ident: 10.1016/j.buildenv.2022.109831_bib32 article-title: Application of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban street publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2020.118127 – volume: 96 start-page: 1749 issue: 10 year: 2008 ident: 10.1016/j.buildenv.2022.109831_bib48 article-title: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2008.02.058 – volume: 142 start-page: 47 year: 2018 ident: 10.1016/j.buildenv.2022.109831_bib15 article-title: Large-eddy simulation of flow and pollutant dispersion in a 3D urban street model located in an unstable boundary layer publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.06.015 – volume: 42 start-page: 4918 issue: 20 year: 2008 ident: 10.1016/j.buildenv.2022.109831_bib17 article-title: Modelling wind flow and vehicle-induced turbulence in urban streets publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.02.032 – volume: 81 start-page: 449 issue: 3 year: 2008 ident: 10.1016/j.buildenv.2022.109831_bib53 article-title: Efficient generation of inflow conditions for large eddy simulation of street-scale flows publication-title: Flow, Turbul. Combust. doi: 10.1007/s10494-008-9151-5 – volume: 231 year: 2021 ident: 10.1016/j.buildenv.2022.109831_bib56 article-title: Analytical and numerical study on transient urban street air warming induced by anthropogenic heat emission publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110613 – volume: 51 start-page: 268 year: 2012 ident: 10.1016/j.buildenv.2022.109831_bib28 article-title: Effects of differential wall heating in street canyons on dispersion and ventilation characteristics of a passive scalar publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.01.010 – volume: 134–135 start-page: 177 year: 2016 ident: 10.1016/j.buildenv.2022.109831_bib22 article-title: A viscous sponge layer formulation for robust large eddy simulation of thermal plumes publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.05.019 – volume: 45 start-page: 7379 issue: 39 year: 2011 ident: 10.1016/j.buildenv.2022.109831_bib36 article-title: The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.07.008 – volume: 39 start-page: 3147 issue: 17 year: 2005 ident: 10.1016/j.buildenv.2022.109831_bib44 article-title: The spatial variability in concentrations of a traffic-related pollutant in two street canyons in York, UK-Part I: the influence of background winds publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2005.01.043 – volume: 104–106 start-page: 389 year: 2012 ident: 10.1016/j.buildenv.2022.109831_bib6 article-title: Effect of flow unsteadiness on the mean wind flow pattern in an idealized urban environment publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2012.01.007 – volume: 38 start-page: 1249 issue: 9 year: 1999 ident: 10.1016/j.buildenv.2022.109831_bib20 article-title: A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1999)038<1249:ANSOTE>2.0.CO;2 – volume: 203 year: 2021 ident: 10.1016/j.buildenv.2022.109831_bib13 article-title: Three-dimensional simulation of building thermal plumes merging in calm conditions: turbulence model evaluation and turbulence structure analysis publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108097 – volume: 149 start-page: 79 year: 2019 ident: 10.1016/j.buildenv.2022.109831_bib60 article-title: Experimental investigation of near-field stream-wise flow development and spatial structure in triple buoyant plumes publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.11.039 – volume: 38 start-page: 1262 issue: 9 year: 1999 ident: 10.1016/j.buildenv.2022.109831_bib41 article-title: Aerodynamic properties of urban areas derived from analysis of surface form publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2 – volume: 791 year: 2021 ident: 10.1016/j.buildenv.2022.109831_bib31 article-title: A numerical study of local traffic volume and air quality within urban street canyons publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148138 – volume: 44 start-page: 1894 issue: 15 year: 2010 ident: 10.1016/j.buildenv.2022.109831_bib7 article-title: City breathability and its link to pollutant concentration distribution within urban-like geometries publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.02.022 – volume: 26 start-page: 2243 issue: 15 year: 2006 ident: 10.1016/j.buildenv.2022.109831_bib39 article-title: Temporal dynamics of the urban heat island of Singapore publication-title: Int. J. Climatol. doi: 10.1002/joc.1364 – volume: 127 start-page: 624 issue: 6 year: 2005 ident: 10.1016/j.buildenv.2022.109831_bib23 article-title: Three-Dimensional characterization of a pure thermal plume publication-title: J. Heat Tran. doi: 10.1115/1.1863275 – volume: 43 start-page: 1404 issue: 8 year: 2008 ident: 10.1016/j.buildenv.2022.109831_bib5 article-title: On the estimation of wind speed in urban canyons for ventilation purposes-Part 1: coupling between the undisturbed wind speed and the canyon wind publication-title: Build. Environ. doi: 10.1016/j.buildenv.2007.01.041 – volume: 23 start-page: 1385 issue: 6 year: 1989 ident: 10.1016/j.buildenv.2022.109831_bib59 article-title: Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods publication-title: Atmos. Environ. doi: 10.1016/0004-6981(89)90161-3 – volume: 11 start-page: 1581 issue: 1 year: 2020 ident: 10.1016/j.buildenv.2022.109831_bib1 article-title: Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators publication-title: Nat. Commun. doi: 10.1038/s41467-020-15218-8 – volume: 99 start-page: 414 issue: 4 year: 2011 ident: 10.1016/j.buildenv.2022.109831_bib63 article-title: Evaluation of the ventilation potential of courtyards and urban street canyons using RANS and LES publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2010.12.012 – volume: 239 start-page: 204 year: 2019 ident: 10.1016/j.buildenv.2022.109831_bib51 article-title: A library for wall-modelled large-eddy simulation based on OpenFOAM technology publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2019.01.016 – volume: 35 start-page: 469 issue: 1 year: 2003 ident: 10.1016/j.buildenv.2022.109831_bib29 article-title: Flow and dispersion in urban areas publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.35.101101.161147 – volume: 71 start-page: 245 year: 2014 ident: 10.1016/j.buildenv.2022.109831_bib46 article-title: Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.10.008 – volume: 62 start-page: 40 issue: 1 year: 1986 ident: 10.1016/j.buildenv.2022.109831_bib54 article-title: Solution of the implicitly discretised fluid flow equations by operator-splitting publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(86)90099-9 – volume: 5 start-page: 647 issue: 7 year: 2015 ident: 10.1016/j.buildenv.2022.109831_bib2 article-title: Heat stress causes substantial labour productivity loss in Australia publication-title: Nat. Clim. Change doi: 10.1038/nclimate2623 – volume: 45 start-page: 1353 issue: 6 year: 2010 ident: 10.1016/j.buildenv.2022.109831_bib64 article-title: Wind conditions and ventilation in high-rise long street models publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.11.019 – volume: 87 start-page: 403 year: 2016 ident: 10.1016/j.buildenv.2022.109831_bib42 article-title: Wind resource assessment for urban renewable energy application in Singapore publication-title: Renew. Energy doi: 10.1016/j.renene.2015.10.010 – year: 2017 ident: 10.1016/j.buildenv.2022.109831_bib45 – volume: 82 start-page: 727 issue: 8 year: 2008 ident: 10.1016/j.buildenv.2022.109831_bib43 article-title: Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island publication-title: Sol. Energy doi: 10.1016/j.solener.2008.02.008 – volume: 3 start-page: 129 issue: 2 year: 2003 ident: 10.1016/j.buildenv.2022.109831_bib16 article-title: The modelling of turbulence from traffic in urban dispersion models - Part I: theoretical considerations publication-title: Environ. Fluid Mech. doi: 10.1023/A:1022063608237 – volume: 149 start-page: 592 year: 2019 ident: 10.1016/j.buildenv.2022.109831_bib12 article-title: Airborne pollutant dilution inside the deep street canyons subjecting to thermal buoyancy driven flows: effects of representative urban skylines publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.12.050 – volume: 502 start-page: 41 year: 2004 ident: 10.1016/j.buildenv.2022.109831_bib26 article-title: Coalescing axisymmetric turbulent plumes publication-title: J. Fluid Mech. doi: 10.1017/S0022112003007250 – volume: 383 start-page: 1581 issue: 9928 year: 2014 ident: 10.1016/j.buildenv.2022.109831_bib3 article-title: Outdoor air pollution and asthma publication-title: Lancet doi: 10.1016/S0140-6736(14)60617-6 – volume: 38 start-page: 5883 issue: 24 year: 2014 ident: 10.1016/j.buildenv.2022.109831_bib19 article-title: Numerical simulation of pollutant dispersion in street canyons: geometric and thermal effects publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.04.041 – year: 1980 ident: 10.1016/j.buildenv.2022.109831_bib55 – volume: 292 year: 2022 ident: 10.1016/j.buildenv.2022.109831_bib4 article-title: Association between gaseous air pollutants and biomarkers of systemic inflammation: a systematic review and meta-analysis publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.118336 – volume: 165 year: 2022 ident: 10.1016/j.buildenv.2022.109831_bib65 article-title: Infrared thermography in the built environment: a multi-scale review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112540 – volume: 207 year: 2020 ident: 10.1016/j.buildenv.2022.109831_bib14 article-title: Effect of atmospheric stability on air pollutant concentration and its generalization for real and idealized urban block models based on field observation data and wind tunnel experiments publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2020.104380 – volume: 37 start-page: 110 year: 2012 ident: 10.1016/j.buildenv.2022.109831_bib30 article-title: Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind tunnel data publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2012.03.009 – volume: 92 start-page: 152 year: 2015 ident: 10.1016/j.buildenv.2022.109831_bib10 article-title: CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.04.018 – volume: 147 start-page: 23 year: 2019 ident: 10.1016/j.buildenv.2022.109831_bib61 article-title: Local and non-local effects of building arrangements on pollutant fluxes within the urban canopy publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.09.023 |
SSID | ssj0016934 |
Score | 2.4705193 |
Snippet | This study explores the buoyancy effect on traffic pollutant dispersion at neighborhood scale, in which a wide range of wind-buoyancy ratios is examined.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109831 |
SubjectTerms | Buoyancy effect Extreme low wind Large-eddy simulation Neighborhood scale Traffic pollutant dispersion |
Title | Neighborhood scale traffic pollutant dispersion subject to different wind-buoyancy ratios: A LES case study in Singapore |
URI | https://dx.doi.org/10.1016/j.buildenv.2022.109831 |
Volume | 228 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF6kvbSH0ie1D5lDr2tem1dvIop9ebGCt7CbbEApUTT2celv70weYqHgoZcclgyE2WG-mc3O9zF2Z0vLsYRv4g5YAReJZ3KFT-7GqattKU0npdnhl6E3GIvHiTtpsG49C0PXKqvcX-b0IltXK0blTWMxnRojzL30owAjsuhraKJcCJ-ivP29ueZBXCMVhZTJ6e2tKeFZW5H0tM7esU-0bWJWChzrb4DaAp3-MTuqqkXolB90who6O2WHWxyCZ-xzSIebuJPETwwrdLmGfCmJGQIWpGNMMsGQTIkRnE7GYLVWdPYC-RxqdZQcPrA152o9_6JkC0VUrO6hA8-9EcQIdFDQ0MI0gxFpaGPRrs_ZuN977Q54JafAY8ThnDtSapI7T81Qaez6_NTzY1-qUCVugFCZeAGht41Fi62tMNZWohHXhJ1gzxRL4VywvWye6UsGWIUJ5fpC-1geYMUhw0QnWEjiiq2dWDWZW_swiiuucZK8eIvqS2WzqPZ9RL6PSt83mbGxW5RsGzstwnqLol9xEyEk7LC9-oftNTsg4Xk6jLHcG7aXL9f6FsuTXLWK-Gux_c7D02D4A5MM5l8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sHtoeSp_UPufQa2reMb2JKFo1FxW8hd1kBUuJorGPf98Zk4iFgodeclgYCLPDfDOzu98H8GQKwzJsT6cdMOqaHbu6JumrOdHUUaYQujXlt8ODwO2M7deJMylBs3gLw9cq89yf5fRNts5Xark3a4vZrDak3MsHBRSRm77GO4AKs1M5Zag0ur1OsD1McH0rZ5HSNTbYeSj89ixZfVolH9QqmiaTK9Ut42-M2sGd9imc5AUjNrJ_OoOSSs7heIdG8AK-Ap5v0mYyRTGuyOsK06VgcghcsJQxKwVjPGNScB6O4WotefyC6RwLgZQUP6k71-R6_s35FjeBsXrBBvZbQ4wI63DDRIuzBIcso011u7qEcbs1ana0XFFBiwiKU80SQrHi-VT3paLGz5u6XuQJ6cvYqRNaxm6dAdykusVUhh8pI1YEbbYZU9sUCdu6gnIyT9Q1IBVitnQ8W3lUIVDRIfxYxVRL0oqprEhWwSl8GEY53TirXryHxb2yt7Dwfci-DzPfV6G2tVtkhBt7Lfxii8JfoRMSKuyxvfmH7SMcdkaDftjvBr1bOGIdep7NGM4dlNPlWt1TtZLKhzwafwB5LukQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neighborhood+scale+traffic+pollutant+dispersion+subject+to+different+wind-buoyancy+ratios%3A+A+LES+case+study+in+Singapore&rft.jtitle=Building+and+environment&rft.au=Mei%2C+Shuo-Jun&rft.au=Zhao%2C+Yongling&rft.au=Talwar%2C+Tanya&rft.au=Carmeliet%2C+Jan&rft.date=2023-01-15&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=228&rft_id=info:doi/10.1016%2Fj.buildenv.2022.109831&rft.externalDocID=S0360132322010617 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |