Neighborhood scale traffic pollutant dispersion subject to different wind-buoyancy ratios: A LES case study in Singapore

This study explores the buoyancy effect on traffic pollutant dispersion at neighborhood scale, in which a wide range of wind-buoyancy ratios is examined. Pollutant dispersion is solved using a Large Eddy Simulation (LES) turbulence model, where realistic urban morphology and historical traffic pollu...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 228; p. 109831
Main Authors Mei, Shuo-Jun, Zhao, Yongling, Talwar, Tanya, Carmeliet, Jan, Yuan, Chao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study explores the buoyancy effect on traffic pollutant dispersion at neighborhood scale, in which a wide range of wind-buoyancy ratios is examined. Pollutant dispersion is solved using a Large Eddy Simulation (LES) turbulence model, where realistic urban morphology and historical traffic pollutant emission data are adopted. For no incoming wind condition, thermal plumes develop and entrain horizontal flow near ground level. This neighborhood scale buoyancy-driven flow leads to air pollutant dispersion, which is as strong as wind-driven dispersion in the target area. As a result, urban air pollutant accumulation is limited due to buoyancy, regardless of ambient wind conditions. A light incoming wind can flush upward thermal plumes downstream when the Richardson number (Ri) reaches 25.5. The interplay of the approaching wind and upward plumes from urban surfaces leads to an oscillatory flow, which intensifies local turbulence and enhances the pollutant removal rate. At the pedestrian level, the neighborhood scale average NO2 concentration due to the traffic emission ranges from 4.1μg/m3 to 4.8μg/m3. The minimum value is found for a weak incoming wind condition, (coupling with buoyancy, Ri = 25.5) and the maximum value is observed for the no incoming wind condition (Ri = ∞). The modelling result analysis clarifies how buoyancy-related dispersion, emission location, surrounding urban density, and incoming wind affect local pollutant concentrations. The research outputs highlight the importance of these coupling effects in the air pollutant dispersion evaluation in real urban areas. •Large variations in wind-buoyancy ratio (Ri=1.0∼∞) are considered.•Neighborhood scale buoyancy is strong enough to drive traffic pollutants removal.•Maximum urban air pollutant concentration is limited due to thermal buoyancy.•Minimum pollutant concentration is observed in light wind and strong buoyancy.•Pollutants at pedestrian level show little dependence on wind when heat condition is severe.
AbstractList This study explores the buoyancy effect on traffic pollutant dispersion at neighborhood scale, in which a wide range of wind-buoyancy ratios is examined. Pollutant dispersion is solved using a Large Eddy Simulation (LES) turbulence model, where realistic urban morphology and historical traffic pollutant emission data are adopted. For no incoming wind condition, thermal plumes develop and entrain horizontal flow near ground level. This neighborhood scale buoyancy-driven flow leads to air pollutant dispersion, which is as strong as wind-driven dispersion in the target area. As a result, urban air pollutant accumulation is limited due to buoyancy, regardless of ambient wind conditions. A light incoming wind can flush upward thermal plumes downstream when the Richardson number (Ri) reaches 25.5. The interplay of the approaching wind and upward plumes from urban surfaces leads to an oscillatory flow, which intensifies local turbulence and enhances the pollutant removal rate. At the pedestrian level, the neighborhood scale average NO2 concentration due to the traffic emission ranges from 4.1μg/m3 to 4.8μg/m3. The minimum value is found for a weak incoming wind condition, (coupling with buoyancy, Ri = 25.5) and the maximum value is observed for the no incoming wind condition (Ri = ∞). The modelling result analysis clarifies how buoyancy-related dispersion, emission location, surrounding urban density, and incoming wind affect local pollutant concentrations. The research outputs highlight the importance of these coupling effects in the air pollutant dispersion evaluation in real urban areas. •Large variations in wind-buoyancy ratio (Ri=1.0∼∞) are considered.•Neighborhood scale buoyancy is strong enough to drive traffic pollutants removal.•Maximum urban air pollutant concentration is limited due to thermal buoyancy.•Minimum pollutant concentration is observed in light wind and strong buoyancy.•Pollutants at pedestrian level show little dependence on wind when heat condition is severe.
ArticleNumber 109831
Author Zhao, Yongling
Mei, Shuo-Jun
Yuan, Chao
Talwar, Tanya
Carmeliet, Jan
Author_xml – sequence: 1
  givenname: Shuo-Jun
  orcidid: 0000-0002-4294-4005
  surname: Mei
  fullname: Mei, Shuo-Jun
  organization: Department of Architecture, National University of Singapore, Singapore
– sequence: 2
  givenname: Yongling
  surname: Zhao
  fullname: Zhao, Yongling
  organization: Department of Mechanical and Process Engineering, ETH Zürich, Switzerland
– sequence: 3
  givenname: Tanya
  orcidid: 0000-0001-7927-5426
  surname: Talwar
  fullname: Talwar, Tanya
  organization: Department of Architecture, National University of Singapore, Singapore
– sequence: 4
  givenname: Jan
  surname: Carmeliet
  fullname: Carmeliet, Jan
  organization: Department of Mechanical and Process Engineering, ETH Zürich, Switzerland
– sequence: 5
  givenname: Chao
  orcidid: 0000-0001-5404-5050
  surname: Yuan
  fullname: Yuan, Chao
  email: akiyuan@nus.edu.sg
  organization: Department of Architecture, National University of Singapore, Singapore
BookMark eNqFkMtKAzEUhoNUsK2-guQFpuYynYu4sJR6gaKLKrgLmeRMmzImJclU5-2dUt246erAf_h-zvlGaGCdBYSuKZlQQrOb7aRqTaPB7ieMMNaHZcHpGRrSIudJVqQfAzQkPCMJ5YxfoFEIW9KDJU-H6PsFzHpTOb9xTuOgZAM4elnXRuGda5o2ShuxNmEHPhhncWirLaiIo-vTugYP_f7LWJ1UreukVR32MhoXbvEMLxcrrGQAHGKrO2wsXhm7ljvn4RKd17IJcPU7x-j9YfE2f0qWr4_P89kyUSxlMeFSAs1pWpOyAkryvM5ylcuqrPS0ANA6KwpaTBnJOANaKqAaKOMp05SmSqZ8jO6Ovcq7EDzUQpl4OND2b5pGUCIOFsVW_FkUB4viaLHHs3_4zptP6bvT4P0RhP65vQEvgjJgFWjje39CO3Oq4geTWZWO
CitedBy_id crossref_primary_10_1016_j_scs_2022_104327
crossref_primary_10_1016_j_jweia_2024_105757
crossref_primary_10_1016_j_uclim_2024_102193
crossref_primary_10_1016_j_dib_2024_110467
crossref_primary_10_1016_j_buildenv_2024_111929
crossref_primary_10_1007_s12273_024_1210_x
crossref_primary_10_1016_j_buildenv_2023_110733
crossref_primary_10_3390_toxics11110927
crossref_primary_10_1016_j_buildenv_2024_111746
crossref_primary_10_1007_s11012_024_01826_x
crossref_primary_10_1016_j_buildenv_2025_112769
crossref_primary_10_1016_j_scs_2024_106022
crossref_primary_10_1016_j_uclim_2023_101659
crossref_primary_10_1016_j_buildenv_2024_112202
crossref_primary_10_1016_j_apenergy_2024_123205
crossref_primary_10_1016_j_buildenv_2023_111076
crossref_primary_10_1016_j_buildenv_2024_112285
crossref_primary_10_1016_j_scs_2024_105989
Cites_doi 10.1016/j.scitotenv.2016.05.150
10.1016/1352-2310(95)00321-5
10.1017/S0022112003005019
10.1007/s10546-015-0004-1
10.1016/j.enbuild.2022.112171
10.1016/j.scs.2019.101700
10.1016/0004-6981(73)90140-6
10.1016/j.buildenv.2012.03.023
10.1016/0167-6105(93)90124-7
10.1016/j.buildenv.2011.10.023
10.1504/IJEP.2011.038443
10.1016/j.scitotenv.2018.07.409
10.1016/j.compfluid.2015.02.018
10.1063/1.2813043
10.1016/j.buildenv.2017.12.035
10.1016/j.jweia.2020.104468
10.2514/8.3713
10.1016/j.scitotenv.2021.149067
10.1016/j.buildenv.2021.108708
10.1016/j.atmosenv.2020.118127
10.1016/j.jweia.2008.02.058
10.1016/j.buildenv.2018.06.015
10.1016/j.atmosenv.2008.02.032
10.1007/s10494-008-9151-5
10.1016/j.enbuild.2020.110613
10.1016/j.atmosenv.2012.01.010
10.1016/j.compfluid.2016.05.019
10.1016/j.atmosenv.2011.07.008
10.1016/j.atmosenv.2005.01.043
10.1016/j.jweia.2012.01.007
10.1175/1520-0450(1999)038<1249:ANSOTE>2.0.CO;2
10.1016/j.buildenv.2021.108097
10.1016/j.buildenv.2018.11.039
10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
10.1016/j.scitotenv.2021.148138
10.1016/j.atmosenv.2010.02.022
10.1002/joc.1364
10.1115/1.1863275
10.1016/j.buildenv.2007.01.041
10.1016/0004-6981(89)90161-3
10.1038/s41467-020-15218-8
10.1016/j.jweia.2010.12.012
10.1016/j.cpc.2019.01.016
10.1146/annurev.fluid.35.101101.161147
10.1016/j.buildenv.2013.10.008
10.1016/0021-9991(86)90099-9
10.1038/nclimate2623
10.1016/j.buildenv.2009.11.019
10.1016/j.renene.2015.10.010
10.1016/j.solener.2008.02.008
10.1023/A:1022063608237
10.1016/j.buildenv.2018.12.050
10.1017/S0022112003007250
10.1016/S0140-6736(14)60617-6
10.1016/j.apm.2014.04.041
10.1016/j.envpol.2021.118336
10.1016/j.rser.2022.112540
10.1016/j.jweia.2020.104380
10.1016/j.envsoft.2012.03.009
10.1016/j.buildenv.2015.04.018
10.1016/j.buildenv.2018.09.023
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.buildenv.2022.109831
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
ExternalDocumentID 10_1016_j_buildenv_2022_109831
S0360132322010617
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
SEW
SSH
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c242t-3aae1714f09be1077f67c7ab9bd58eedd68818520632e19ce1de12342d114ca43
IEDL.DBID .~1
ISSN 0360-1323
IngestDate Thu Apr 24 23:13:01 EDT 2025
Tue Jul 01 00:25:18 EDT 2025
Sat Apr 20 15:59:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Neighborhood scale
Extreme low wind
Buoyancy effect
Large-eddy simulation
Traffic pollutant dispersion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-3aae1714f09be1077f67c7ab9bd58eedd68818520632e19ce1de12342d114ca43
ORCID 0000-0001-5404-5050
0000-0002-4294-4005
0000-0001-7927-5426
ParticipantIDs crossref_citationtrail_10_1016_j_buildenv_2022_109831
crossref_primary_10_1016_j_buildenv_2022_109831
elsevier_sciencedirect_doi_10_1016_j_buildenv_2022_109831
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-15
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yuan, Shan, Zhang, Li, Yin, Hang, Norford (bib35) 2019; 647
Zhao, Li, Kubilay, Carmeliet (bib25) 2021; 797
Soulhac, Salizzoni, Cierco, Perkins (bib36) 2011; 45
Jiang, Yoshie (bib15) 2018; 142
Cai (bib28) 2012; 51
Mei, Yuan (bib13) 2021; 203
Buccolieri, Sandberg, Di Sabatino (bib7) 2010; 44
Goulart, Reis, Lavor, Castro, Santos, Xie (bib61) 2019; 147
Martin, Chong, Biljecki, Miller (bib65) 2022; 165
Hang, Li, Sandberg, Claesson (bib64) 2010; 45
Wang, Brimblecombe, Ngan (bib31) 2021; 791
Ramponi, Blocken, de Coo, Janssen (bib10) 2015; 92
Yuan, Ng (bib8) 2012; 50
Grimmond, Oke (bib41) 1999; 38
Britter, Hanna (bib29) 2003; 35
Madalozzo, Braun, Awruch, Morsch (bib19) 2014; 38
Xie, Castro (bib53) 2008; 81
Pant, Bhattacharya (bib22) 2016; 134–135
Lauriks, Longo, Baetens, Derudi, Parente, Bellemans, van Beeck, Denys (bib32) 2021; 246
Boddy, Smalley, Dixon, Tate, Tomlin (bib44) 2005; 39
Sini, Anquetin, Mestayer (bib18) 1996; 30
Mei, Yuan (bib56) 2021; 231
Belcher, Jerram, Hunt (bib33) 2003; 488
Georgakis, Santamouris (bib5) 2008; 43
Karthikeya, Negi, Srikanth (bib42) 2016; 87
Gousseau, Blocken, Stathopoulos, van Heijst (bib49) 2015; 114
Priyadarsini, Hien, Wai David (bib43) 2008; 82
Estoque, Ooba, Seposo, Togawa, Hijioka, Takahashi, Nakamura (bib1) 2020; 11
Solazzo, Cai, Vardoulakis (bib17) 2008; 42
Kaye, Linden (bib26) 2004; 502
Chow, Roth (bib39) 2006; 26
Kim, Baik (bib20) 1999; 38
Moonen, Dorer, Carmeliet (bib63) 2011; 99
Chang, Hanna (bib58) 2004; 87
Hu, Yoshie (bib14) 2020; 207
Van Driest (bib52) 1956; 23
Moonen, Dorer, Carmeliet (bib6) 2012; 104–106
Pham, Plourde, Doan (bib24) 2007; 19
Hilderman, Chong (bib57) 2007
Franke, Hellsten, Schlunzen, Carissimo (bib47) 2011; 44
Tominaga, Mochida, Yoshie, Kataoka, Nozu, Yoshikawa, Shirasawa (bib48) 2008; 96
Mei, Hu, Liu, Zhao, Li, Wang (bib12) 2019; 149
Mei, Hu, Liu, Zhao, Li, Wang (bib38) 2018; 131
Hanna (bib59) 1989; 23
Pham, Plourde, Kim (bib23) 2005; 127
Yuan, Ng, Norford (bib46) 2014; 71
Carpentieri, Salizzoni, Robins, Soulhac (bib30) 2012; 37
Suhas (bib55) 1980
Mei, Liu, Liu, Zhao, Wang, Li (bib21) 2016; 565
Richards, Hoxey (bib40) 1993; 46–47
Mei, Luo, Zhao, Wang (bib62) 2019; 50
Oke (bib37) 1973; 7
Mukha, Rezaeiravesh, Liefvendahl (bib51) 2019; 239
Cheng, Porté-Agel (bib34) 2015; 155
Issa (bib54) 1986; 62
Hang, Li, Sandberg, Buccolieri, Di Sabatino (bib11) 2012; 56
Di Sabatino, Kastner-Klein, Berkowicz, Britter, Fedorovich (bib16) 2003; 3
Yin, Li, Fan, Sandberg (bib60) 2019; 149
Mei, Yuan (bib50) 2022; 210
Zander, Botzen, Oppermann, Kjellstrom, Garnett (bib2) 2015; 5
Xu, Wang, Liu, Li, Lei, Ren, Deng, Guo, Wu (bib4) 2022; 292
Guarnieri, Balmes (bib3) 2014; 383
Kluková, Nosek, Fuka, Jaňour, Chaloupecká, Ďoubalová (bib9) 2021; 208
Yuan, Zhu, Tong, Mei, Zhu (bib27) 2022; 268
Williams, Minjares (bib45) 2017
Pant (10.1016/j.buildenv.2022.109831_bib22) 2016; 134–135
Hang (10.1016/j.buildenv.2022.109831_bib64) 2010; 45
Franke (10.1016/j.buildenv.2022.109831_bib47) 2011; 44
Lauriks (10.1016/j.buildenv.2022.109831_bib32) 2021; 246
Sini (10.1016/j.buildenv.2022.109831_bib18) 1996; 30
Mei (10.1016/j.buildenv.2022.109831_bib38) 2018; 131
Grimmond (10.1016/j.buildenv.2022.109831_bib41) 1999; 38
Zhao (10.1016/j.buildenv.2022.109831_bib25) 2021; 797
Yuan (10.1016/j.buildenv.2022.109831_bib46) 2014; 71
Hang (10.1016/j.buildenv.2022.109831_bib11) 2012; 56
Mei (10.1016/j.buildenv.2022.109831_bib13) 2021; 203
Richards (10.1016/j.buildenv.2022.109831_bib40) 1993; 46–47
Yuan (10.1016/j.buildenv.2022.109831_bib8) 2012; 50
Soulhac (10.1016/j.buildenv.2022.109831_bib36) 2011; 45
Kluková (10.1016/j.buildenv.2022.109831_bib9) 2021; 208
Jiang (10.1016/j.buildenv.2022.109831_bib15) 2018; 142
Ramponi (10.1016/j.buildenv.2022.109831_bib10) 2015; 92
Mei (10.1016/j.buildenv.2022.109831_bib50) 2022; 210
Chow (10.1016/j.buildenv.2022.109831_bib39) 2006; 26
Yin (10.1016/j.buildenv.2022.109831_bib60) 2019; 149
Carpentieri (10.1016/j.buildenv.2022.109831_bib30) 2012; 37
Pham (10.1016/j.buildenv.2022.109831_bib23) 2005; 127
Moonen (10.1016/j.buildenv.2022.109831_bib63) 2011; 99
Hanna (10.1016/j.buildenv.2022.109831_bib59) 1989; 23
Mei (10.1016/j.buildenv.2022.109831_bib21) 2016; 565
Wang (10.1016/j.buildenv.2022.109831_bib31) 2021; 791
Cheng (10.1016/j.buildenv.2022.109831_bib34) 2015; 155
Belcher (10.1016/j.buildenv.2022.109831_bib33) 2003; 488
Xu (10.1016/j.buildenv.2022.109831_bib4) 2022; 292
Moonen (10.1016/j.buildenv.2022.109831_bib6) 2012; 104–106
Issa (10.1016/j.buildenv.2022.109831_bib54) 1986; 62
Yuan (10.1016/j.buildenv.2022.109831_bib27) 2022; 268
Goulart (10.1016/j.buildenv.2022.109831_bib61) 2019; 147
Van Driest (10.1016/j.buildenv.2022.109831_bib52) 1956; 23
Suhas (10.1016/j.buildenv.2022.109831_bib55) 1980
Estoque (10.1016/j.buildenv.2022.109831_bib1) 2020; 11
Georgakis (10.1016/j.buildenv.2022.109831_bib5) 2008; 43
Xie (10.1016/j.buildenv.2022.109831_bib53) 2008; 81
Madalozzo (10.1016/j.buildenv.2022.109831_bib19) 2014; 38
Kaye (10.1016/j.buildenv.2022.109831_bib26) 2004; 502
Gousseau (10.1016/j.buildenv.2022.109831_bib49) 2015; 114
Mei (10.1016/j.buildenv.2022.109831_bib62) 2019; 50
Oke (10.1016/j.buildenv.2022.109831_bib37) 1973; 7
Yuan (10.1016/j.buildenv.2022.109831_bib35) 2019; 647
Hu (10.1016/j.buildenv.2022.109831_bib14) 2020; 207
Kim (10.1016/j.buildenv.2022.109831_bib20) 1999; 38
Mukha (10.1016/j.buildenv.2022.109831_bib51) 2019; 239
Tominaga (10.1016/j.buildenv.2022.109831_bib48) 2008; 96
Solazzo (10.1016/j.buildenv.2022.109831_bib17) 2008; 42
Cai (10.1016/j.buildenv.2022.109831_bib28) 2012; 51
Karthikeya (10.1016/j.buildenv.2022.109831_bib42) 2016; 87
Williams (10.1016/j.buildenv.2022.109831_bib45) 2017
Chang (10.1016/j.buildenv.2022.109831_bib58) 2004; 87
Buccolieri (10.1016/j.buildenv.2022.109831_bib7) 2010; 44
Guarnieri (10.1016/j.buildenv.2022.109831_bib3) 2014; 383
Di Sabatino (10.1016/j.buildenv.2022.109831_bib16) 2003; 3
Mei (10.1016/j.buildenv.2022.109831_bib56) 2021; 231
Britter (10.1016/j.buildenv.2022.109831_bib29) 2003; 35
Martin (10.1016/j.buildenv.2022.109831_bib65) 2022; 165
Priyadarsini (10.1016/j.buildenv.2022.109831_bib43) 2008; 82
Pham (10.1016/j.buildenv.2022.109831_bib24) 2007; 19
Hilderman (10.1016/j.buildenv.2022.109831_bib57) 2007
Zander (10.1016/j.buildenv.2022.109831_bib2) 2015; 5
Mei (10.1016/j.buildenv.2022.109831_bib12) 2019; 149
Boddy (10.1016/j.buildenv.2022.109831_bib44) 2005; 39
References_xml – volume: 92
  start-page: 152
  year: 2015
  end-page: 166
  ident: bib10
  article-title: CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths
  publication-title: Build. Environ.
– volume: 23
  start-page: 1385
  year: 1989
  end-page: 1398
  ident: bib59
  article-title: Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods
  publication-title: Atmos. Environ.
– volume: 45
  start-page: 7379
  year: 2011
  end-page: 7395
  ident: bib36
  article-title: The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model
  publication-title: Atmos. Environ.
– volume: 131
  start-page: 32
  year: 2018
  end-page: 43
  ident: bib38
  article-title: Thermal buoyancy driven canyon airflows inside the compact urban blocks saturated with very weak synoptic wind: plume merging mechanism
  publication-title: Build. Environ.
– year: 1980
  ident: bib55
  article-title: Numerical Heat Transfer and Fluid Flow
– volume: 207
  year: 2020
  ident: bib14
  article-title: Effect of atmospheric stability on air pollutant concentration and its generalization for real and idealized urban block models based on field observation data and wind tunnel experiments
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 46–47
  start-page: 145
  year: 1993
  end-page: 153
  ident: bib40
  article-title: Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 231
  year: 2021
  ident: bib56
  article-title: Analytical and numerical study on transient urban street air warming induced by anthropogenic heat emission
  publication-title: Energy Build.
– volume: 45
  start-page: 1353
  year: 2010
  end-page: 1365
  ident: bib64
  article-title: Wind conditions and ventilation in high-rise long street models
  publication-title: Build. Environ.
– volume: 149
  start-page: 79
  year: 2019
  end-page: 89
  ident: bib60
  article-title: Experimental investigation of near-field stream-wise flow development and spatial structure in triple buoyant plumes
  publication-title: Build. Environ.
– volume: 81
  start-page: 449
  year: 2008
  end-page: 470
  ident: bib53
  article-title: Efficient generation of inflow conditions for large eddy simulation of street-scale flows
  publication-title: Flow, Turbul. Combust.
– volume: 62
  start-page: 40
  year: 1986
  end-page: 65
  ident: bib54
  article-title: Solution of the implicitly discretised fluid flow equations by operator-splitting
  publication-title: J. Comput. Phys.
– volume: 42
  start-page: 4918
  year: 2008
  end-page: 4931
  ident: bib17
  article-title: Modelling wind flow and vehicle-induced turbulence in urban streets
  publication-title: Atmos. Environ.
– volume: 210
  year: 2022
  ident: bib50
  article-title: Urban buoyancy-driven air flow and modelling method: a critical review
  publication-title: Build. Environ.
– volume: 50
  start-page: 176
  year: 2012
  end-page: 189
  ident: bib8
  article-title: Building porosity for better urban ventilation in high-density cities - a computational parametric study
  publication-title: Build. Environ.
– volume: 23
  start-page: 1007
  year: 1956
  end-page: 1011
  ident: bib52
  article-title: On turbulent flow near a wall
  publication-title: J. Aeronaut. Sci.
– volume: 114
  start-page: 151
  year: 2015
  end-page: 162
  ident: bib49
  article-title: Near-field pollutant dispersion in an actual urban area: analysis of the mass transport mechanism by high-resolution Large Eddy Simulations
  publication-title: Comput. Fluids
– volume: 565
  start-page: 1102
  year: 2016
  end-page: 1115
  ident: bib21
  article-title: Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications
  publication-title: Sci. Total Environ.
– volume: 142
  start-page: 47
  year: 2018
  end-page: 57
  ident: bib15
  article-title: Large-eddy simulation of flow and pollutant dispersion in a 3D urban street model located in an unstable boundary layer
  publication-title: Build. Environ.
– volume: 791
  year: 2021
  ident: bib31
  article-title: A numerical study of local traffic volume and air quality within urban street canyons
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 1404
  year: 2008
  end-page: 1410
  ident: bib5
  article-title: On the estimation of wind speed in urban canyons for ventilation purposes-Part 1: coupling between the undisturbed wind speed and the canyon wind
  publication-title: Build. Environ.
– volume: 11
  start-page: 1581
  year: 2020
  ident: bib1
  article-title: Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators
  publication-title: Nat. Commun.
– volume: 38
  start-page: 1262
  year: 1999
  ident: bib41
  article-title: Aerodynamic properties of urban areas derived from analysis of surface form
  publication-title: J. Appl. Meteorol.
– volume: 147
  start-page: 23
  year: 2019
  end-page: 34
  ident: bib61
  article-title: Local and non-local effects of building arrangements on pollutant fluxes within the urban canopy
  publication-title: Build. Environ.
– volume: 7
  start-page: 769
  year: 1973
  end-page: 779
  ident: bib37
  article-title: City size and the urban heat island
  publication-title: Atmos. Environ.
– volume: 38
  start-page: 1249
  year: 1999
  end-page: 1261
  ident: bib20
  article-title: A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons
  publication-title: J. Appl. Meteorol.
– volume: 19
  year: 2007
  ident: bib24
  article-title: Direct and large-eddy simulations of a pure thermal plume
  publication-title: Phys. Fluids
– volume: 239
  start-page: 204
  year: 2019
  end-page: 224
  ident: bib51
  article-title: A library for wall-modelled large-eddy simulation based on OpenFOAM technology
  publication-title: Comput. Phys. Commun.
– volume: 134–135
  start-page: 177
  year: 2016
  end-page: 189
  ident: bib22
  article-title: A viscous sponge layer formulation for robust large eddy simulation of thermal plumes
  publication-title: Comput. Fluids
– volume: 50
  year: 2019
  ident: bib62
  article-title: Street canyon ventilation and airborne pollutant dispersion: 2-D versus 3-D CFD simulations
  publication-title: Sustain. Cities Soc.
– volume: 208
  year: 2021
  ident: bib9
  article-title: The combining effect of the roof shape, roof-height non-uniformity and source position on the pollutant transport between a street canyon and 3D urban array
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 51
  start-page: 268
  year: 2012
  end-page: 277
  ident: bib28
  article-title: Effects of differential wall heating in street canyons on dispersion and ventilation characteristics of a passive scalar
  publication-title: Atmos. Environ.
– volume: 37
  start-page: 110
  year: 2012
  end-page: 124
  ident: bib30
  article-title: Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind tunnel data
  publication-title: Environ. Model. Software
– volume: 96
  start-page: 1749
  year: 2008
  end-page: 1761
  ident: bib48
  article-title: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 502
  start-page: 41
  year: 2004
  end-page: 63
  ident: bib26
  article-title: Coalescing axisymmetric turbulent plumes
  publication-title: J. Fluid Mech.
– volume: 268
  year: 2022
  ident: bib27
  article-title: Impact of anthropogenic heat from air-conditioning on air temperature of naturally ventilated apartments at high-density tropical cities
  publication-title: Energy Build.
– volume: 44
  start-page: 419
  year: 2011
  end-page: 427
  ident: bib47
  article-title: The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary
  publication-title: Int. J. Environ. Pollut.
– year: 2007
  ident: bib57
  article-title: A Laboratory Study of Momentum and Passive Scalar Transport and Diffusion within and above a Model Urban Canopy - Final Report Defence R & D Canada
– volume: 99
  start-page: 414
  year: 2011
  end-page: 423
  ident: bib63
  article-title: Evaluation of the ventilation potential of courtyards and urban street canyons using RANS and LES
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 26
  start-page: 2243
  year: 2006
  end-page: 2260
  ident: bib39
  article-title: Temporal dynamics of the urban heat island of Singapore
  publication-title: Int. J. Climatol.
– volume: 203
  year: 2021
  ident: bib13
  article-title: Three-dimensional simulation of building thermal plumes merging in calm conditions: turbulence model evaluation and turbulence structure analysis
  publication-title: Build. Environ.
– volume: 647
  start-page: 255
  year: 2019
  end-page: 267
  ident: bib35
  article-title: Multilayer urban canopy modelling and mapping for traffic pollutant dispersion at high density urban areas
  publication-title: Sci. Total Environ.
– volume: 30
  start-page: 2659
  year: 1996
  end-page: 2677
  ident: bib18
  article-title: Pollutant dispersion and thermal effects in urban street canyons
  publication-title: Atmos. Environ.
– volume: 87
  start-page: 403
  year: 2016
  end-page: 414
  ident: bib42
  article-title: Wind resource assessment for urban renewable energy application in Singapore
  publication-title: Renew. Energy
– volume: 71
  start-page: 245
  year: 2014
  end-page: 258
  ident: bib46
  article-title: Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies
  publication-title: Build. Environ.
– volume: 149
  start-page: 592
  year: 2019
  end-page: 606
  ident: bib12
  article-title: Airborne pollutant dilution inside the deep street canyons subjecting to thermal buoyancy driven flows: effects of representative urban skylines
  publication-title: Build. Environ.
– volume: 35
  start-page: 469
  year: 2003
  end-page: 496
  ident: bib29
  article-title: Flow and dispersion in urban areas
  publication-title: Annu. Rev. Fluid Mech.
– volume: 246
  year: 2021
  ident: bib32
  article-title: Application of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban street
  publication-title: Atmos. Environ.
– volume: 104–106
  start-page: 389
  year: 2012
  end-page: 396
  ident: bib6
  article-title: Effect of flow unsteadiness on the mean wind flow pattern in an idealized urban environment
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 5
  start-page: 647
  year: 2015
  end-page: 651
  ident: bib2
  article-title: Heat stress causes substantial labour productivity loss in Australia
  publication-title: Nat. Clim. Change
– year: 2017
  ident: bib45
  article-title: A Technical Summary of Euro 6/VI Vehicle Emission Standards
– volume: 38
  start-page: 5883
  year: 2014
  end-page: 5909
  ident: bib19
  article-title: Numerical simulation of pollutant dispersion in street canyons: geometric and thermal effects
  publication-title: Appl. Math. Model.
– volume: 39
  start-page: 3147
  year: 2005
  end-page: 3161
  ident: bib44
  article-title: The spatial variability in concentrations of a traffic-related pollutant in two street canyons in York, UK-Part I: the influence of background winds
  publication-title: Atmos. Environ.
– volume: 44
  start-page: 1894
  year: 2010
  end-page: 1903
  ident: bib7
  article-title: City breathability and its link to pollutant concentration distribution within urban-like geometries
  publication-title: Atmos. Environ.
– volume: 87
  start-page: 167
  year: 2004
  end-page: 196
  ident: bib58
  article-title: Air quality model performance evaluation
  publication-title: Meteorol. Atmos. Phys.
– volume: 292
  year: 2022
  ident: bib4
  article-title: Association between gaseous air pollutants and biomarkers of systemic inflammation: a systematic review and meta-analysis
  publication-title: Environ. Pollut.
– volume: 56
  start-page: 346
  year: 2012
  end-page: 360
  ident: bib11
  article-title: The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas
  publication-title: Build. Environ.
– volume: 165
  year: 2022
  ident: bib65
  article-title: Infrared thermography in the built environment: a multi-scale review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 127
  start-page: 624
  year: 2005
  end-page: 636
  ident: bib23
  article-title: Three-Dimensional characterization of a pure thermal plume
  publication-title: J. Heat Tran.
– volume: 488
  start-page: 369
  year: 2003
  end-page: 398
  ident: bib33
  article-title: Adjustment of a turbulent boundary layer to a canopy of roughness elements
  publication-title: J. Fluid Mech.
– volume: 383
  start-page: 1581
  year: 2014
  end-page: 1592
  ident: bib3
  article-title: Outdoor air pollution and asthma
  publication-title: Lancet
– volume: 155
  start-page: 249
  year: 2015
  end-page: 270
  ident: bib34
  article-title: Adjustment of turbulent boundary-layer flow to idealized urban surfaces: a large-eddy simulation study
  publication-title: Boundary-Layer Meteorol.
– volume: 82
  start-page: 727
  year: 2008
  end-page: 745
  ident: bib43
  article-title: Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island
  publication-title: Sol. Energy
– volume: 797
  year: 2021
  ident: bib25
  article-title: Buoyancy effects on the flows around flat and steep street canyons in simplified urban settings subject to a neutral approaching boundary layer: wind tunnel PIV measurements
  publication-title: Sci. Total Environ.
– volume: 3
  start-page: 129
  year: 2003
  end-page: 143
  ident: bib16
  article-title: The modelling of turbulence from traffic in urban dispersion models - Part I: theoretical considerations
  publication-title: Environ. Fluid Mech.
– volume: 565
  start-page: 1102
  year: 2016
  ident: 10.1016/j.buildenv.2022.109831_bib21
  article-title: Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.05.150
– volume: 30
  start-page: 2659
  issue: 15
  year: 1996
  ident: 10.1016/j.buildenv.2022.109831_bib18
  article-title: Pollutant dispersion and thermal effects in urban street canyons
  publication-title: Atmos. Environ.
  doi: 10.1016/1352-2310(95)00321-5
– volume: 488
  start-page: 369
  year: 2003
  ident: 10.1016/j.buildenv.2022.109831_bib33
  article-title: Adjustment of a turbulent boundary layer to a canopy of roughness elements
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003005019
– volume: 155
  start-page: 249
  issue: 2
  year: 2015
  ident: 10.1016/j.buildenv.2022.109831_bib34
  article-title: Adjustment of turbulent boundary-layer flow to idealized urban surfaces: a large-eddy simulation study
  publication-title: Boundary-Layer Meteorol.
  doi: 10.1007/s10546-015-0004-1
– volume: 268
  year: 2022
  ident: 10.1016/j.buildenv.2022.109831_bib27
  article-title: Impact of anthropogenic heat from air-conditioning on air temperature of naturally ventilated apartments at high-density tropical cities
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112171
– volume: 87
  start-page: 167
  issue: 1
  year: 2004
  ident: 10.1016/j.buildenv.2022.109831_bib58
  article-title: Air quality model performance evaluation
  publication-title: Meteorol. Atmos. Phys.
– volume: 50
  year: 2019
  ident: 10.1016/j.buildenv.2022.109831_bib62
  article-title: Street canyon ventilation and airborne pollutant dispersion: 2-D versus 3-D CFD simulations
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101700
– year: 2007
  ident: 10.1016/j.buildenv.2022.109831_bib57
– volume: 7
  start-page: 769
  issue: 8
  year: 1973
  ident: 10.1016/j.buildenv.2022.109831_bib37
  article-title: City size and the urban heat island
  publication-title: Atmos. Environ.
  doi: 10.1016/0004-6981(73)90140-6
– volume: 56
  start-page: 346
  year: 2012
  ident: 10.1016/j.buildenv.2022.109831_bib11
  article-title: The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.03.023
– volume: 46–47
  start-page: 145
  year: 1993
  ident: 10.1016/j.buildenv.2022.109831_bib40
  article-title: Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/0167-6105(93)90124-7
– volume: 50
  start-page: 176
  year: 2012
  ident: 10.1016/j.buildenv.2022.109831_bib8
  article-title: Building porosity for better urban ventilation in high-density cities - a computational parametric study
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2011.10.023
– volume: 44
  start-page: 419
  issue: 1–4
  year: 2011
  ident: 10.1016/j.buildenv.2022.109831_bib47
  article-title: The COST 732 Best Practice Guideline for CFD simulation of flows in the urban environment: a summary
  publication-title: Int. J. Environ. Pollut.
  doi: 10.1504/IJEP.2011.038443
– volume: 647
  start-page: 255
  year: 2019
  ident: 10.1016/j.buildenv.2022.109831_bib35
  article-title: Multilayer urban canopy modelling and mapping for traffic pollutant dispersion at high density urban areas
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.409
– volume: 114
  start-page: 151
  year: 2015
  ident: 10.1016/j.buildenv.2022.109831_bib49
  article-title: Near-field pollutant dispersion in an actual urban area: analysis of the mass transport mechanism by high-resolution Large Eddy Simulations
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.02.018
– volume: 19
  issue: 12
  year: 2007
  ident: 10.1016/j.buildenv.2022.109831_bib24
  article-title: Direct and large-eddy simulations of a pure thermal plume
  publication-title: Phys. Fluids
  doi: 10.1063/1.2813043
– volume: 131
  start-page: 32
  year: 2018
  ident: 10.1016/j.buildenv.2022.109831_bib38
  article-title: Thermal buoyancy driven canyon airflows inside the compact urban blocks saturated with very weak synoptic wind: plume merging mechanism
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.12.035
– volume: 208
  year: 2021
  ident: 10.1016/j.buildenv.2022.109831_bib9
  article-title: The combining effect of the roof shape, roof-height non-uniformity and source position on the pollutant transport between a street canyon and 3D urban array
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2020.104468
– volume: 23
  start-page: 1007
  issue: 11
  year: 1956
  ident: 10.1016/j.buildenv.2022.109831_bib52
  article-title: On turbulent flow near a wall
  publication-title: J. Aeronaut. Sci.
  doi: 10.2514/8.3713
– volume: 797
  year: 2021
  ident: 10.1016/j.buildenv.2022.109831_bib25
  article-title: Buoyancy effects on the flows around flat and steep street canyons in simplified urban settings subject to a neutral approaching boundary layer: wind tunnel PIV measurements
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149067
– volume: 210
  year: 2022
  ident: 10.1016/j.buildenv.2022.109831_bib50
  article-title: Urban buoyancy-driven air flow and modelling method: a critical review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108708
– volume: 246
  year: 2021
  ident: 10.1016/j.buildenv.2022.109831_bib32
  article-title: Application of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban street
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2020.118127
– volume: 96
  start-page: 1749
  issue: 10
  year: 2008
  ident: 10.1016/j.buildenv.2022.109831_bib48
  article-title: AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2008.02.058
– volume: 142
  start-page: 47
  year: 2018
  ident: 10.1016/j.buildenv.2022.109831_bib15
  article-title: Large-eddy simulation of flow and pollutant dispersion in a 3D urban street model located in an unstable boundary layer
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.06.015
– volume: 42
  start-page: 4918
  issue: 20
  year: 2008
  ident: 10.1016/j.buildenv.2022.109831_bib17
  article-title: Modelling wind flow and vehicle-induced turbulence in urban streets
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.02.032
– volume: 81
  start-page: 449
  issue: 3
  year: 2008
  ident: 10.1016/j.buildenv.2022.109831_bib53
  article-title: Efficient generation of inflow conditions for large eddy simulation of street-scale flows
  publication-title: Flow, Turbul. Combust.
  doi: 10.1007/s10494-008-9151-5
– volume: 231
  year: 2021
  ident: 10.1016/j.buildenv.2022.109831_bib56
  article-title: Analytical and numerical study on transient urban street air warming induced by anthropogenic heat emission
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110613
– volume: 51
  start-page: 268
  year: 2012
  ident: 10.1016/j.buildenv.2022.109831_bib28
  article-title: Effects of differential wall heating in street canyons on dispersion and ventilation characteristics of a passive scalar
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.01.010
– volume: 134–135
  start-page: 177
  year: 2016
  ident: 10.1016/j.buildenv.2022.109831_bib22
  article-title: A viscous sponge layer formulation for robust large eddy simulation of thermal plumes
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2016.05.019
– volume: 45
  start-page: 7379
  issue: 39
  year: 2011
  ident: 10.1016/j.buildenv.2022.109831_bib36
  article-title: The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.07.008
– volume: 39
  start-page: 3147
  issue: 17
  year: 2005
  ident: 10.1016/j.buildenv.2022.109831_bib44
  article-title: The spatial variability in concentrations of a traffic-related pollutant in two street canyons in York, UK-Part I: the influence of background winds
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2005.01.043
– volume: 104–106
  start-page: 389
  year: 2012
  ident: 10.1016/j.buildenv.2022.109831_bib6
  article-title: Effect of flow unsteadiness on the mean wind flow pattern in an idealized urban environment
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2012.01.007
– volume: 38
  start-page: 1249
  issue: 9
  year: 1999
  ident: 10.1016/j.buildenv.2022.109831_bib20
  article-title: A numerical study of thermal effects on flow and pollutant dispersion in urban street canyons
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1999)038<1249:ANSOTE>2.0.CO;2
– volume: 203
  year: 2021
  ident: 10.1016/j.buildenv.2022.109831_bib13
  article-title: Three-dimensional simulation of building thermal plumes merging in calm conditions: turbulence model evaluation and turbulence structure analysis
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108097
– volume: 149
  start-page: 79
  year: 2019
  ident: 10.1016/j.buildenv.2022.109831_bib60
  article-title: Experimental investigation of near-field stream-wise flow development and spatial structure in triple buoyant plumes
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.11.039
– volume: 38
  start-page: 1262
  issue: 9
  year: 1999
  ident: 10.1016/j.buildenv.2022.109831_bib41
  article-title: Aerodynamic properties of urban areas derived from analysis of surface form
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
– volume: 791
  year: 2021
  ident: 10.1016/j.buildenv.2022.109831_bib31
  article-title: A numerical study of local traffic volume and air quality within urban street canyons
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.148138
– volume: 44
  start-page: 1894
  issue: 15
  year: 2010
  ident: 10.1016/j.buildenv.2022.109831_bib7
  article-title: City breathability and its link to pollutant concentration distribution within urban-like geometries
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.02.022
– volume: 26
  start-page: 2243
  issue: 15
  year: 2006
  ident: 10.1016/j.buildenv.2022.109831_bib39
  article-title: Temporal dynamics of the urban heat island of Singapore
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1364
– volume: 127
  start-page: 624
  issue: 6
  year: 2005
  ident: 10.1016/j.buildenv.2022.109831_bib23
  article-title: Three-Dimensional characterization of a pure thermal plume
  publication-title: J. Heat Tran.
  doi: 10.1115/1.1863275
– volume: 43
  start-page: 1404
  issue: 8
  year: 2008
  ident: 10.1016/j.buildenv.2022.109831_bib5
  article-title: On the estimation of wind speed in urban canyons for ventilation purposes-Part 1: coupling between the undisturbed wind speed and the canyon wind
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2007.01.041
– volume: 23
  start-page: 1385
  issue: 6
  year: 1989
  ident: 10.1016/j.buildenv.2022.109831_bib59
  article-title: Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods
  publication-title: Atmos. Environ.
  doi: 10.1016/0004-6981(89)90161-3
– volume: 11
  start-page: 1581
  issue: 1
  year: 2020
  ident: 10.1016/j.buildenv.2022.109831_bib1
  article-title: Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15218-8
– volume: 99
  start-page: 414
  issue: 4
  year: 2011
  ident: 10.1016/j.buildenv.2022.109831_bib63
  article-title: Evaluation of the ventilation potential of courtyards and urban street canyons using RANS and LES
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2010.12.012
– volume: 239
  start-page: 204
  year: 2019
  ident: 10.1016/j.buildenv.2022.109831_bib51
  article-title: A library for wall-modelled large-eddy simulation based on OpenFOAM technology
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2019.01.016
– volume: 35
  start-page: 469
  issue: 1
  year: 2003
  ident: 10.1016/j.buildenv.2022.109831_bib29
  article-title: Flow and dispersion in urban areas
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.35.101101.161147
– volume: 71
  start-page: 245
  year: 2014
  ident: 10.1016/j.buildenv.2022.109831_bib46
  article-title: Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.10.008
– volume: 62
  start-page: 40
  issue: 1
  year: 1986
  ident: 10.1016/j.buildenv.2022.109831_bib54
  article-title: Solution of the implicitly discretised fluid flow equations by operator-splitting
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(86)90099-9
– volume: 5
  start-page: 647
  issue: 7
  year: 2015
  ident: 10.1016/j.buildenv.2022.109831_bib2
  article-title: Heat stress causes substantial labour productivity loss in Australia
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2623
– volume: 45
  start-page: 1353
  issue: 6
  year: 2010
  ident: 10.1016/j.buildenv.2022.109831_bib64
  article-title: Wind conditions and ventilation in high-rise long street models
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.11.019
– volume: 87
  start-page: 403
  year: 2016
  ident: 10.1016/j.buildenv.2022.109831_bib42
  article-title: Wind resource assessment for urban renewable energy application in Singapore
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.10.010
– year: 2017
  ident: 10.1016/j.buildenv.2022.109831_bib45
– volume: 82
  start-page: 727
  issue: 8
  year: 2008
  ident: 10.1016/j.buildenv.2022.109831_bib43
  article-title: Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2008.02.008
– volume: 3
  start-page: 129
  issue: 2
  year: 2003
  ident: 10.1016/j.buildenv.2022.109831_bib16
  article-title: The modelling of turbulence from traffic in urban dispersion models - Part I: theoretical considerations
  publication-title: Environ. Fluid Mech.
  doi: 10.1023/A:1022063608237
– volume: 149
  start-page: 592
  year: 2019
  ident: 10.1016/j.buildenv.2022.109831_bib12
  article-title: Airborne pollutant dilution inside the deep street canyons subjecting to thermal buoyancy driven flows: effects of representative urban skylines
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.12.050
– volume: 502
  start-page: 41
  year: 2004
  ident: 10.1016/j.buildenv.2022.109831_bib26
  article-title: Coalescing axisymmetric turbulent plumes
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003007250
– volume: 383
  start-page: 1581
  issue: 9928
  year: 2014
  ident: 10.1016/j.buildenv.2022.109831_bib3
  article-title: Outdoor air pollution and asthma
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60617-6
– volume: 38
  start-page: 5883
  issue: 24
  year: 2014
  ident: 10.1016/j.buildenv.2022.109831_bib19
  article-title: Numerical simulation of pollutant dispersion in street canyons: geometric and thermal effects
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.04.041
– year: 1980
  ident: 10.1016/j.buildenv.2022.109831_bib55
– volume: 292
  year: 2022
  ident: 10.1016/j.buildenv.2022.109831_bib4
  article-title: Association between gaseous air pollutants and biomarkers of systemic inflammation: a systematic review and meta-analysis
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.118336
– volume: 165
  year: 2022
  ident: 10.1016/j.buildenv.2022.109831_bib65
  article-title: Infrared thermography in the built environment: a multi-scale review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112540
– volume: 207
  year: 2020
  ident: 10.1016/j.buildenv.2022.109831_bib14
  article-title: Effect of atmospheric stability on air pollutant concentration and its generalization for real and idealized urban block models based on field observation data and wind tunnel experiments
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2020.104380
– volume: 37
  start-page: 110
  year: 2012
  ident: 10.1016/j.buildenv.2022.109831_bib30
  article-title: Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind tunnel data
  publication-title: Environ. Model. Software
  doi: 10.1016/j.envsoft.2012.03.009
– volume: 92
  start-page: 152
  year: 2015
  ident: 10.1016/j.buildenv.2022.109831_bib10
  article-title: CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.04.018
– volume: 147
  start-page: 23
  year: 2019
  ident: 10.1016/j.buildenv.2022.109831_bib61
  article-title: Local and non-local effects of building arrangements on pollutant fluxes within the urban canopy
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.09.023
SSID ssj0016934
Score 2.4705193
Snippet This study explores the buoyancy effect on traffic pollutant dispersion at neighborhood scale, in which a wide range of wind-buoyancy ratios is examined....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109831
SubjectTerms Buoyancy effect
Extreme low wind
Large-eddy simulation
Neighborhood scale
Traffic pollutant dispersion
Title Neighborhood scale traffic pollutant dispersion subject to different wind-buoyancy ratios: A LES case study in Singapore
URI https://dx.doi.org/10.1016/j.buildenv.2022.109831
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF6kvbSH0ie1D5lDr2tem1dvIop9ebGCt7CbbEApUTT2celv70weYqHgoZcclgyE2WG-mc3O9zF2Z0vLsYRv4g5YAReJZ3KFT-7GqattKU0npdnhl6E3GIvHiTtpsG49C0PXKqvcX-b0IltXK0blTWMxnRojzL30owAjsuhraKJcCJ-ivP29ueZBXCMVhZTJ6e2tKeFZW5H0tM7esU-0bWJWChzrb4DaAp3-MTuqqkXolB90who6O2WHWxyCZ-xzSIebuJPETwwrdLmGfCmJGQIWpGNMMsGQTIkRnE7GYLVWdPYC-RxqdZQcPrA152o9_6JkC0VUrO6hA8-9EcQIdFDQ0MI0gxFpaGPRrs_ZuN977Q54JafAY8ThnDtSapI7T81Qaez6_NTzY1-qUCVugFCZeAGht41Fi62tMNZWohHXhJ1gzxRL4VywvWye6UsGWIUJ5fpC-1geYMUhw0QnWEjiiq2dWDWZW_swiiuucZK8eIvqS2WzqPZ9RL6PSt83mbGxW5RsGzstwnqLol9xEyEk7LC9-oftNTsg4Xk6jLHcG7aXL9f6FsuTXLWK-Gux_c7D02D4A5MM5l8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEB6sHtoeSp_UPufQa2reMb2JKFo1FxW8hd1kBUuJorGPf98Zk4iFgodeclgYCLPDfDOzu98H8GQKwzJsT6cdMOqaHbu6JumrOdHUUaYQujXlt8ODwO2M7deJMylBs3gLw9cq89yf5fRNts5Xark3a4vZrDak3MsHBRSRm77GO4AKs1M5Zag0ur1OsD1McH0rZ5HSNTbYeSj89ixZfVolH9QqmiaTK9Ut42-M2sGd9imc5AUjNrJ_OoOSSs7heIdG8AK-Ap5v0mYyRTGuyOsK06VgcghcsJQxKwVjPGNScB6O4WotefyC6RwLgZQUP6k71-R6_s35FjeBsXrBBvZbQ4wI63DDRIuzBIcso011u7qEcbs1ana0XFFBiwiKU80SQrHi-VT3paLGz5u6XuQJ6cvYqRNaxm6dAdykusVUhh8pI1YEbbYZU9sUCdu6gnIyT9Q1IBVitnQ8W3lUIVDRIfxYxVRL0oqprEhWwSl8GEY53TirXryHxb2yt7Dwfci-DzPfV6G2tVtkhBt7Lfxii8JfoRMSKuyxvfmH7SMcdkaDftjvBr1bOGIdep7NGM4dlNPlWt1TtZLKhzwafwB5LukQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neighborhood+scale+traffic+pollutant+dispersion+subject+to+different+wind-buoyancy+ratios%3A+A+LES+case+study+in+Singapore&rft.jtitle=Building+and+environment&rft.au=Mei%2C+Shuo-Jun&rft.au=Zhao%2C+Yongling&rft.au=Talwar%2C+Tanya&rft.au=Carmeliet%2C+Jan&rft.date=2023-01-15&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=228&rft_id=info:doi/10.1016%2Fj.buildenv.2022.109831&rft.externalDocID=S0360132322010617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon