Noise Reduction of Lung Sounds based on Singular Spectrum Analysis combined with Discrete Cosine Transform
•Lung sound analysis plays an essential role in diagnosing lung diseases.•Bronchovesicular and vesicular breath sounds are normal lung sounds heardposteriorly.•Noise removal is necessary for enhancing the respiratory sound signals.•Singular Spectrum Analysis (SSA) decomposes the breathing sounds.•Th...
Saved in:
Published in | Applied acoustics Vol. 199; p. 109005 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Lung sound analysis plays an essential role in diagnosing lung diseases.•Bronchovesicular and vesicular breath sounds are normal lung sounds heardposteriorly.•Noise removal is necessary for enhancing the respiratory sound signals.•Singular Spectrum Analysis (SSA) decomposes the breathing sounds.•The SSA combined with Discrete Cosine Transform can denoise the pulmonary sounds.
Lung sound signals are sensitive to environmental noise. Much research has been conducted on the enhancement of pulmonary sound. This study investigated the normal lung sounds as bronchovesicular (BV) and vesicular (V) signals and proposed a novel denoising method called SSA-DCT. Using Singular Spectrum Analysis (SSA), the noise-related components were separated from respiratory information components. An algorithm was also proposed to determine the information and noise time interval, and by applying Discrete Cosine Transform (DCT), the signal energy was attenuated in the noise intervals. Moreover, the concept of safety component, which is secure against noise, was introduced. Then, an algorithm for automatic identification of BV and V signals using the safety component was presented. The error of this algorithm at SNR of 10 dB was 5%. Lung sounds were recorded from 12 healthy subjects using four channels over the posterior chest wall. The signals were recorded in an acoustic laboratory and then contaminated with additive white Gaussian noise with different levels of SNR. The respiratory signals were also recorded in a relatively quiet environment with real ambient noise and denoised by the proposed method. The proposed method was compared with Coiflet wavelet decomposition with hard SureShrink thresholding. The denoising performance of both methods was evaluated using qualitative and quantitative approaches. The SSA-DCT method (e.g., at an SNR level of 10 dB) with average segmental SNR improvements of 2.52 and 3.44 dB for the BV and V signals, respectively, is significantly superior to the wavelet analysis with average segmental SNR improvements of 0.89 and 1.53 dB for the BV and V signals, respectively. |
---|---|
AbstractList | •Lung sound analysis plays an essential role in diagnosing lung diseases.•Bronchovesicular and vesicular breath sounds are normal lung sounds heardposteriorly.•Noise removal is necessary for enhancing the respiratory sound signals.•Singular Spectrum Analysis (SSA) decomposes the breathing sounds.•The SSA combined with Discrete Cosine Transform can denoise the pulmonary sounds.
Lung sound signals are sensitive to environmental noise. Much research has been conducted on the enhancement of pulmonary sound. This study investigated the normal lung sounds as bronchovesicular (BV) and vesicular (V) signals and proposed a novel denoising method called SSA-DCT. Using Singular Spectrum Analysis (SSA), the noise-related components were separated from respiratory information components. An algorithm was also proposed to determine the information and noise time interval, and by applying Discrete Cosine Transform (DCT), the signal energy was attenuated in the noise intervals. Moreover, the concept of safety component, which is secure against noise, was introduced. Then, an algorithm for automatic identification of BV and V signals using the safety component was presented. The error of this algorithm at SNR of 10 dB was 5%. Lung sounds were recorded from 12 healthy subjects using four channels over the posterior chest wall. The signals were recorded in an acoustic laboratory and then contaminated with additive white Gaussian noise with different levels of SNR. The respiratory signals were also recorded in a relatively quiet environment with real ambient noise and denoised by the proposed method. The proposed method was compared with Coiflet wavelet decomposition with hard SureShrink thresholding. The denoising performance of both methods was evaluated using qualitative and quantitative approaches. The SSA-DCT method (e.g., at an SNR level of 10 dB) with average segmental SNR improvements of 2.52 and 3.44 dB for the BV and V signals, respectively, is significantly superior to the wavelet analysis with average segmental SNR improvements of 0.89 and 1.53 dB for the BV and V signals, respectively. |
ArticleNumber | 109005 |
Author | Vali, Mansour Modaresi, Mohammadreza Abbasi Baharanchi, Shahrzad |
Author_xml | – sequence: 1 givenname: Shahrzad surname: Abbasi Baharanchi fullname: Abbasi Baharanchi, Shahrzad organization: Speech and Sound Processing Lab. (SSPL), Department of Biomedical Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran – sequence: 2 givenname: Mansour surname: Vali fullname: Vali, Mansour email: mansour.vali@eetd.kntu.ac.ir organization: Speech and Sound Processing Lab. (SSPL), Department of Biomedical Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran – sequence: 3 givenname: Mohammadreza surname: Modaresi fullname: Modaresi, Mohammadreza organization: Pediatric Pulmonary Disease and Sleep Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran |
BookMark | eNqFkNtKAzEQhoNUsK2-guQFtubQPYEXlnqEomAr9C5ks5OapZuUZFfp25tSvfGmV8P8zPfDfCM0sM4CQteUTCih2U0zkTupXB-6CSOMxbAkJD1DQ1rkLCkpWQ_QkBDCk6xg6ws0CqGJK2FpOkTNqzMB8DvUveqMs9hpvOjtBi9db-uAKxmgxjFfGrvpt9Lj5Q5U5_sWz6zc7oMJWLm2MjaefZvuE9-boDx0gOcuxBSvvLRBO99eonMttwGufucYfTw-rObPyeLt6WU-WySKTVmXMM5rDTLn01IrztOcUUZ0RXVZVXUBeZqBIppTRauyItMCCpbzkmVQ6rLgJOdjlB17lXcheNBi500r_V5QIg7GRCP-jImDMXE0FsHbf6AynTxY6bw029P43RGH-NyXAS-CMmAV1MZHZaJ25lTFD3FYj84 |
CitedBy_id | crossref_primary_10_2298_CSIS240804005H crossref_primary_10_1016_j_bspc_2025_107525 crossref_primary_10_1016_j_compbiomed_2023_107153 crossref_primary_10_1177_10775463231172344 crossref_primary_10_4103_nah_nah_98_24 |
Cites_doi | 10.1109/TBME.2017.2717280 10.1109/ICMLC.2016.7872940 10.1152/jappl.1982.53.3.603 10.1016/S0167-6393(98)00019-3 10.1109/TBME.2005.846706 10.1016/j.bspc.2015.02.005 10.4137/CCRPM.S530 10.3390/app7010009 10.1109/TBME.2015.2422698 10.1088/1757-899X/190/1/012040 10.1016/j.irbm.2018.11.004 10.1109/ICBEM.1998.666370 10.1007/s40857-017-0109-4 10.1159/000181147 10.7150/ijbs.29863 10.1109/TBME.2011.2162728 10.3844/ajassp.2014.24.37 10.1109/TBME.2005.846717 10.1136/thx.50.12.1292 10.1063/1.4891822 10.1109/ICASID.2016.7873913 10.1109/EMBC.2017.8037470 10.7150/ijbs.33274 10.1016/j.bspc.2013.10.009 10.1186/2193-1801-2-512 10.1152/jappl.1981.50.2.307 10.1109/ICPC2T48082.2020.9071438 10.1109/MWSCAS.2018.8624069 10.1201/9781420035841 10.1371/journal.pone.0177926 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apacoust.2022.109005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1872-910X |
ExternalDocumentID | 10_1016_j_apacoust_2022_109005 S0003682X22003796 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K VH1 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c242t-233dfea7349fc33572120fb1f9bbd8e756ec0f31c1b9b048e8273926e9f983073 |
IEDL.DBID | .~1 |
ISSN | 0003-682X |
IngestDate | Tue Jul 01 01:45:19 EDT 2025 Thu Apr 24 23:05:29 EDT 2025 Fri Feb 23 02:39:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Singular Spectrum Analysis (SSA) Singular Value Decomposition (SVD) Lung sound denoising Safety component Respiratory sounds Discrete Cosine Transform (DCT) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c242t-233dfea7349fc33572120fb1f9bbd8e756ec0f31c1b9b048e8273926e9f983073 |
ParticipantIDs | crossref_primary_10_1016_j_apacoust_2022_109005 crossref_citationtrail_10_1016_j_apacoust_2022_109005 elsevier_sciencedirect_doi_10_1016_j_apacoust_2022_109005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Applied acoustics |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hadjileontiadis (b0035) 2007 Feb; 26 Molaie, Jafari, Moradi, Sprott, Golpayegani (b0040) 2014 Mar; 1 Chang GC. A comparative analysis of various respiratory sound denoising methods. In2016 International Conference on Machine Learning and Cybernetics (ICMLC) 2016 Jul 10 (Vol. 2, pp. 514-518). IEEE. 10.1109/icmlc.2016.7872940. Emmanouilidou, McCollum, Park, Elhilali (b0050) 2017 Jun 19; 65 Gavriely, Palti, Alroy (b0175) 1981 Feb 1; 50 Rao, Huynh, Royston, Kornblith, Roy (b0010) 2018 Oct; 29 Romero, Alonso, Cubero, Galán-Marín (b0125) 2015 Apr; 1 Mondal, Bhattacharya, Saha (b0200) 2013 Dec; 2 Hadjileontiadis (b0025) 2005 May 16; 52 Venkatesh S, Narayan N, Bharathwaaj KS, Jeeva M, Vijayalakshmi P. Modified DCT Based Speech Enhancement In Vehicular Environments. International Journal of Advances in Electronics and Computer Science-IJAECS. 2014 Dec;1(2):54-8. S2CID 212460348. Li L, Xu W, Hong Q, Tong F, Wu J. Adaptive noise cancellation and classification of lung sounds under practical environment. In2016 10th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID) 2016 Sep 23 (pp. 39-42). IEEE. 10.1109/icasid.2016.7873913. Karimizadeh, Vali, Modaresi (b0155) 2021 Feb; 1 Emmanouilidou, McCollum, Park, Elhilali (b0045) 2015 Apr 13; 62 Ulukaya S, Serbes G, Kahya YP. Performance comparison of wavelet based denoising methods on discontinuous adventitious lung sounds. In2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2017 Jul 11 (pp. 2928-2931). IEEE. 10.1109/embc.2017.8037470. Meng, Wang, Shi, Zhao (b0090) 2019; 15 Ghaderi, Mohseni, Sanei (b0115) 2011 Jul 21; 58 Balaji, Subramanian (b0150) 2014 Jan 1; 11 Cheng, Zhang (b0195) 2014 Aug 6; 4 Lu, Lei, Shen, Wang, Tseng (b0185) 2017 Jan; 7 Haider, Periyasamy, Joshi, Singh (b0075) 2018 Nov; 29 Soon, Koh, Yeo (b0130) 1998 Jun 1; 24 Becker (b0170) 2009; 77 Pramono, Bowyer, Rodriguez-Villegas, Penzel (b0005) 2017 May 26; 12 Reichert, Gass, Brandt, Andrès (b0015) 2008; 2 Kraman (b0165) 1983 Oct; 128 Gavriely, Nissan, Rubin, Cugell (b0180) 1995 Dec 1; 50 Hadjileontiadis (b0030) 2005 May 16; 52 Golyandina N, Nekrutkin V, Zhigljavsky AA. Analysis of time series structure: SSA and related techniques. CRC press; 2001 Jan 23. 10.1201/9781420035841 . Shi, Li, Cai, Zhang (b0095) 2019; 15 Pouyani, Vali, Ghasemi (b0110) 2022 Feb; 1 Bahoura M, Ezzaidi H. Hardware Implementation of the Dual-Channel Spectral Subtraction Method for Lung Sounds Denoising. In2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) 2018 Aug 5 (pp. 516-519). IEEE. 10.1109/mwscas.2018.8624069. Haider (b0105) 2021 Feb; 1 Bahoura M, Hubin M, Ketata M. Respiratory sounds denoising using wavelet packets. InProceedings of the 2nd International Conference on Bioelectromagnetism (Cat. No. 98TH8269) 1998 Feb 15 (pp. 11-12). IEEE. 10.1109/icbem.1998.666370. Syahputra MF, Situmeang SI, Rahmat RF, Budiarto R. Noise reduction in breath sound files using wavelet transform based filter. InIOP Conference Series: Materials Science and Engineering 2017 Apr 1 (Vol. 190, No. 1, p. 012040). IOP Publishing. 10.11591/eecsi.v3i1.1148. O'Donnell, Kraman (b0160) 1982 Sep 1; 53 Singh D, Singh BK, Behera AK. Comparative analysis of Lung sound denoising technique. In2020 First International Conference on Power, Control and Computing Technologies (ICPC2T) 2020 Jan 3 (pp. 406-410). IEEE. 10.1109/icpc2t48082.2020.9071438. Lu, Hsueh, Wu (b0065) 2017 Aug; 45 Deng C. Time Series Decomposition Using Singular Spectrum Analysis [dissertation]. East Tennessee State University; 2014. https://dc.etsu.edu/etd/2352. Vondrasek M, Pollak P. Methods for speech SNR estimation: Evaluation tool and analysis of VAD dependency. Radioengineering. 2005 Apr 1;14(1):6-11. S2CID 45774640. Mortezaee, Mortezaie, Abolghasemi (b0120) 2019 Feb 1; 40 10.1016/j.apacoust.2022.109005_b0100 Balaji (10.1016/j.apacoust.2022.109005_b0150) 2014; 11 Pramono (10.1016/j.apacoust.2022.109005_b0005) 2017; 12 10.1016/j.apacoust.2022.109005_b0145 Rao (10.1016/j.apacoust.2022.109005_b0010) 2018; 29 Haider (10.1016/j.apacoust.2022.109005_b0105) 2021; 1 10.1016/j.apacoust.2022.109005_b0080 Mondal (10.1016/j.apacoust.2022.109005_b0200) 2013; 2 10.1016/j.apacoust.2022.109005_b0060 Hadjileontiadis (10.1016/j.apacoust.2022.109005_b0030) 2005; 52 10.1016/j.apacoust.2022.109005_b0085 10.1016/j.apacoust.2022.109005_b0140 Cheng (10.1016/j.apacoust.2022.109005_b0195) 2014; 4 Gavriely (10.1016/j.apacoust.2022.109005_b0180) 1995; 50 Kraman (10.1016/j.apacoust.2022.109005_b0165) 1983; 128 10.1016/j.apacoust.2022.109005_b0020 Becker (10.1016/j.apacoust.2022.109005_b0170) 2009; 77 Pouyani (10.1016/j.apacoust.2022.109005_b0110) 2022; 1 Hadjileontiadis (10.1016/j.apacoust.2022.109005_b0025) 2005; 52 Reichert (10.1016/j.apacoust.2022.109005_b0015) 2008; 2 10.1016/j.apacoust.2022.109005_b0055 Gavriely (10.1016/j.apacoust.2022.109005_b0175) 1981; 50 10.1016/j.apacoust.2022.109005_b0135 Emmanouilidou (10.1016/j.apacoust.2022.109005_b0045) 2015; 62 Meng (10.1016/j.apacoust.2022.109005_b0090) 2019; 15 Lu (10.1016/j.apacoust.2022.109005_b0185) 2017; 7 Haider (10.1016/j.apacoust.2022.109005_b0075) 2018; 29 10.1016/j.apacoust.2022.109005_b0070 Mortezaee (10.1016/j.apacoust.2022.109005_b0120) 2019; 40 10.1016/j.apacoust.2022.109005_b0190 Karimizadeh (10.1016/j.apacoust.2022.109005_b0155) 2021; 1 Lu (10.1016/j.apacoust.2022.109005_b0065) 2017; 45 Hadjileontiadis (10.1016/j.apacoust.2022.109005_b0035) 2007; 26 Romero (10.1016/j.apacoust.2022.109005_b0125) 2015; 1 Ghaderi (10.1016/j.apacoust.2022.109005_b0115) 2011; 58 Emmanouilidou (10.1016/j.apacoust.2022.109005_b0050) 2017; 65 O'Donnell (10.1016/j.apacoust.2022.109005_b0160) 1982; 53 Molaie (10.1016/j.apacoust.2022.109005_b0040) 2014; 1 Shi (10.1016/j.apacoust.2022.109005_b0095) 2019; 15 Soon (10.1016/j.apacoust.2022.109005_b0130) 1998; 24 |
References_xml | – volume: 45 start-page: 381 year: 2017 Aug end-page: 387 ident: b0065 article-title: Reducing the ambulance siren noise for distant auscultation of the lung sound publication-title: Acoustics Australia – volume: 50 start-page: 1292 year: 1995 Dec 1 end-page: 1300 ident: b0180 article-title: Spectral characteristics of chest wall breath sounds in normal subjects publication-title: Thorax – volume: 24 start-page: 249 year: 1998 Jun 1 end-page: 257 ident: b0130 article-title: Noisy speech enhancement using discrete cosine transform publication-title: Speech Commun. – volume: 29 start-page: 61 year: 2018 Nov ident: b0075 article-title: Savitzky-Golay filter for denoising lung sound publication-title: Brazilian Archives of Biology and Technology – reference: Golyandina N, Nekrutkin V, Zhigljavsky AA. Analysis of time series structure: SSA and related techniques. CRC press; 2001 Jan 23. 10.1201/9781420035841 . – volume: 2 start-page: CCRPM.S530 year: 2008 ident: b0015 article-title: Analysis of respiratory sounds: state of the art publication-title: Clinical medicine Circulatory, respiratory and pulmonary medicine – volume: 1 start-page: 245 year: 2014 Mar end-page: 249 ident: b0040 article-title: A chaotic viewpoint on noise reduction from respiratory sounds publication-title: Biomed. Signal Process. Control – reference: Ulukaya S, Serbes G, Kahya YP. Performance comparison of wavelet based denoising methods on discontinuous adventitious lung sounds. In2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2017 Jul 11 (pp. 2928-2931). IEEE. 10.1109/embc.2017.8037470. – volume: 7 start-page: 9 year: 2017 Jan ident: b0185 article-title: Estimation of noise magnitude for speech denoising using minima-controlled-recursive-averaging algorithm adapted by harmonic properties publication-title: Appl Sci – reference: Vondrasek M, Pollak P. Methods for speech SNR estimation: Evaluation tool and analysis of VAD dependency. Radioengineering. 2005 Apr 1;14(1):6-11. S2CID 45774640. – volume: 58 start-page: 3360 year: 2011 Jul 21 end-page: 3367 ident: b0115 article-title: Localizing heart sounds in respiratory signals using singular spectrum analysis publication-title: IEEE Trans. Biomed. Eng. – volume: 2 start-page: 1 year: 2013 Dec end-page: 14 ident: b0200 article-title: An automated tool for localization of heart sound components S1, S2, S3 and S4 in pulmonary sounds using Hilbert transform and Heron’s formula publication-title: SpringerPlus – volume: 1 start-page: 317 year: 2015 Apr end-page: 324 ident: b0125 article-title: An automatic SSA-based de-noising and smoothing technique for surface electromyography signals publication-title: Biomed. Signal Process. Control – reference: Venkatesh S, Narayan N, Bharathwaaj KS, Jeeva M, Vijayalakshmi P. Modified DCT Based Speech Enhancement In Vehicular Environments. International Journal of Advances in Electronics and Computer Science-IJAECS. 2014 Dec;1(2):54-8. S2CID 212460348. – volume: 26 start-page: 30 year: 2007 Feb end-page: 39 ident: b0035 article-title: Empirical mode decomposition and fractal dimension filter publication-title: IEEE Eng. Med. Biol. Mag. – reference: Chang GC. A comparative analysis of various respiratory sound denoising methods. In2016 International Conference on Machine Learning and Cybernetics (ICMLC) 2016 Jul 10 (Vol. 2, pp. 514-518). IEEE. 10.1109/icmlc.2016.7872940. – volume: 12 start-page: e0177926 year: 2017 May 26 ident: b0005 article-title: Automatic adventitious respiratory sound analysis: A systematic review publication-title: PLoS ONE – volume: 52 start-page: 1050 year: 2005 May 16 end-page: 1064 ident: b0030 article-title: Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding-Part II: Application results publication-title: IEEE Trans. Biomed. Eng. – volume: 65 start-page: 1564 year: 2017 Jun 19 end-page: 1574 ident: b0050 article-title: Computerized lung sound screening for pediatric auscultation in noisy field environments publication-title: IEEE Trans. Biomed. Eng. – volume: 40 start-page: 62 year: 2019 Feb 1 end-page: 68 ident: b0120 article-title: An improved SSA-based technique for EMG removal from ECG publication-title: IRBM – volume: 77 start-page: 236 year: 2009 end-page: 239 ident: b0170 article-title: Vibration response imaging-finally a real stethoscope publication-title: Respiration – volume: 1 year: 2021 Feb ident: b0105 article-title: Respiratory sound denoising using Empirical Mode Decomposition, Hurst analysis and Spectral Subtraction publication-title: Biomed. Signal Process. Control – reference: Deng C. Time Series Decomposition Using Singular Spectrum Analysis [dissertation]. East Tennessee State University; 2014. https://dc.etsu.edu/etd/2352. – reference: Singh D, Singh BK, Behera AK. Comparative analysis of Lung sound denoising technique. In2020 First International Conference on Power, Control and Computing Technologies (ICPC2T) 2020 Jan 3 (pp. 406-410). IEEE. 10.1109/icpc2t48082.2020.9071438. – volume: 1 year: 2021 Feb ident: b0155 article-title: Multichannel lung sound analysis to detect severity of lung disease in cystic fibrosis publication-title: Biomed. Signal Process. Control – volume: 52 start-page: 1143 year: 2005 May 16 end-page: 1148 ident: b0025 article-title: Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding-Part I: Methodology publication-title: IEEE Trans. Biomed. Eng. – reference: Bahoura M, Ezzaidi H. Hardware Implementation of the Dual-Channel Spectral Subtraction Method for Lung Sounds Denoising. In2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) 2018 Aug 5 (pp. 516-519). IEEE. 10.1109/mwscas.2018.8624069. – volume: 128 start-page: 622 year: 1983 Oct end-page: 626 ident: b0165 article-title: Does the vesicular lung sound come only from the lungs? publication-title: Am Review of Respiratory Disease – volume: 29 start-page: 221 year: 2018 Oct end-page: 239 ident: b0010 article-title: Acoustic methods for pulmonary diagnosis publication-title: IEEE Rev. Biomed. Eng. – volume: 1 year: 2022 Feb ident: b0110 article-title: Lung sound signal denoising using discrete wavelet transform and artificial neural network publication-title: Biomed. Signal Process. Control – volume: 53 start-page: 603 year: 1982 Sep 1 end-page: 609 ident: b0160 article-title: Vesicular lung sound amplitude mapping by automated flow-gated phonopneumography publication-title: J. Appl. Physiol. – volume: 15 start-page: 195 year: 2019 end-page: 207 ident: b0095 article-title: A lung sound category recognition method based on wavelet decomposition and BP neural network publication-title: International journal of biological sciences – reference: Syahputra MF, Situmeang SI, Rahmat RF, Budiarto R. Noise reduction in breath sound files using wavelet transform based filter. InIOP Conference Series: Materials Science and Engineering 2017 Apr 1 (Vol. 190, No. 1, p. 012040). IOP Publishing. 10.11591/eecsi.v3i1.1148. – volume: 15 start-page: 1921 year: 2019 end-page: 1932 ident: b0090 article-title: A kind of integrated serial algorithms for noise reduction and characteristics expanding in respiratory sound publication-title: International journal of biological sciences – volume: 50 start-page: 307 year: 1981 Feb 1 end-page: 314 ident: b0175 article-title: Spectral characteristics of normal breath sounds publication-title: J Appl Physiol – volume: 11 start-page: 24 year: 2014 Jan 1 end-page: 37 ident: b0150 article-title: A novel speech enhancement approach based on modified DCT and improved pitch synchronous analysis publication-title: Am J Appl Sci – volume: 4 year: 2014 Aug 6 ident: b0195 article-title: Denoising method of heart sound signals based on self-construct heart sound wavelet publication-title: AIP Adv. – reference: Bahoura M, Hubin M, Ketata M. Respiratory sounds denoising using wavelet packets. InProceedings of the 2nd International Conference on Bioelectromagnetism (Cat. No. 98TH8269) 1998 Feb 15 (pp. 11-12). IEEE. 10.1109/icbem.1998.666370. – volume: 62 start-page: 2279 year: 2015 Apr 13 end-page: 2288 ident: b0045 article-title: Adaptive noise suppression of pediatric lung auscultations with real applications to noisy clinical settings in developing countries publication-title: IEEE Trans. Biomed. Eng. – reference: Li L, Xu W, Hong Q, Tong F, Wu J. Adaptive noise cancellation and classification of lung sounds under practical environment. In2016 10th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID) 2016 Sep 23 (pp. 39-42). IEEE. 10.1109/icasid.2016.7873913. – volume: 65 start-page: 1564 issue: 7 year: 2017 ident: 10.1016/j.apacoust.2022.109005_b0050 article-title: Computerized lung sound screening for pediatric auscultation in noisy field environments publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2717280 – ident: 10.1016/j.apacoust.2022.109005_b0055 doi: 10.1109/ICMLC.2016.7872940 – volume: 53 start-page: 603 issue: 3 year: 1982 ident: 10.1016/j.apacoust.2022.109005_b0160 article-title: Vesicular lung sound amplitude mapping by automated flow-gated phonopneumography publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1982.53.3.603 – ident: 10.1016/j.apacoust.2022.109005_b0140 – volume: 24 start-page: 249 issue: 3 year: 1998 ident: 10.1016/j.apacoust.2022.109005_b0130 article-title: Noisy speech enhancement using discrete cosine transform publication-title: Speech Commun. doi: 10.1016/S0167-6393(98)00019-3 – volume: 52 start-page: 1143 issue: 6 year: 2005 ident: 10.1016/j.apacoust.2022.109005_b0025 article-title: Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding-Part I: Methodology publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.846706 – volume: 1 start-page: 317 issue: 18 year: 2015 ident: 10.1016/j.apacoust.2022.109005_b0125 article-title: An automatic SSA-based de-noising and smoothing technique for surface electromyography signals publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.02.005 – volume: 2 start-page: CCRPM.S530 year: 2008 ident: 10.1016/j.apacoust.2022.109005_b0015 article-title: Analysis of respiratory sounds: state of the art publication-title: Clinical medicine Circulatory, respiratory and pulmonary medicine doi: 10.4137/CCRPM.S530 – volume: 7 start-page: 9 issue: 1 year: 2017 ident: 10.1016/j.apacoust.2022.109005_b0185 article-title: Estimation of noise magnitude for speech denoising using minima-controlled-recursive-averaging algorithm adapted by harmonic properties publication-title: Appl Sci doi: 10.3390/app7010009 – volume: 62 start-page: 2279 issue: 9 year: 2015 ident: 10.1016/j.apacoust.2022.109005_b0045 article-title: Adaptive noise suppression of pediatric lung auscultations with real applications to noisy clinical settings in developing countries publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2422698 – ident: 10.1016/j.apacoust.2022.109005_b0070 doi: 10.1088/1757-899X/190/1/012040 – volume: 40 start-page: 62 issue: 1 year: 2019 ident: 10.1016/j.apacoust.2022.109005_b0120 article-title: An improved SSA-based technique for EMG removal from ECG publication-title: IRBM doi: 10.1016/j.irbm.2018.11.004 – ident: 10.1016/j.apacoust.2022.109005_b0020 doi: 10.1109/ICBEM.1998.666370 – volume: 1 issue: 64 year: 2021 ident: 10.1016/j.apacoust.2022.109005_b0105 article-title: Respiratory sound denoising using Empirical Mode Decomposition, Hurst analysis and Spectral Subtraction publication-title: Biomed. Signal Process. Control – volume: 45 start-page: 381 issue: 2 year: 2017 ident: 10.1016/j.apacoust.2022.109005_b0065 article-title: Reducing the ambulance siren noise for distant auscultation of the lung sound publication-title: Acoustics Australia doi: 10.1007/s40857-017-0109-4 – volume: 128 start-page: 622 issue: 4 year: 1983 ident: 10.1016/j.apacoust.2022.109005_b0165 article-title: Does the vesicular lung sound come only from the lungs? publication-title: Am Review of Respiratory Disease – volume: 77 start-page: 236 issue: 2 year: 2009 ident: 10.1016/j.apacoust.2022.109005_b0170 article-title: Vibration response imaging-finally a real stethoscope publication-title: Respiration doi: 10.1159/000181147 – volume: 15 start-page: 195 issue: 1 year: 2019 ident: 10.1016/j.apacoust.2022.109005_b0095 article-title: A lung sound category recognition method based on wavelet decomposition and BP neural network publication-title: International journal of biological sciences doi: 10.7150/ijbs.29863 – volume: 58 start-page: 3360 issue: 12 year: 2011 ident: 10.1016/j.apacoust.2022.109005_b0115 article-title: Localizing heart sounds in respiratory signals using singular spectrum analysis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2162728 – ident: 10.1016/j.apacoust.2022.109005_b0135 – volume: 29 start-page: 61 year: 2018 ident: 10.1016/j.apacoust.2022.109005_b0075 article-title: Savitzky-Golay filter for denoising lung sound publication-title: Brazilian Archives of Biology and Technology – volume: 11 start-page: 24 issue: 1 year: 2014 ident: 10.1016/j.apacoust.2022.109005_b0150 article-title: A novel speech enhancement approach based on modified DCT and improved pitch synchronous analysis publication-title: Am J Appl Sci doi: 10.3844/ajassp.2014.24.37 – volume: 52 start-page: 1050 issue: 6 year: 2005 ident: 10.1016/j.apacoust.2022.109005_b0030 article-title: Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding-Part II: Application results publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.846717 – volume: 50 start-page: 1292 issue: 12 year: 1995 ident: 10.1016/j.apacoust.2022.109005_b0180 article-title: Spectral characteristics of chest wall breath sounds in normal subjects publication-title: Thorax doi: 10.1136/thx.50.12.1292 – volume: 4 issue: 8 year: 2014 ident: 10.1016/j.apacoust.2022.109005_b0195 article-title: Denoising method of heart sound signals based on self-construct heart sound wavelet publication-title: AIP Adv. doi: 10.1063/1.4891822 – ident: 10.1016/j.apacoust.2022.109005_b0060 doi: 10.1109/ICASID.2016.7873913 – ident: 10.1016/j.apacoust.2022.109005_b0080 doi: 10.1109/EMBC.2017.8037470 – volume: 15 start-page: 1921 issue: 9 year: 2019 ident: 10.1016/j.apacoust.2022.109005_b0090 article-title: A kind of integrated serial algorithms for noise reduction and characteristics expanding in respiratory sound publication-title: International journal of biological sciences doi: 10.7150/ijbs.33274 – volume: 1 start-page: 245 issue: 10 year: 2014 ident: 10.1016/j.apacoust.2022.109005_b0040 article-title: A chaotic viewpoint on noise reduction from respiratory sounds publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.10.009 – volume: 29 start-page: 221 issue: 12 year: 2018 ident: 10.1016/j.apacoust.2022.109005_b0010 article-title: Acoustic methods for pulmonary diagnosis publication-title: IEEE Rev. Biomed. Eng. – volume: 2 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.apacoust.2022.109005_b0200 article-title: An automated tool for localization of heart sound components S1, S2, S3 and S4 in pulmonary sounds using Hilbert transform and Heron’s formula publication-title: SpringerPlus doi: 10.1186/2193-1801-2-512 – volume: 50 start-page: 307 issue: 2 year: 1981 ident: 10.1016/j.apacoust.2022.109005_b0175 article-title: Spectral characteristics of normal breath sounds publication-title: J Appl Physiol doi: 10.1152/jappl.1981.50.2.307 – ident: 10.1016/j.apacoust.2022.109005_b0100 doi: 10.1109/ICPC2T48082.2020.9071438 – volume: 1 issue: 72 year: 2022 ident: 10.1016/j.apacoust.2022.109005_b0110 article-title: Lung sound signal denoising using discrete wavelet transform and artificial neural network publication-title: Biomed. Signal Process. Control – volume: 1 issue: 64 year: 2021 ident: 10.1016/j.apacoust.2022.109005_b0155 article-title: Multichannel lung sound analysis to detect severity of lung disease in cystic fibrosis publication-title: Biomed. Signal Process. Control – ident: 10.1016/j.apacoust.2022.109005_b0085 doi: 10.1109/MWSCAS.2018.8624069 – ident: 10.1016/j.apacoust.2022.109005_b0145 doi: 10.1201/9781420035841 – ident: 10.1016/j.apacoust.2022.109005_b0190 – volume: 12 start-page: e0177926 issue: 5 year: 2017 ident: 10.1016/j.apacoust.2022.109005_b0005 article-title: Automatic adventitious respiratory sound analysis: A systematic review publication-title: PLoS ONE doi: 10.1371/journal.pone.0177926 – volume: 26 start-page: 30 issue: 1 year: 2007 ident: 10.1016/j.apacoust.2022.109005_b0035 article-title: Empirical mode decomposition and fractal dimension filter publication-title: IEEE Eng. Med. Biol. Mag. |
SSID | ssj0000255 |
Score | 2.3824365 |
Snippet | •Lung sound analysis plays an essential role in diagnosing lung diseases.•Bronchovesicular and vesicular breath sounds are normal lung sounds... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109005 |
SubjectTerms | Discrete Cosine Transform (DCT) Lung sound denoising Respiratory sounds Safety component Singular Spectrum Analysis (SSA) Singular Value Decomposition (SVD) |
Title | Noise Reduction of Lung Sounds based on Singular Spectrum Analysis combined with Discrete Cosine Transform |
URI | https://dx.doi.org/10.1016/j.apacoust.2022.109005 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5KRdCDaFWsj5KD1213s9lHjqUq9dWDbaG3ZbObQIt2i61Xf7sz3Y1WEHrwuCEDYZJ8M1m--QbgGhHPVSZwnTzzI0dwkzpSe7ghmMgJE5BAOxUnPw_C_lg8TIJJDXq2FoZolRX2l5i-RutqpFN5s7OYTqnGF9E35hNO_KpIkuy2EBGd8vbnD82DcmbbNY9mb1QJz9oYj7KCShs4hjJSVnKpjd1fAWoj6NwdwkGVLbJuuaAjqOl5A_Y3NAQbsLvmcGbLY5gNiulSsxcSYyV3s8KwJ7zLbEitk5aMAlbOcHyIhsQ-ZdR8fvX-8casNAlDN-BTGafR_1l2M0VQwaya9Qqix7ORzXJPYHx3O-r1naqVgpNhDF453Pdzo9PIF9Jkvh_gu4-7RnlGKpXHOgpCnbnG9zJPSYWXWseY1kgeamlkTDBwCvV5MddnwBARUqVFkKdGCMnjFC1TrVUUKuWFXDchsP5LskpnnNpdvCaWUDZLrN8T8ntS-r0JnW-7Ram0sdVC2u1Jfp2ZBMPBFtvzf9hewB59lZS-S6jjRukrTE1WqrU-ey3Y6d4_9gdfN-TkqQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTwIxEJ0gxqgHo6gRP3vwurDb_ezRoAQVOAgk3JrtbptAlCWCV3-7M-yuYmLCwWu3kzTT9s108-YNwC0inq2Mb1tp4oaWx01sCe3ghmAi5xmfBNqpOLnXDzoj72nsjyvQKmthiFZZYH-O6Su0LkaahTeb88mEanwRfSM-5sSvCkWwBdseXl9qY9D4_OF5UNJcts2j6WtlwtMGBqQko9oGjrGMpJVs6mP3V4RaizrtQzgo0kV2l6_oCCp6VoP9NRHBGuysSJzJ4him_Wyy0OyF1FjJ3ywzrIuXmQ2od9KCUcRKGY4P0JDop4y6zy_fP95YqU3C0A_4VsZp9IOW3U8QVTCtZq2M-PFsWKa5JzBqPwxbHavopWAlGISXFnfd1Og4dD1hEtf18eHHbaMcI5RKIx36gU5s4zqJo4TCW60jzGsED7QwIiIcOIXqLJvpM2AICbHSnp_GxvMEj2K0jLVWYaCUE3BdB7_0n0wKoXHqd_EqS0bZVJZ-l-R3mfu9Ds1vu3kutbHRQpTbI38dGonxYIPt-T9sb2C3M-x1Zfex_3wBe_Ql5_ddQhU3TV9hnrJU16tz-AWEBuY3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+Reduction+of+Lung+Sounds+based+on+Singular+Spectrum+Analysis+combined+with+Discrete+Cosine+Transform&rft.jtitle=Applied+acoustics&rft.au=Abbasi+Baharanchi%2C+Shahrzad&rft.au=Vali%2C+Mansour&rft.au=Modaresi%2C+Mohammadreza&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.eissn=1872-910X&rft.volume=199&rft_id=info:doi/10.1016%2Fj.apacoust.2022.109005&rft.externalDocID=S0003682X22003796 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon |