Noise Reduction of Lung Sounds based on Singular Spectrum Analysis combined with Discrete Cosine Transform

•Lung sound analysis plays an essential role in diagnosing lung diseases.•Bronchovesicular and vesicular breath sounds are normal lung sounds heardposteriorly.•Noise removal is necessary for enhancing the respiratory sound signals.•Singular Spectrum Analysis (SSA) decomposes the breathing sounds.•Th...

Full description

Saved in:
Bibliographic Details
Published inApplied acoustics Vol. 199; p. 109005
Main Authors Abbasi Baharanchi, Shahrzad, Vali, Mansour, Modaresi, Mohammadreza
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Lung sound analysis plays an essential role in diagnosing lung diseases.•Bronchovesicular and vesicular breath sounds are normal lung sounds heardposteriorly.•Noise removal is necessary for enhancing the respiratory sound signals.•Singular Spectrum Analysis (SSA) decomposes the breathing sounds.•The SSA combined with Discrete Cosine Transform can denoise the pulmonary sounds. Lung sound signals are sensitive to environmental noise. Much research has been conducted on the enhancement of pulmonary sound. This study investigated the normal lung sounds as bronchovesicular (BV) and vesicular (V) signals and proposed a novel denoising method called SSA-DCT. Using Singular Spectrum Analysis (SSA), the noise-related components were separated from respiratory information components. An algorithm was also proposed to determine the information and noise time interval, and by applying Discrete Cosine Transform (DCT), the signal energy was attenuated in the noise intervals. Moreover, the concept of safety component, which is secure against noise, was introduced. Then, an algorithm for automatic identification of BV and V signals using the safety component was presented. The error of this algorithm at SNR of 10 dB was 5%. Lung sounds were recorded from 12 healthy subjects using four channels over the posterior chest wall. The signals were recorded in an acoustic laboratory and then contaminated with additive white Gaussian noise with different levels of SNR. The respiratory signals were also recorded in a relatively quiet environment with real ambient noise and denoised by the proposed method. The proposed method was compared with Coiflet wavelet decomposition with hard SureShrink thresholding. The denoising performance of both methods was evaluated using qualitative and quantitative approaches. The SSA-DCT method (e.g., at an SNR level of 10 dB) with average segmental SNR improvements of 2.52 and 3.44 dB for the BV and V signals, respectively, is significantly superior to the wavelet analysis with average segmental SNR improvements of 0.89 and 1.53 dB for the BV and V signals, respectively.
AbstractList •Lung sound analysis plays an essential role in diagnosing lung diseases.•Bronchovesicular and vesicular breath sounds are normal lung sounds heardposteriorly.•Noise removal is necessary for enhancing the respiratory sound signals.•Singular Spectrum Analysis (SSA) decomposes the breathing sounds.•The SSA combined with Discrete Cosine Transform can denoise the pulmonary sounds. Lung sound signals are sensitive to environmental noise. Much research has been conducted on the enhancement of pulmonary sound. This study investigated the normal lung sounds as bronchovesicular (BV) and vesicular (V) signals and proposed a novel denoising method called SSA-DCT. Using Singular Spectrum Analysis (SSA), the noise-related components were separated from respiratory information components. An algorithm was also proposed to determine the information and noise time interval, and by applying Discrete Cosine Transform (DCT), the signal energy was attenuated in the noise intervals. Moreover, the concept of safety component, which is secure against noise, was introduced. Then, an algorithm for automatic identification of BV and V signals using the safety component was presented. The error of this algorithm at SNR of 10 dB was 5%. Lung sounds were recorded from 12 healthy subjects using four channels over the posterior chest wall. The signals were recorded in an acoustic laboratory and then contaminated with additive white Gaussian noise with different levels of SNR. The respiratory signals were also recorded in a relatively quiet environment with real ambient noise and denoised by the proposed method. The proposed method was compared with Coiflet wavelet decomposition with hard SureShrink thresholding. The denoising performance of both methods was evaluated using qualitative and quantitative approaches. The SSA-DCT method (e.g., at an SNR level of 10 dB) with average segmental SNR improvements of 2.52 and 3.44 dB for the BV and V signals, respectively, is significantly superior to the wavelet analysis with average segmental SNR improvements of 0.89 and 1.53 dB for the BV and V signals, respectively.
ArticleNumber 109005
Author Vali, Mansour
Modaresi, Mohammadreza
Abbasi Baharanchi, Shahrzad
Author_xml – sequence: 1
  givenname: Shahrzad
  surname: Abbasi Baharanchi
  fullname: Abbasi Baharanchi, Shahrzad
  organization: Speech and Sound Processing Lab. (SSPL), Department of Biomedical Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
– sequence: 2
  givenname: Mansour
  surname: Vali
  fullname: Vali, Mansour
  email: mansour.vali@eetd.kntu.ac.ir
  organization: Speech and Sound Processing Lab. (SSPL), Department of Biomedical Engineering, Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
– sequence: 3
  givenname: Mohammadreza
  surname: Modaresi
  fullname: Modaresi, Mohammadreza
  organization: Pediatric Pulmonary Disease and Sleep Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
BookMark eNqFkNtKAzEQhoNUsK2-guQFtubQPYEXlnqEomAr9C5ks5OapZuUZFfp25tSvfGmV8P8zPfDfCM0sM4CQteUTCih2U0zkTupXB-6CSOMxbAkJD1DQ1rkLCkpWQ_QkBDCk6xg6ws0CqGJK2FpOkTNqzMB8DvUveqMs9hpvOjtBi9db-uAKxmgxjFfGrvpt9Lj5Q5U5_sWz6zc7oMJWLm2MjaefZvuE9-boDx0gOcuxBSvvLRBO99eonMttwGufucYfTw-rObPyeLt6WU-WySKTVmXMM5rDTLn01IrztOcUUZ0RXVZVXUBeZqBIppTRauyItMCCpbzkmVQ6rLgJOdjlB17lXcheNBi500r_V5QIg7GRCP-jImDMXE0FsHbf6AynTxY6bw029P43RGH-NyXAS-CMmAV1MZHZaJ25lTFD3FYj84
CitedBy_id crossref_primary_10_2298_CSIS240804005H
crossref_primary_10_1016_j_bspc_2025_107525
crossref_primary_10_1016_j_compbiomed_2023_107153
crossref_primary_10_1177_10775463231172344
crossref_primary_10_4103_nah_nah_98_24
Cites_doi 10.1109/TBME.2017.2717280
10.1109/ICMLC.2016.7872940
10.1152/jappl.1982.53.3.603
10.1016/S0167-6393(98)00019-3
10.1109/TBME.2005.846706
10.1016/j.bspc.2015.02.005
10.4137/CCRPM.S530
10.3390/app7010009
10.1109/TBME.2015.2422698
10.1088/1757-899X/190/1/012040
10.1016/j.irbm.2018.11.004
10.1109/ICBEM.1998.666370
10.1007/s40857-017-0109-4
10.1159/000181147
10.7150/ijbs.29863
10.1109/TBME.2011.2162728
10.3844/ajassp.2014.24.37
10.1109/TBME.2005.846717
10.1136/thx.50.12.1292
10.1063/1.4891822
10.1109/ICASID.2016.7873913
10.1109/EMBC.2017.8037470
10.7150/ijbs.33274
10.1016/j.bspc.2013.10.009
10.1186/2193-1801-2-512
10.1152/jappl.1981.50.2.307
10.1109/ICPC2T48082.2020.9071438
10.1109/MWSCAS.2018.8624069
10.1201/9781420035841
10.1371/journal.pone.0177926
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.apacoust.2022.109005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-910X
ExternalDocumentID 10_1016_j_apacoust_2022_109005
S0003682X22003796
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c242t-233dfea7349fc33572120fb1f9bbd8e756ec0f31c1b9b048e8273926e9f983073
IEDL.DBID .~1
ISSN 0003-682X
IngestDate Tue Jul 01 01:45:19 EDT 2025
Thu Apr 24 23:05:29 EDT 2025
Fri Feb 23 02:39:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Singular Spectrum Analysis (SSA)
Singular Value Decomposition (SVD)
Lung sound denoising
Safety component
Respiratory sounds
Discrete Cosine Transform (DCT)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-233dfea7349fc33572120fb1f9bbd8e756ec0f31c1b9b048e8273926e9f983073
ParticipantIDs crossref_primary_10_1016_j_apacoust_2022_109005
crossref_citationtrail_10_1016_j_apacoust_2022_109005
elsevier_sciencedirect_doi_10_1016_j_apacoust_2022_109005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Applied acoustics
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hadjileontiadis (b0035) 2007 Feb; 26
Molaie, Jafari, Moradi, Sprott, Golpayegani (b0040) 2014 Mar; 1
Chang GC. A comparative analysis of various respiratory sound denoising methods. In2016 International Conference on Machine Learning and Cybernetics (ICMLC) 2016 Jul 10 (Vol. 2, pp. 514-518). IEEE. 10.1109/icmlc.2016.7872940.
Emmanouilidou, McCollum, Park, Elhilali (b0050) 2017 Jun 19; 65
Gavriely, Palti, Alroy (b0175) 1981 Feb 1; 50
Rao, Huynh, Royston, Kornblith, Roy (b0010) 2018 Oct; 29
Romero, Alonso, Cubero, Galán-Marín (b0125) 2015 Apr; 1
Mondal, Bhattacharya, Saha (b0200) 2013 Dec; 2
Hadjileontiadis (b0025) 2005 May 16; 52
Venkatesh S, Narayan N, Bharathwaaj KS, Jeeva M, Vijayalakshmi P. Modified DCT Based Speech Enhancement In Vehicular Environments. International Journal of Advances in Electronics and Computer Science-IJAECS. 2014 Dec;1(2):54-8. S2CID 212460348.
Li L, Xu W, Hong Q, Tong F, Wu J. Adaptive noise cancellation and classification of lung sounds under practical environment. In2016 10th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID) 2016 Sep 23 (pp. 39-42). IEEE. 10.1109/icasid.2016.7873913.
Karimizadeh, Vali, Modaresi (b0155) 2021 Feb; 1
Emmanouilidou, McCollum, Park, Elhilali (b0045) 2015 Apr 13; 62
Ulukaya S, Serbes G, Kahya YP. Performance comparison of wavelet based denoising methods on discontinuous adventitious lung sounds. In2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2017 Jul 11 (pp. 2928-2931). IEEE. 10.1109/embc.2017.8037470.
Meng, Wang, Shi, Zhao (b0090) 2019; 15
Ghaderi, Mohseni, Sanei (b0115) 2011 Jul 21; 58
Balaji, Subramanian (b0150) 2014 Jan 1; 11
Cheng, Zhang (b0195) 2014 Aug 6; 4
Lu, Lei, Shen, Wang, Tseng (b0185) 2017 Jan; 7
Haider, Periyasamy, Joshi, Singh (b0075) 2018 Nov; 29
Soon, Koh, Yeo (b0130) 1998 Jun 1; 24
Becker (b0170) 2009; 77
Pramono, Bowyer, Rodriguez-Villegas, Penzel (b0005) 2017 May 26; 12
Reichert, Gass, Brandt, Andrès (b0015) 2008; 2
Kraman (b0165) 1983 Oct; 128
Gavriely, Nissan, Rubin, Cugell (b0180) 1995 Dec 1; 50
Hadjileontiadis (b0030) 2005 May 16; 52
Golyandina N, Nekrutkin V, Zhigljavsky AA. Analysis of time series structure: SSA and related techniques. CRC press; 2001 Jan 23. 10.1201/9781420035841 .
Shi, Li, Cai, Zhang (b0095) 2019; 15
Pouyani, Vali, Ghasemi (b0110) 2022 Feb; 1
Bahoura M, Ezzaidi H. Hardware Implementation of the Dual-Channel Spectral Subtraction Method for Lung Sounds Denoising. In2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) 2018 Aug 5 (pp. 516-519). IEEE. 10.1109/mwscas.2018.8624069.
Haider (b0105) 2021 Feb; 1
Bahoura M, Hubin M, Ketata M. Respiratory sounds denoising using wavelet packets. InProceedings of the 2nd International Conference on Bioelectromagnetism (Cat. No. 98TH8269) 1998 Feb 15 (pp. 11-12). IEEE. 10.1109/icbem.1998.666370.
Syahputra MF, Situmeang SI, Rahmat RF, Budiarto R. Noise reduction in breath sound files using wavelet transform based filter. InIOP Conference Series: Materials Science and Engineering 2017 Apr 1 (Vol. 190, No. 1, p. 012040). IOP Publishing. 10.11591/eecsi.v3i1.1148.
O'Donnell, Kraman (b0160) 1982 Sep 1; 53
Singh D, Singh BK, Behera AK. Comparative analysis of Lung sound denoising technique. In2020 First International Conference on Power, Control and Computing Technologies (ICPC2T) 2020 Jan 3 (pp. 406-410). IEEE. 10.1109/icpc2t48082.2020.9071438.
Lu, Hsueh, Wu (b0065) 2017 Aug; 45
Deng C. Time Series Decomposition Using Singular Spectrum Analysis [dissertation]. East Tennessee State University; 2014. https://dc.etsu.edu/etd/2352.
Vondrasek M, Pollak P. Methods for speech SNR estimation: Evaluation tool and analysis of VAD dependency. Radioengineering. 2005 Apr 1;14(1):6-11. S2CID 45774640.
Mortezaee, Mortezaie, Abolghasemi (b0120) 2019 Feb 1; 40
10.1016/j.apacoust.2022.109005_b0100
Balaji (10.1016/j.apacoust.2022.109005_b0150) 2014; 11
Pramono (10.1016/j.apacoust.2022.109005_b0005) 2017; 12
10.1016/j.apacoust.2022.109005_b0145
Rao (10.1016/j.apacoust.2022.109005_b0010) 2018; 29
Haider (10.1016/j.apacoust.2022.109005_b0105) 2021; 1
10.1016/j.apacoust.2022.109005_b0080
Mondal (10.1016/j.apacoust.2022.109005_b0200) 2013; 2
10.1016/j.apacoust.2022.109005_b0060
Hadjileontiadis (10.1016/j.apacoust.2022.109005_b0030) 2005; 52
10.1016/j.apacoust.2022.109005_b0085
10.1016/j.apacoust.2022.109005_b0140
Cheng (10.1016/j.apacoust.2022.109005_b0195) 2014; 4
Gavriely (10.1016/j.apacoust.2022.109005_b0180) 1995; 50
Kraman (10.1016/j.apacoust.2022.109005_b0165) 1983; 128
10.1016/j.apacoust.2022.109005_b0020
Becker (10.1016/j.apacoust.2022.109005_b0170) 2009; 77
Pouyani (10.1016/j.apacoust.2022.109005_b0110) 2022; 1
Hadjileontiadis (10.1016/j.apacoust.2022.109005_b0025) 2005; 52
Reichert (10.1016/j.apacoust.2022.109005_b0015) 2008; 2
10.1016/j.apacoust.2022.109005_b0055
Gavriely (10.1016/j.apacoust.2022.109005_b0175) 1981; 50
10.1016/j.apacoust.2022.109005_b0135
Emmanouilidou (10.1016/j.apacoust.2022.109005_b0045) 2015; 62
Meng (10.1016/j.apacoust.2022.109005_b0090) 2019; 15
Lu (10.1016/j.apacoust.2022.109005_b0185) 2017; 7
Haider (10.1016/j.apacoust.2022.109005_b0075) 2018; 29
10.1016/j.apacoust.2022.109005_b0070
Mortezaee (10.1016/j.apacoust.2022.109005_b0120) 2019; 40
10.1016/j.apacoust.2022.109005_b0190
Karimizadeh (10.1016/j.apacoust.2022.109005_b0155) 2021; 1
Lu (10.1016/j.apacoust.2022.109005_b0065) 2017; 45
Hadjileontiadis (10.1016/j.apacoust.2022.109005_b0035) 2007; 26
Romero (10.1016/j.apacoust.2022.109005_b0125) 2015; 1
Ghaderi (10.1016/j.apacoust.2022.109005_b0115) 2011; 58
Emmanouilidou (10.1016/j.apacoust.2022.109005_b0050) 2017; 65
O'Donnell (10.1016/j.apacoust.2022.109005_b0160) 1982; 53
Molaie (10.1016/j.apacoust.2022.109005_b0040) 2014; 1
Shi (10.1016/j.apacoust.2022.109005_b0095) 2019; 15
Soon (10.1016/j.apacoust.2022.109005_b0130) 1998; 24
References_xml – volume: 45
  start-page: 381
  year: 2017 Aug
  end-page: 387
  ident: b0065
  article-title: Reducing the ambulance siren noise for distant auscultation of the lung sound
  publication-title: Acoustics Australia
– volume: 50
  start-page: 1292
  year: 1995 Dec 1
  end-page: 1300
  ident: b0180
  article-title: Spectral characteristics of chest wall breath sounds in normal subjects
  publication-title: Thorax
– volume: 24
  start-page: 249
  year: 1998 Jun 1
  end-page: 257
  ident: b0130
  article-title: Noisy speech enhancement using discrete cosine transform
  publication-title: Speech Commun.
– volume: 29
  start-page: 61
  year: 2018 Nov
  ident: b0075
  article-title: Savitzky-Golay filter for denoising lung sound
  publication-title: Brazilian Archives of Biology and Technology
– reference: Golyandina N, Nekrutkin V, Zhigljavsky AA. Analysis of time series structure: SSA and related techniques. CRC press; 2001 Jan 23. 10.1201/9781420035841 .
– volume: 2
  start-page: CCRPM.S530
  year: 2008
  ident: b0015
  article-title: Analysis of respiratory sounds: state of the art
  publication-title: Clinical medicine Circulatory, respiratory and pulmonary medicine
– volume: 1
  start-page: 245
  year: 2014 Mar
  end-page: 249
  ident: b0040
  article-title: A chaotic viewpoint on noise reduction from respiratory sounds
  publication-title: Biomed. Signal Process. Control
– reference: Ulukaya S, Serbes G, Kahya YP. Performance comparison of wavelet based denoising methods on discontinuous adventitious lung sounds. In2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2017 Jul 11 (pp. 2928-2931). IEEE. 10.1109/embc.2017.8037470.
– volume: 7
  start-page: 9
  year: 2017 Jan
  ident: b0185
  article-title: Estimation of noise magnitude for speech denoising using minima-controlled-recursive-averaging algorithm adapted by harmonic properties
  publication-title: Appl Sci
– reference: Vondrasek M, Pollak P. Methods for speech SNR estimation: Evaluation tool and analysis of VAD dependency. Radioengineering. 2005 Apr 1;14(1):6-11. S2CID 45774640.
– volume: 58
  start-page: 3360
  year: 2011 Jul 21
  end-page: 3367
  ident: b0115
  article-title: Localizing heart sounds in respiratory signals using singular spectrum analysis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 2
  start-page: 1
  year: 2013 Dec
  end-page: 14
  ident: b0200
  article-title: An automated tool for localization of heart sound components S1, S2, S3 and S4 in pulmonary sounds using Hilbert transform and Heron’s formula
  publication-title: SpringerPlus
– volume: 1
  start-page: 317
  year: 2015 Apr
  end-page: 324
  ident: b0125
  article-title: An automatic SSA-based de-noising and smoothing technique for surface electromyography signals
  publication-title: Biomed. Signal Process. Control
– reference: Venkatesh S, Narayan N, Bharathwaaj KS, Jeeva M, Vijayalakshmi P. Modified DCT Based Speech Enhancement In Vehicular Environments. International Journal of Advances in Electronics and Computer Science-IJAECS. 2014 Dec;1(2):54-8. S2CID 212460348.
– volume: 26
  start-page: 30
  year: 2007 Feb
  end-page: 39
  ident: b0035
  article-title: Empirical mode decomposition and fractal dimension filter
  publication-title: IEEE Eng. Med. Biol. Mag.
– reference: Chang GC. A comparative analysis of various respiratory sound denoising methods. In2016 International Conference on Machine Learning and Cybernetics (ICMLC) 2016 Jul 10 (Vol. 2, pp. 514-518). IEEE. 10.1109/icmlc.2016.7872940.
– volume: 12
  start-page: e0177926
  year: 2017 May 26
  ident: b0005
  article-title: Automatic adventitious respiratory sound analysis: A systematic review
  publication-title: PLoS ONE
– volume: 52
  start-page: 1050
  year: 2005 May 16
  end-page: 1064
  ident: b0030
  article-title: Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding-Part II: Application results
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 65
  start-page: 1564
  year: 2017 Jun 19
  end-page: 1574
  ident: b0050
  article-title: Computerized lung sound screening for pediatric auscultation in noisy field environments
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 40
  start-page: 62
  year: 2019 Feb 1
  end-page: 68
  ident: b0120
  article-title: An improved SSA-based technique for EMG removal from ECG
  publication-title: IRBM
– volume: 77
  start-page: 236
  year: 2009
  end-page: 239
  ident: b0170
  article-title: Vibration response imaging-finally a real stethoscope
  publication-title: Respiration
– volume: 1
  year: 2021 Feb
  ident: b0105
  article-title: Respiratory sound denoising using Empirical Mode Decomposition, Hurst analysis and Spectral Subtraction
  publication-title: Biomed. Signal Process. Control
– reference: Deng C. Time Series Decomposition Using Singular Spectrum Analysis [dissertation]. East Tennessee State University; 2014. https://dc.etsu.edu/etd/2352.
– reference: Singh D, Singh BK, Behera AK. Comparative analysis of Lung sound denoising technique. In2020 First International Conference on Power, Control and Computing Technologies (ICPC2T) 2020 Jan 3 (pp. 406-410). IEEE. 10.1109/icpc2t48082.2020.9071438.
– volume: 1
  year: 2021 Feb
  ident: b0155
  article-title: Multichannel lung sound analysis to detect severity of lung disease in cystic fibrosis
  publication-title: Biomed. Signal Process. Control
– volume: 52
  start-page: 1143
  year: 2005 May 16
  end-page: 1148
  ident: b0025
  article-title: Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding-Part I: Methodology
  publication-title: IEEE Trans. Biomed. Eng.
– reference: Bahoura M, Ezzaidi H. Hardware Implementation of the Dual-Channel Spectral Subtraction Method for Lung Sounds Denoising. In2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) 2018 Aug 5 (pp. 516-519). IEEE. 10.1109/mwscas.2018.8624069.
– volume: 128
  start-page: 622
  year: 1983 Oct
  end-page: 626
  ident: b0165
  article-title: Does the vesicular lung sound come only from the lungs?
  publication-title: Am Review of Respiratory Disease
– volume: 29
  start-page: 221
  year: 2018 Oct
  end-page: 239
  ident: b0010
  article-title: Acoustic methods for pulmonary diagnosis
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 1
  year: 2022 Feb
  ident: b0110
  article-title: Lung sound signal denoising using discrete wavelet transform and artificial neural network
  publication-title: Biomed. Signal Process. Control
– volume: 53
  start-page: 603
  year: 1982 Sep 1
  end-page: 609
  ident: b0160
  article-title: Vesicular lung sound amplitude mapping by automated flow-gated phonopneumography
  publication-title: J. Appl. Physiol.
– volume: 15
  start-page: 195
  year: 2019
  end-page: 207
  ident: b0095
  article-title: A lung sound category recognition method based on wavelet decomposition and BP neural network
  publication-title: International journal of biological sciences
– reference: Syahputra MF, Situmeang SI, Rahmat RF, Budiarto R. Noise reduction in breath sound files using wavelet transform based filter. InIOP Conference Series: Materials Science and Engineering 2017 Apr 1 (Vol. 190, No. 1, p. 012040). IOP Publishing. 10.11591/eecsi.v3i1.1148.
– volume: 15
  start-page: 1921
  year: 2019
  end-page: 1932
  ident: b0090
  article-title: A kind of integrated serial algorithms for noise reduction and characteristics expanding in respiratory sound
  publication-title: International journal of biological sciences
– volume: 50
  start-page: 307
  year: 1981 Feb 1
  end-page: 314
  ident: b0175
  article-title: Spectral characteristics of normal breath sounds
  publication-title: J Appl Physiol
– volume: 11
  start-page: 24
  year: 2014 Jan 1
  end-page: 37
  ident: b0150
  article-title: A novel speech enhancement approach based on modified DCT and improved pitch synchronous analysis
  publication-title: Am J Appl Sci
– volume: 4
  year: 2014 Aug 6
  ident: b0195
  article-title: Denoising method of heart sound signals based on self-construct heart sound wavelet
  publication-title: AIP Adv.
– reference: Bahoura M, Hubin M, Ketata M. Respiratory sounds denoising using wavelet packets. InProceedings of the 2nd International Conference on Bioelectromagnetism (Cat. No. 98TH8269) 1998 Feb 15 (pp. 11-12). IEEE. 10.1109/icbem.1998.666370.
– volume: 62
  start-page: 2279
  year: 2015 Apr 13
  end-page: 2288
  ident: b0045
  article-title: Adaptive noise suppression of pediatric lung auscultations with real applications to noisy clinical settings in developing countries
  publication-title: IEEE Trans. Biomed. Eng.
– reference: Li L, Xu W, Hong Q, Tong F, Wu J. Adaptive noise cancellation and classification of lung sounds under practical environment. In2016 10th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID) 2016 Sep 23 (pp. 39-42). IEEE. 10.1109/icasid.2016.7873913.
– volume: 65
  start-page: 1564
  issue: 7
  year: 2017
  ident: 10.1016/j.apacoust.2022.109005_b0050
  article-title: Computerized lung sound screening for pediatric auscultation in noisy field environments
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2717280
– ident: 10.1016/j.apacoust.2022.109005_b0055
  doi: 10.1109/ICMLC.2016.7872940
– volume: 53
  start-page: 603
  issue: 3
  year: 1982
  ident: 10.1016/j.apacoust.2022.109005_b0160
  article-title: Vesicular lung sound amplitude mapping by automated flow-gated phonopneumography
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1982.53.3.603
– ident: 10.1016/j.apacoust.2022.109005_b0140
– volume: 24
  start-page: 249
  issue: 3
  year: 1998
  ident: 10.1016/j.apacoust.2022.109005_b0130
  article-title: Noisy speech enhancement using discrete cosine transform
  publication-title: Speech Commun.
  doi: 10.1016/S0167-6393(98)00019-3
– volume: 52
  start-page: 1143
  issue: 6
  year: 2005
  ident: 10.1016/j.apacoust.2022.109005_b0025
  article-title: Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding-Part I: Methodology
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.846706
– volume: 1
  start-page: 317
  issue: 18
  year: 2015
  ident: 10.1016/j.apacoust.2022.109005_b0125
  article-title: An automatic SSA-based de-noising and smoothing technique for surface electromyography signals
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.02.005
– volume: 2
  start-page: CCRPM.S530
  year: 2008
  ident: 10.1016/j.apacoust.2022.109005_b0015
  article-title: Analysis of respiratory sounds: state of the art
  publication-title: Clinical medicine Circulatory, respiratory and pulmonary medicine
  doi: 10.4137/CCRPM.S530
– volume: 7
  start-page: 9
  issue: 1
  year: 2017
  ident: 10.1016/j.apacoust.2022.109005_b0185
  article-title: Estimation of noise magnitude for speech denoising using minima-controlled-recursive-averaging algorithm adapted by harmonic properties
  publication-title: Appl Sci
  doi: 10.3390/app7010009
– volume: 62
  start-page: 2279
  issue: 9
  year: 2015
  ident: 10.1016/j.apacoust.2022.109005_b0045
  article-title: Adaptive noise suppression of pediatric lung auscultations with real applications to noisy clinical settings in developing countries
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2422698
– ident: 10.1016/j.apacoust.2022.109005_b0070
  doi: 10.1088/1757-899X/190/1/012040
– volume: 40
  start-page: 62
  issue: 1
  year: 2019
  ident: 10.1016/j.apacoust.2022.109005_b0120
  article-title: An improved SSA-based technique for EMG removal from ECG
  publication-title: IRBM
  doi: 10.1016/j.irbm.2018.11.004
– ident: 10.1016/j.apacoust.2022.109005_b0020
  doi: 10.1109/ICBEM.1998.666370
– volume: 1
  issue: 64
  year: 2021
  ident: 10.1016/j.apacoust.2022.109005_b0105
  article-title: Respiratory sound denoising using Empirical Mode Decomposition, Hurst analysis and Spectral Subtraction
  publication-title: Biomed. Signal Process. Control
– volume: 45
  start-page: 381
  issue: 2
  year: 2017
  ident: 10.1016/j.apacoust.2022.109005_b0065
  article-title: Reducing the ambulance siren noise for distant auscultation of the lung sound
  publication-title: Acoustics Australia
  doi: 10.1007/s40857-017-0109-4
– volume: 128
  start-page: 622
  issue: 4
  year: 1983
  ident: 10.1016/j.apacoust.2022.109005_b0165
  article-title: Does the vesicular lung sound come only from the lungs?
  publication-title: Am Review of Respiratory Disease
– volume: 77
  start-page: 236
  issue: 2
  year: 2009
  ident: 10.1016/j.apacoust.2022.109005_b0170
  article-title: Vibration response imaging-finally a real stethoscope
  publication-title: Respiration
  doi: 10.1159/000181147
– volume: 15
  start-page: 195
  issue: 1
  year: 2019
  ident: 10.1016/j.apacoust.2022.109005_b0095
  article-title: A lung sound category recognition method based on wavelet decomposition and BP neural network
  publication-title: International journal of biological sciences
  doi: 10.7150/ijbs.29863
– volume: 58
  start-page: 3360
  issue: 12
  year: 2011
  ident: 10.1016/j.apacoust.2022.109005_b0115
  article-title: Localizing heart sounds in respiratory signals using singular spectrum analysis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2162728
– ident: 10.1016/j.apacoust.2022.109005_b0135
– volume: 29
  start-page: 61
  year: 2018
  ident: 10.1016/j.apacoust.2022.109005_b0075
  article-title: Savitzky-Golay filter for denoising lung sound
  publication-title: Brazilian Archives of Biology and Technology
– volume: 11
  start-page: 24
  issue: 1
  year: 2014
  ident: 10.1016/j.apacoust.2022.109005_b0150
  article-title: A novel speech enhancement approach based on modified DCT and improved pitch synchronous analysis
  publication-title: Am J Appl Sci
  doi: 10.3844/ajassp.2014.24.37
– volume: 52
  start-page: 1050
  issue: 6
  year: 2005
  ident: 10.1016/j.apacoust.2022.109005_b0030
  article-title: Wavelet-based enhancement of lung and bowel sounds using fractal dimension thresholding-Part II: Application results
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.846717
– volume: 50
  start-page: 1292
  issue: 12
  year: 1995
  ident: 10.1016/j.apacoust.2022.109005_b0180
  article-title: Spectral characteristics of chest wall breath sounds in normal subjects
  publication-title: Thorax
  doi: 10.1136/thx.50.12.1292
– volume: 4
  issue: 8
  year: 2014
  ident: 10.1016/j.apacoust.2022.109005_b0195
  article-title: Denoising method of heart sound signals based on self-construct heart sound wavelet
  publication-title: AIP Adv.
  doi: 10.1063/1.4891822
– ident: 10.1016/j.apacoust.2022.109005_b0060
  doi: 10.1109/ICASID.2016.7873913
– ident: 10.1016/j.apacoust.2022.109005_b0080
  doi: 10.1109/EMBC.2017.8037470
– volume: 15
  start-page: 1921
  issue: 9
  year: 2019
  ident: 10.1016/j.apacoust.2022.109005_b0090
  article-title: A kind of integrated serial algorithms for noise reduction and characteristics expanding in respiratory sound
  publication-title: International journal of biological sciences
  doi: 10.7150/ijbs.33274
– volume: 1
  start-page: 245
  issue: 10
  year: 2014
  ident: 10.1016/j.apacoust.2022.109005_b0040
  article-title: A chaotic viewpoint on noise reduction from respiratory sounds
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.10.009
– volume: 29
  start-page: 221
  issue: 12
  year: 2018
  ident: 10.1016/j.apacoust.2022.109005_b0010
  article-title: Acoustic methods for pulmonary diagnosis
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 2
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.apacoust.2022.109005_b0200
  article-title: An automated tool for localization of heart sound components S1, S2, S3 and S4 in pulmonary sounds using Hilbert transform and Heron’s formula
  publication-title: SpringerPlus
  doi: 10.1186/2193-1801-2-512
– volume: 50
  start-page: 307
  issue: 2
  year: 1981
  ident: 10.1016/j.apacoust.2022.109005_b0175
  article-title: Spectral characteristics of normal breath sounds
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1981.50.2.307
– ident: 10.1016/j.apacoust.2022.109005_b0100
  doi: 10.1109/ICPC2T48082.2020.9071438
– volume: 1
  issue: 72
  year: 2022
  ident: 10.1016/j.apacoust.2022.109005_b0110
  article-title: Lung sound signal denoising using discrete wavelet transform and artificial neural network
  publication-title: Biomed. Signal Process. Control
– volume: 1
  issue: 64
  year: 2021
  ident: 10.1016/j.apacoust.2022.109005_b0155
  article-title: Multichannel lung sound analysis to detect severity of lung disease in cystic fibrosis
  publication-title: Biomed. Signal Process. Control
– ident: 10.1016/j.apacoust.2022.109005_b0085
  doi: 10.1109/MWSCAS.2018.8624069
– ident: 10.1016/j.apacoust.2022.109005_b0145
  doi: 10.1201/9781420035841
– ident: 10.1016/j.apacoust.2022.109005_b0190
– volume: 12
  start-page: e0177926
  issue: 5
  year: 2017
  ident: 10.1016/j.apacoust.2022.109005_b0005
  article-title: Automatic adventitious respiratory sound analysis: A systematic review
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177926
– volume: 26
  start-page: 30
  issue: 1
  year: 2007
  ident: 10.1016/j.apacoust.2022.109005_b0035
  article-title: Empirical mode decomposition and fractal dimension filter
  publication-title: IEEE Eng. Med. Biol. Mag.
SSID ssj0000255
Score 2.3824365
Snippet •Lung sound analysis plays an essential role in diagnosing lung diseases.•Bronchovesicular and vesicular breath sounds are normal lung sounds...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109005
SubjectTerms Discrete Cosine Transform (DCT)
Lung sound denoising
Respiratory sounds
Safety component
Singular Spectrum Analysis (SSA)
Singular Value Decomposition (SVD)
Title Noise Reduction of Lung Sounds based on Singular Spectrum Analysis combined with Discrete Cosine Transform
URI https://dx.doi.org/10.1016/j.apacoust.2022.109005
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5KRdCDaFWsj5KD1213s9lHjqUq9dWDbaG3ZbObQIt2i61Xf7sz3Y1WEHrwuCEDYZJ8M1m--QbgGhHPVSZwnTzzI0dwkzpSe7ghmMgJE5BAOxUnPw_C_lg8TIJJDXq2FoZolRX2l5i-RutqpFN5s7OYTqnGF9E35hNO_KpIkuy2EBGd8vbnD82DcmbbNY9mb1QJz9oYj7KCShs4hjJSVnKpjd1fAWoj6NwdwkGVLbJuuaAjqOl5A_Y3NAQbsLvmcGbLY5gNiulSsxcSYyV3s8KwJ7zLbEitk5aMAlbOcHyIhsQ-ZdR8fvX-8casNAlDN-BTGafR_1l2M0VQwaya9Qqix7ORzXJPYHx3O-r1naqVgpNhDF453Pdzo9PIF9Jkvh_gu4-7RnlGKpXHOgpCnbnG9zJPSYWXWseY1kgeamlkTDBwCvV5MddnwBARUqVFkKdGCMnjFC1TrVUUKuWFXDchsP5LskpnnNpdvCaWUDZLrN8T8ntS-r0JnW-7Ram0sdVC2u1Jfp2ZBMPBFtvzf9hewB59lZS-S6jjRukrTE1WqrU-ey3Y6d4_9gdfN-TkqQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTwIxEJ0gxqgHo6gRP3vwurDb_ezRoAQVOAgk3JrtbptAlCWCV3-7M-yuYmLCwWu3kzTT9s108-YNwC0inq2Mb1tp4oaWx01sCe3ghmAi5xmfBNqpOLnXDzoj72nsjyvQKmthiFZZYH-O6Su0LkaahTeb88mEanwRfSM-5sSvCkWwBdseXl9qY9D4_OF5UNJcts2j6WtlwtMGBqQko9oGjrGMpJVs6mP3V4RaizrtQzgo0kV2l6_oCCp6VoP9NRHBGuysSJzJ4him_Wyy0OyF1FjJ3ywzrIuXmQ2od9KCUcRKGY4P0JDop4y6zy_fP95YqU3C0A_4VsZp9IOW3U8QVTCtZq2M-PFsWKa5JzBqPwxbHavopWAlGISXFnfd1Og4dD1hEtf18eHHbaMcI5RKIx36gU5s4zqJo4TCW60jzGsED7QwIiIcOIXqLJvpM2AICbHSnp_GxvMEj2K0jLVWYaCUE3BdB7_0n0wKoXHqd_EqS0bZVJZ-l-R3mfu9Ds1vu3kutbHRQpTbI38dGonxYIPt-T9sb2C3M-x1Zfex_3wBe_Ql5_ddQhU3TV9hnrJU16tz-AWEBuY3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+Reduction+of+Lung+Sounds+based+on+Singular+Spectrum+Analysis+combined+with+Discrete+Cosine+Transform&rft.jtitle=Applied+acoustics&rft.au=Abbasi+Baharanchi%2C+Shahrzad&rft.au=Vali%2C+Mansour&rft.au=Modaresi%2C+Mohammadreza&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.eissn=1872-910X&rft.volume=199&rft_id=info:doi/10.1016%2Fj.apacoust.2022.109005&rft.externalDocID=S0003682X22003796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon