Painlevé Test, Generalized Symmetries, Bäcklund Transformations and Exact Solutions to the Third-Order Burgers’ Equations
In this paper, the Painlevé analysis is performed on the physical form of the third-order Burgers’ equation, the Painlevé property and integrability (C-integrable) of the equation is verified. Then, the generalized symmetries of the equation are presented and the generalized symmetries of the other...
Saved in:
Published in | Journal of statistical physics Vol. 158; no. 2; pp. 433 - 446 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.01.2015
Springer |
Subjects | |
Online Access | Get full text |
ISSN | 0022-4715 1572-9613 |
DOI | 10.1007/s10955-014-1130-8 |
Cover
Loading…
Abstract | In this paper, the Painlevé analysis is performed on the physical form of the third-order Burgers’ equation, the Painlevé property and integrability (C-integrable) of the equation is verified. Then, the generalized symmetries of the equation are presented and the generalized symmetries of the other equation are given by the symmetry transformation method. The Bäcklund Transformations of the equations are constructed based on the symmetries, respectively. Furthermore, the exact explicit solutions to the equations are investigated in terms of the symmetries, Bäcklund transformations and transformations of the equations. |
---|---|
AbstractList | In this paper, the Painleve analysis is performed on the physical form of the third-order Burgers' equation, the Painleve property and integrability (C-integrable) of the equation is verified. Then, the generalized symmetries of the equation are presented and the generalized symmetries of the other equation are given by the symmetry transformation method. The Backlund Transformations of the equations are constructed based on the symmetries, respectively. Furthermore, the exact explicit solutions to the equations are investigated in terms of the symmetries, Backlund transformations and transformations of the equations. Keywords Third-order Burger's equation * Integrability * Generalized symmetry * Backlund transformation * Exact solution Mathematics Subject Classification 17B80 * 22E70 * 35C05 In this paper, the Painlevé analysis is performed on the physical form of the third-order Burgers’ equation, the Painlevé property and integrability (C-integrable) of the equation is verified. Then, the generalized symmetries of the equation are presented and the generalized symmetries of the other equation are given by the symmetry transformation method. The Bäcklund Transformations of the equations are constructed based on the symmetries, respectively. Furthermore, the exact explicit solutions to the equations are investigated in terms of the symmetries, Bäcklund transformations and transformations of the equations. |
Audience | Academic |
Author | Liu, Hanze |
Author_xml | – sequence: 1 givenname: Hanze surname: Liu fullname: Liu, Hanze email: hzliumath@hotmail.com organization: School of Mathematical Sciences, Liaocheng University, Department of Mathematics, Binzhou University |
BookMark | eNp9kM9O3DAQhy1EpS5_HqA3P8CaeuJk4xx3VwtFQqISy9lynDEYEgfsBJVKlfoa3LnwHLxJn6Sm4dQDmsOMftI3o_n2yK7vPRLyBfgRcF5-jcCromAccgYgOJM7ZAZFmbFqAWKXzDjPMpaXUHwmezHecM4rWRUz8uu7dr7Fh9cXusU4zOkJegy6dT-xoRePXYdDcBjndPX6bG7b0Td0G7SPtg-dHlzvI9Up2_zQZqAXfTtO2dDT4Rrp9tqFhp2HBgNdjeEKQ_zz-4lu7seJPSCfrG4jHr73fXJ5vNmuv7Gz85PT9fKMmSzPJJM1iBqgMtbWvMHGiIWuhdQ8s2ByKW2ZW4QcjagQhK2s0ZLrps5MneaFEPvkaNp7pVtUztt-CNqkarBzJpm0LuXLnFfJEEhIAEyACX2MAa26C67T4VEBV2_C1SRcJeHqTbiSiSn_Y4wb_v2Zjrn2QzKbyJiu-GRJ3fRj8MnIB9BfLU-b7w |
CitedBy_id | crossref_primary_10_1007_s11071_016_2683_7 crossref_primary_10_1016_j_chaos_2015_09_030 crossref_primary_10_1016_j_cnsns_2015_11_019 crossref_primary_10_4236_jamp_2019_711183 crossref_primary_10_1007_s11071_016_2748_7 crossref_primary_10_1016_j_ijleo_2017_06_093 crossref_primary_10_1016_j_nuclphysb_2019_114786 crossref_primary_10_11121_ijocta_2023_1265 crossref_primary_10_1016_j_cnsns_2016_07_022 crossref_primary_10_1016_j_chaos_2018_01_023 crossref_primary_10_1007_s00025_015_0438_2 crossref_primary_10_1007_s11071_015_2480_8 |
Cites_doi | 10.1088/0266-5611/3/2/008 10.1016/0167-2789(87)90046-7 10.1007/s12190-012-0633-1 10.1063/1.525721 10.1088/0253-6102/57/5/02 10.1016/j.cam.2008.06.009 10.1016/0167-2789(89)90040-7 10.1016/j.na.2009.01.075 10.1007/s11071-009-9556-2 10.1016/j.jde.2012.12.004 10.1093/imamat/44.1.27 10.1007/BF02798794 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2014 COPYRIGHT 2015 Springer |
Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: COPYRIGHT 2015 Springer |
DBID | AAYXX CITATION |
DOI | 10.1007/s10955-014-1130-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Physics |
EISSN | 1572-9613 |
EndPage | 446 |
ExternalDocumentID | A409715181 10_1007_s10955_014_1130_8 |
GroupedDBID | -54 -5F -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IGS IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 XOL YLTOR YQT YYP Z45 Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB |
ID | FETCH-LOGICAL-c2428-8b13b119cffb0dedc36ab38a02f1c488f74fe14ec39e13f9fca80adb2cb9fc633 |
IEDL.DBID | U2A |
ISSN | 0022-4715 |
IngestDate | Tue Jun 10 20:46:45 EDT 2025 Tue Jul 01 02:18:19 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Fri Feb 21 02:36:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 35C05 Generalized symmetry Integrability 22E70 Bäcklund transformation 17B80 Third-order Burger’s equation Exact solution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2428-8b13b119cffb0dedc36ab38a02f1c488f74fe14ec39e13f9fca80adb2cb9fc633 |
PageCount | 14 |
ParticipantIDs | gale_infotracacademiconefile_A409715181 crossref_primary_10_1007_s10955_014_1130_8 crossref_citationtrail_10_1007_s10955_014_1130_8 springer_journals_10_1007_s10955_014_1130_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150100 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 1 year: 2015 text: 20150100 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston |
PublicationSubtitle | 1 |
PublicationTitle | Journal of statistical physics |
PublicationTitleAbbrev | J Stat Phys |
PublicationYear | 2015 |
Publisher | Springer US Springer |
Publisher_xml | – name: Springer US – name: Springer |
References | Clarkson (CR7) 1990; 44 Liu, Li, Liu (CR13) 2010; 59 Liu, Li, Liu (CR14) 2012; 22 Wang, Guo (CR20) 2000 Liu, Li, Zhang (CR1) 2009; 228 Chou (CR10) 1987; 10 Liu, Li, Liu (CR15) 2012; 57 Polyanin, Zaitsev (CR21) 2003 Calogero, Eckhaus (CR19) 1987; 3 Cariello, Tabor (CR6) 1989; 39 Fokas, Fuchssteiner (CR17) 1980; 28 Tian (CR18) 1989; 12 Newell (CR5) 1987; 29 Bluman, Anco (CR9) 2002 Conte, Musette (CR3) 2008 Olver (CR8) 1993 Cheng (CR11) 1991; 14 Weiss, Tabor, Carnevale (CR4) 1983; 24 Liu, Geng (CR16) 2013; 254 Liu, Li, Liu (CR2) 2013; 42 Liu, Li (CR12) 2009; 71 R Conte (1130_CR3) 2008 F Cariello (1130_CR6) 1989; 39 C Tian (1130_CR18) 1989; 12 H Liu (1130_CR13) 2010; 59 H Liu (1130_CR1) 2009; 228 J Weiss (1130_CR4) 1983; 24 P Olver (1130_CR8) 1993 H Liu (1130_CR14) 2012; 22 H Liu (1130_CR2) 2013; 42 H Liu (1130_CR16) 2013; 254 Z Wang (1130_CR20) 2000 T Chou (1130_CR10) 1987; 10 P Clarkson (1130_CR7) 1990; 44 G Bluman (1130_CR9) 2002 A Fokas (1130_CR17) 1980; 28 A Newell (1130_CR5) 1987; 29 H Liu (1130_CR12) 2009; 71 Y Cheng (1130_CR11) 1991; 14 A Polyanin (1130_CR21) 2003 H Liu (1130_CR15) 2012; 57 F Calogero (1130_CR19) 1987; 3 |
References_xml | – year: 2008 ident: CR3 publication-title: The Painlevé Handbook – year: 2003 ident: CR21 publication-title: Handbook of Exact Solutions for Ordinary Differential Equations – volume: 3 start-page: 229 year: 1987 end-page: 262 ident: CR19 article-title: Nonlinear evolution equations, rescalings, model PDEs and their integrability: I publication-title: Inverse Probl. doi: 10.1088/0266-5611/3/2/008 – volume: 29 start-page: 1 year: 1987 end-page: 68 ident: CR5 article-title: A unified approach to Painlevé expansions publication-title: Physics D doi: 10.1016/0167-2789(87)90046-7 – volume: 12 start-page: 238 year: 1989 end-page: 249 ident: CR18 article-title: Transformation of equations and transformation of symmetries publication-title: Acta Math. Appl. Sin. – volume: 14 start-page: 180 year: 1991 end-page: 184 ident: CR11 article-title: Connections among symmetries, Bäcklund transformation and the Painlevé property for Burgers’ hierarchies publication-title: Acta Math. Appl. Sin. – volume: 42 start-page: 159 year: 2013 end-page: 170 ident: CR2 article-title: The recursion operator method for generalized symmetries and Bäcklund transformations of the Burgers’ equations publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-012-0633-1 – volume: 24 start-page: 522 year: 1983 end-page: 526 ident: CR4 article-title: The Painlevé property for partial differential equations publication-title: J. Math. Phys. doi: 10.1063/1.525721 – volume: 57 start-page: 737 year: 2012 end-page: 742 ident: CR15 article-title: Lie symmetry analysis, Bäcklund transformations and exact solutions to (2 + 1)-dimensional Burgers’ types of equations publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/57/5/02 – volume: 228 start-page: 1 year: 2009 end-page: 9 ident: CR1 article-title: Lie symmetry analysis and exact explicit solutions for general Burgers’ equation publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.06.009 – volume: 39 start-page: 77 year: 1989 end-page: 94 ident: CR6 article-title: The Painlevé expansions for nonintegrable evolution equations publication-title: Physics D doi: 10.1016/0167-2789(89)90040-7 – volume: 10 start-page: 1009 year: 1987 end-page: 1018 ident: CR10 article-title: New strong symmetries, symmetries and Lie algebra for Burgers’ equation publication-title: Sci. China Ser. A – year: 2000 ident: CR20 article-title: Introduction to special functions publication-title: The Series of Advanced Physics of Peking University – volume: 71 start-page: 2126 year: 2009 end-page: 2133 ident: CR12 article-title: Lie symmetry analysis and exact solutions for the short pulse equation publication-title: Nonlinear Anal. TMA doi: 10.1016/j.na.2009.01.075 – volume: 22 start-page: 1 issue: 1250188 year: 2012 end-page: 11 ident: CR14 article-title: Symmetry and conservation law classification and exact solutions to the generalized KdV types of equations publication-title: Int. J. Bifur. Chaos – volume: 59 start-page: 497 year: 2010 end-page: 502 ident: CR13 article-title: Painlevé analysis. Lie symmetries, and exact solutions for the time-dependent coefficients Gardner equations publication-title: Nonlinear Dyn. doi: 10.1007/s11071-009-9556-2 – volume: 254 start-page: 2289 year: 2013 end-page: 2303 ident: CR16 article-title: Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2012.12.004 – year: 2002 ident: CR9 article-title: Symmetry and integration methods for differential equations publication-title: Applied Mathematical Sciences – volume: 44 start-page: 27 year: 1990 end-page: 53 ident: CR7 article-title: Painlevé analysis and the complete integrability of a generalized variable-coefficient Kadomtsev–Petviashvili equation publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/44.1.27 – volume: 28 start-page: 299 year: 1980 end-page: 303 ident: CR17 article-title: On the structure of sympletic operators and hereditary symmetries publication-title: Lett. Nuovo Cimento doi: 10.1007/BF02798794 – year: 1993 ident: CR8 article-title: Applications of Lie groups to differential equations publication-title: Graduate Texts in Mathematics – volume: 228 start-page: 1 year: 2009 ident: 1130_CR1 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.06.009 – volume: 22 start-page: 1 issue: 1250188 year: 2012 ident: 1130_CR14 publication-title: Int. J. Bifur. Chaos – volume: 29 start-page: 1 year: 1987 ident: 1130_CR5 publication-title: Physics D doi: 10.1016/0167-2789(87)90046-7 – volume: 28 start-page: 299 year: 1980 ident: 1130_CR17 publication-title: Lett. Nuovo Cimento doi: 10.1007/BF02798794 – volume: 3 start-page: 229 year: 1987 ident: 1130_CR19 publication-title: Inverse Probl. doi: 10.1088/0266-5611/3/2/008 – volume-title: Applied Mathematical Sciences year: 2002 ident: 1130_CR9 – volume: 71 start-page: 2126 year: 2009 ident: 1130_CR12 publication-title: Nonlinear Anal. TMA doi: 10.1016/j.na.2009.01.075 – volume: 44 start-page: 27 year: 1990 ident: 1130_CR7 publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/44.1.27 – volume: 39 start-page: 77 year: 1989 ident: 1130_CR6 publication-title: Physics D doi: 10.1016/0167-2789(89)90040-7 – volume: 57 start-page: 737 year: 2012 ident: 1130_CR15 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/57/5/02 – volume-title: Handbook of Exact Solutions for Ordinary Differential Equations year: 2003 ident: 1130_CR21 – volume-title: The Painlevé Handbook year: 2008 ident: 1130_CR3 – volume: 12 start-page: 238 year: 1989 ident: 1130_CR18 publication-title: Acta Math. Appl. Sin. – volume: 42 start-page: 159 year: 2013 ident: 1130_CR2 publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-012-0633-1 – volume-title: Graduate Texts in Mathematics year: 1993 ident: 1130_CR8 – volume: 59 start-page: 497 year: 2010 ident: 1130_CR13 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-009-9556-2 – volume: 24 start-page: 522 year: 1983 ident: 1130_CR4 publication-title: J. Math. Phys. doi: 10.1063/1.525721 – volume: 254 start-page: 2289 year: 2013 ident: 1130_CR16 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2012.12.004 – volume-title: The Series of Advanced Physics of Peking University year: 2000 ident: 1130_CR20 – volume: 10 start-page: 1009 year: 1987 ident: 1130_CR10 publication-title: Sci. China Ser. A – volume: 14 start-page: 180 year: 1991 ident: 1130_CR11 publication-title: Acta Math. Appl. Sin. |
SSID | ssj0009895 |
Score | 2.153962 |
Snippet | In this paper, the Painlevé analysis is performed on the physical form of the third-order Burgers’ equation, the Painlevé property and integrability... In this paper, the Painleve analysis is performed on the physical form of the third-order Burgers' equation, the Painleve property and integrability... |
SourceID | gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 433 |
SubjectTerms | Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
Title | Painlevé Test, Generalized Symmetries, Bäcklund Transformations and Exact Solutions to the Third-Order Burgers’ Equations |
URI | https://link.springer.com/article/10.1007/s10955-014-1130-8 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NahsxEB5Sh0IupXFa6rYJOgQCaQQra3-kox3shBacQm1wT4uklWiIYydeu7SFQl-j91zyHHmTPElG--Mk0BZ62mWRxKJPGn3SzHwC2M1w14G01lKtLKehCjjVIrDUxkliwiR2sS6ifAfx8Sh8P47GVR53Xke71y7JwlI_SHaTkQ80CylDw0vFE1iP_NYdB_Go3blX2hUyqiXC0fJGtSvzT008Woxqk_zYIVqsM_3n8KwiiKRTIroJa3bahKdFoKbJm7Dh2WEprrwFPz_ivn5iv95ckyFa9wNSiUif_rAZ-fT9_Ly4Lis_IN2bK3M2WU4zMnxAVHHAEYXfet-UWZDVARlZzAjSQjL8cjrP6InX5iTdIns6v_31m_QuS3Xw_AWM-r3h4TGt7lOgBhdiQYVmXDMmjXM6yGxmeKw0FypoO2ZwIrskdJaF1nBpGXfSGSUClem20fgec_4SGtPZ1L4CEkglE2MjlWGlkEllXKRD5SSaCIZYtyCoOzY1ldi4v_Nikt7LJHssUsQi9VikogX7qyoXpdLGvwrvebRSPwuxXaOqZAL8O69nlXa8jBeSGcFa8K4GNK2mZ_73dl__V-k3sIH8KSpPZN5CYzFf2m3kKAu9A-udfrc78M-jzx96O8UYvQMedOQl |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD60Fqkvpd7o9qJ5EArVwGQzl-RxlZW19VLoLPgWkkyC0nVtnbW0hUL_Rt_74u_wn_hLPJmLF1DBt2FIDsN8yTlfknO-AKwUuOpAWuuo0Y7TWEecGhE56tIss3GW-tRUWb676WAYf9xP9ps67rLNdm-PJCtPfaPYTSYh0SymDB0vFU_hGXIBEfK4ht3etdKukEkrEY6eN2mPMu8ycSsYtS759oFoFWc2X8KLhiCSXo3oLDxx4zmYrhI1bTkHM4Ed1uLK8_DnM67rR-7H-RnJ0buvkUZE-vC3K8iXX0dH1XVZ5RpZP_9vv45OxwXJbxBVHHBE47v-T20n5GqDjEyOCdJCkh8cnhR0L2hzkvWqerq8-PuP9L_X6uDlAgw3-_nGgDb3KVCLgVhQYRg3jEnrvYkKV1ieasOFjrqeWZzIPou9Y7GzXDrGvfRWi0gXpmsNPqecL8LU-HjsXgGJpJaZdYkusFPMpLY-MbH2El0EQ6w7ELU_VtlGbDzceTFS1zLJAQuFWKiAhRId-HDV5VuttPFQ4_cBLRVmIdq1uikmwK8LelaqF2S8kMwI1oHVFlDVTM_yfruvH9V6GZ4P8p1ttb21--kNzCCXSurdmbcwNTk5de-Qr0zMUjU-LwG5zeQI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD5oRelL0aq4rZc8CII2dLKZS_K41V3qhVpwF_oWcsXidlo706JCoX_Dd1_8Hf0n_hJP5tILqODbMCRhmC85-ZJzzncAnjo8dSCt9dRoz2mqE06NSDz1eVHYtMhDbpoo3618c5a-2cl2ujqnVR_t3rsk25yGqNJU1usHLqxfSnyTWQw6SylDI0zFdbiB1pjFaT0bji5Ud4XMerlwtMJZ79b80xBXNqbePF91jjZ7zuQ2LHVkkYxadO_ANV8uw80maNNWy7AYmWIrtHwXTrbxjD_3x2c_yRQt_RrpBKV3v3lHPnzd22tKZ1VrZOPsh_00PyodmV4irTj5iMZ34y_a1uT8sozU-wQpIpl-3D109H3U6SQbTSZ19ev0Oxl_bpXCq3swm4ynLzdpV1uBWtyUBRWGccOYtCGYxHlnea4NFzoZBmZxUYciDZ6l3nLpGQ8yWC0S7czQGnzOOb8PC-V-6R8ASaSWhfWZdtgpZVLbkJlUB4nmgiHuA0j6H6tsJzwe61_M1YVkcsRCIRYqYqHEAJ6fdzloVTf-1fhZREvFFYnjWt0lFuDXRW0rNYqSXkhsBBvAix5Q1S3V6u_jrvxX6ydwa_vVRL17vfV2FRaRVmXtRc1DWKgPj_wjpC61edxMz9-9BuhE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Painlev%C3%A9+Test%2C+Generalized+Symmetries%2C+B%C3%A4cklund+Transformations+and+Exact+Solutions+to+the+Third-Order+Burgers%E2%80%99+Equations&rft.jtitle=Journal+of+statistical+physics&rft.au=Liu%2C+Hanze&rft.date=2015-01-01&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=158&rft.issue=2&rft.spage=433&rft.epage=446&rft_id=info:doi/10.1007%2Fs10955-014-1130-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10955_014_1130_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon |