Painlevé Test, Generalized Symmetries, Bäcklund Transformations and Exact Solutions to the Third-Order Burgers’ Equations

In this paper, the Painlevé analysis is performed on the physical form of the third-order Burgers’ equation, the Painlevé property and integrability (C-integrable) of the equation is verified. Then, the generalized symmetries of the equation are presented and the generalized symmetries of the other...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical physics Vol. 158; no. 2; pp. 433 - 446
Main Author Liu, Hanze
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.01.2015
Springer
Subjects
Online AccessGet full text
ISSN0022-4715
1572-9613
DOI10.1007/s10955-014-1130-8

Cover

Loading…
Abstract In this paper, the Painlevé analysis is performed on the physical form of the third-order Burgers’ equation, the Painlevé property and integrability (C-integrable) of the equation is verified. Then, the generalized symmetries of the equation are presented and the generalized symmetries of the other equation are given by the symmetry transformation method. The Bäcklund Transformations of the equations are constructed based on the symmetries, respectively. Furthermore, the exact explicit solutions to the equations are investigated in terms of the symmetries, Bäcklund transformations and transformations of the equations.
AbstractList In this paper, the Painleve analysis is performed on the physical form of the third-order Burgers' equation, the Painleve property and integrability (C-integrable) of the equation is verified. Then, the generalized symmetries of the equation are presented and the generalized symmetries of the other equation are given by the symmetry transformation method. The Backlund Transformations of the equations are constructed based on the symmetries, respectively. Furthermore, the exact explicit solutions to the equations are investigated in terms of the symmetries, Backlund transformations and transformations of the equations. Keywords Third-order Burger's equation * Integrability * Generalized symmetry * Backlund transformation * Exact solution Mathematics Subject Classification 17B80 * 22E70 * 35C05
In this paper, the Painlevé analysis is performed on the physical form of the third-order Burgers’ equation, the Painlevé property and integrability (C-integrable) of the equation is verified. Then, the generalized symmetries of the equation are presented and the generalized symmetries of the other equation are given by the symmetry transformation method. The Bäcklund Transformations of the equations are constructed based on the symmetries, respectively. Furthermore, the exact explicit solutions to the equations are investigated in terms of the symmetries, Bäcklund transformations and transformations of the equations.
Audience Academic
Author Liu, Hanze
Author_xml – sequence: 1
  givenname: Hanze
  surname: Liu
  fullname: Liu, Hanze
  email: hzliumath@hotmail.com
  organization: School of Mathematical Sciences, Liaocheng University, Department of Mathematics, Binzhou University
BookMark eNp9kM9O3DAQhy1EpS5_HqA3P8CaeuJk4xx3VwtFQqISy9lynDEYEgfsBJVKlfoa3LnwHLxJn6Sm4dQDmsOMftI3o_n2yK7vPRLyBfgRcF5-jcCromAccgYgOJM7ZAZFmbFqAWKXzDjPMpaXUHwmezHecM4rWRUz8uu7dr7Fh9cXusU4zOkJegy6dT-xoRePXYdDcBjndPX6bG7b0Td0G7SPtg-dHlzvI9Up2_zQZqAXfTtO2dDT4Rrp9tqFhp2HBgNdjeEKQ_zz-4lu7seJPSCfrG4jHr73fXJ5vNmuv7Gz85PT9fKMmSzPJJM1iBqgMtbWvMHGiIWuhdQ8s2ByKW2ZW4QcjagQhK2s0ZLrps5MneaFEPvkaNp7pVtUztt-CNqkarBzJpm0LuXLnFfJEEhIAEyACX2MAa26C67T4VEBV2_C1SRcJeHqTbiSiSn_Y4wb_v2Zjrn2QzKbyJiu-GRJ3fRj8MnIB9BfLU-b7w
CitedBy_id crossref_primary_10_1007_s11071_016_2683_7
crossref_primary_10_1016_j_chaos_2015_09_030
crossref_primary_10_1016_j_cnsns_2015_11_019
crossref_primary_10_4236_jamp_2019_711183
crossref_primary_10_1007_s11071_016_2748_7
crossref_primary_10_1016_j_ijleo_2017_06_093
crossref_primary_10_1016_j_nuclphysb_2019_114786
crossref_primary_10_11121_ijocta_2023_1265
crossref_primary_10_1016_j_cnsns_2016_07_022
crossref_primary_10_1016_j_chaos_2018_01_023
crossref_primary_10_1007_s00025_015_0438_2
crossref_primary_10_1007_s11071_015_2480_8
Cites_doi 10.1088/0266-5611/3/2/008
10.1016/0167-2789(87)90046-7
10.1007/s12190-012-0633-1
10.1063/1.525721
10.1088/0253-6102/57/5/02
10.1016/j.cam.2008.06.009
10.1016/0167-2789(89)90040-7
10.1016/j.na.2009.01.075
10.1007/s11071-009-9556-2
10.1016/j.jde.2012.12.004
10.1093/imamat/44.1.27
10.1007/BF02798794
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
COPYRIGHT 2015 Springer
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: COPYRIGHT 2015 Springer
DBID AAYXX
CITATION
DOI 10.1007/s10955-014-1130-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Physics
EISSN 1572-9613
EndPage 446
ExternalDocumentID A409715181
10_1007_s10955_014_1130_8
GroupedDBID -54
-5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IGS
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
XOL
YLTOR
YQT
YYP
Z45
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8Q
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ID FETCH-LOGICAL-c2428-8b13b119cffb0dedc36ab38a02f1c488f74fe14ec39e13f9fca80adb2cb9fc633
IEDL.DBID U2A
ISSN 0022-4715
IngestDate Tue Jun 10 20:46:45 EDT 2025
Tue Jul 01 02:18:19 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Fri Feb 21 02:36:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 35C05
Generalized symmetry
Integrability
22E70
Bäcklund transformation
17B80
Third-order Burger’s equation
Exact solution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2428-8b13b119cffb0dedc36ab38a02f1c488f74fe14ec39e13f9fca80adb2cb9fc633
PageCount 14
ParticipantIDs gale_infotracacademiconefile_A409715181
crossref_primary_10_1007_s10955_014_1130_8
crossref_citationtrail_10_1007_s10955_014_1130_8
springer_journals_10_1007_s10955_014_1130_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150100
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 1
  year: 2015
  text: 20150100
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationSubtitle 1
PublicationTitle Journal of statistical physics
PublicationTitleAbbrev J Stat Phys
PublicationYear 2015
Publisher Springer US
Springer
Publisher_xml – name: Springer US
– name: Springer
References Clarkson (CR7) 1990; 44
Liu, Li, Liu (CR13) 2010; 59
Liu, Li, Liu (CR14) 2012; 22
Wang, Guo (CR20) 2000
Liu, Li, Zhang (CR1) 2009; 228
Chou (CR10) 1987; 10
Liu, Li, Liu (CR15) 2012; 57
Polyanin, Zaitsev (CR21) 2003
Calogero, Eckhaus (CR19) 1987; 3
Cariello, Tabor (CR6) 1989; 39
Fokas, Fuchssteiner (CR17) 1980; 28
Tian (CR18) 1989; 12
Newell (CR5) 1987; 29
Bluman, Anco (CR9) 2002
Conte, Musette (CR3) 2008
Olver (CR8) 1993
Cheng (CR11) 1991; 14
Weiss, Tabor, Carnevale (CR4) 1983; 24
Liu, Geng (CR16) 2013; 254
Liu, Li, Liu (CR2) 2013; 42
Liu, Li (CR12) 2009; 71
R Conte (1130_CR3) 2008
F Cariello (1130_CR6) 1989; 39
C Tian (1130_CR18) 1989; 12
H Liu (1130_CR13) 2010; 59
H Liu (1130_CR1) 2009; 228
J Weiss (1130_CR4) 1983; 24
P Olver (1130_CR8) 1993
H Liu (1130_CR14) 2012; 22
H Liu (1130_CR2) 2013; 42
H Liu (1130_CR16) 2013; 254
Z Wang (1130_CR20) 2000
T Chou (1130_CR10) 1987; 10
P Clarkson (1130_CR7) 1990; 44
G Bluman (1130_CR9) 2002
A Fokas (1130_CR17) 1980; 28
A Newell (1130_CR5) 1987; 29
H Liu (1130_CR12) 2009; 71
Y Cheng (1130_CR11) 1991; 14
A Polyanin (1130_CR21) 2003
H Liu (1130_CR15) 2012; 57
F Calogero (1130_CR19) 1987; 3
References_xml – year: 2008
  ident: CR3
  publication-title: The Painlevé Handbook
– year: 2003
  ident: CR21
  publication-title: Handbook of Exact Solutions for Ordinary Differential Equations
– volume: 3
  start-page: 229
  year: 1987
  end-page: 262
  ident: CR19
  article-title: Nonlinear evolution equations, rescalings, model PDEs and their integrability: I
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/3/2/008
– volume: 29
  start-page: 1
  year: 1987
  end-page: 68
  ident: CR5
  article-title: A unified approach to Painlevé expansions
  publication-title: Physics D
  doi: 10.1016/0167-2789(87)90046-7
– volume: 12
  start-page: 238
  year: 1989
  end-page: 249
  ident: CR18
  article-title: Transformation of equations and transformation of symmetries
  publication-title: Acta Math. Appl. Sin.
– volume: 14
  start-page: 180
  year: 1991
  end-page: 184
  ident: CR11
  article-title: Connections among symmetries, Bäcklund transformation and the Painlevé property for Burgers’ hierarchies
  publication-title: Acta Math. Appl. Sin.
– volume: 42
  start-page: 159
  year: 2013
  end-page: 170
  ident: CR2
  article-title: The recursion operator method for generalized symmetries and Bäcklund transformations of the Burgers’ equations
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-012-0633-1
– volume: 24
  start-page: 522
  year: 1983
  end-page: 526
  ident: CR4
  article-title: The Painlevé property for partial differential equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.525721
– volume: 57
  start-page: 737
  year: 2012
  end-page: 742
  ident: CR15
  article-title: Lie symmetry analysis, Bäcklund transformations and exact solutions to (2 + 1)-dimensional Burgers’ types of equations
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/57/5/02
– volume: 228
  start-page: 1
  year: 2009
  end-page: 9
  ident: CR1
  article-title: Lie symmetry analysis and exact explicit solutions for general Burgers’ equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.06.009
– volume: 39
  start-page: 77
  year: 1989
  end-page: 94
  ident: CR6
  article-title: The Painlevé expansions for nonintegrable evolution equations
  publication-title: Physics D
  doi: 10.1016/0167-2789(89)90040-7
– volume: 10
  start-page: 1009
  year: 1987
  end-page: 1018
  ident: CR10
  article-title: New strong symmetries, symmetries and Lie algebra for Burgers’ equation
  publication-title: Sci. China Ser. A
– year: 2000
  ident: CR20
  article-title: Introduction to special functions
  publication-title: The Series of Advanced Physics of Peking University
– volume: 71
  start-page: 2126
  year: 2009
  end-page: 2133
  ident: CR12
  article-title: Lie symmetry analysis and exact solutions for the short pulse equation
  publication-title: Nonlinear Anal. TMA
  doi: 10.1016/j.na.2009.01.075
– volume: 22
  start-page: 1
  issue: 1250188
  year: 2012
  end-page: 11
  ident: CR14
  article-title: Symmetry and conservation law classification and exact solutions to the generalized KdV types of equations
  publication-title: Int. J. Bifur. Chaos
– volume: 59
  start-page: 497
  year: 2010
  end-page: 502
  ident: CR13
  article-title: Painlevé analysis. Lie symmetries, and exact solutions for the time-dependent coefficients Gardner equations
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-009-9556-2
– volume: 254
  start-page: 2289
  year: 2013
  end-page: 2303
  ident: CR16
  article-title: Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2012.12.004
– year: 2002
  ident: CR9
  article-title: Symmetry and integration methods for differential equations
  publication-title: Applied Mathematical Sciences
– volume: 44
  start-page: 27
  year: 1990
  end-page: 53
  ident: CR7
  article-title: Painlevé analysis and the complete integrability of a generalized variable-coefficient Kadomtsev–Petviashvili equation
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/44.1.27
– volume: 28
  start-page: 299
  year: 1980
  end-page: 303
  ident: CR17
  article-title: On the structure of sympletic operators and hereditary symmetries
  publication-title: Lett. Nuovo Cimento
  doi: 10.1007/BF02798794
– year: 1993
  ident: CR8
  article-title: Applications of Lie groups to differential equations
  publication-title: Graduate Texts in Mathematics
– volume: 228
  start-page: 1
  year: 2009
  ident: 1130_CR1
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.06.009
– volume: 22
  start-page: 1
  issue: 1250188
  year: 2012
  ident: 1130_CR14
  publication-title: Int. J. Bifur. Chaos
– volume: 29
  start-page: 1
  year: 1987
  ident: 1130_CR5
  publication-title: Physics D
  doi: 10.1016/0167-2789(87)90046-7
– volume: 28
  start-page: 299
  year: 1980
  ident: 1130_CR17
  publication-title: Lett. Nuovo Cimento
  doi: 10.1007/BF02798794
– volume: 3
  start-page: 229
  year: 1987
  ident: 1130_CR19
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/3/2/008
– volume-title: Applied Mathematical Sciences
  year: 2002
  ident: 1130_CR9
– volume: 71
  start-page: 2126
  year: 2009
  ident: 1130_CR12
  publication-title: Nonlinear Anal. TMA
  doi: 10.1016/j.na.2009.01.075
– volume: 44
  start-page: 27
  year: 1990
  ident: 1130_CR7
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/44.1.27
– volume: 39
  start-page: 77
  year: 1989
  ident: 1130_CR6
  publication-title: Physics D
  doi: 10.1016/0167-2789(89)90040-7
– volume: 57
  start-page: 737
  year: 2012
  ident: 1130_CR15
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/57/5/02
– volume-title: Handbook of Exact Solutions for Ordinary Differential Equations
  year: 2003
  ident: 1130_CR21
– volume-title: The Painlevé Handbook
  year: 2008
  ident: 1130_CR3
– volume: 12
  start-page: 238
  year: 1989
  ident: 1130_CR18
  publication-title: Acta Math. Appl. Sin.
– volume: 42
  start-page: 159
  year: 2013
  ident: 1130_CR2
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-012-0633-1
– volume-title: Graduate Texts in Mathematics
  year: 1993
  ident: 1130_CR8
– volume: 59
  start-page: 497
  year: 2010
  ident: 1130_CR13
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-009-9556-2
– volume: 24
  start-page: 522
  year: 1983
  ident: 1130_CR4
  publication-title: J. Math. Phys.
  doi: 10.1063/1.525721
– volume: 254
  start-page: 2289
  year: 2013
  ident: 1130_CR16
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2012.12.004
– volume-title: The Series of Advanced Physics of Peking University
  year: 2000
  ident: 1130_CR20
– volume: 10
  start-page: 1009
  year: 1987
  ident: 1130_CR10
  publication-title: Sci. China Ser. A
– volume: 14
  start-page: 180
  year: 1991
  ident: 1130_CR11
  publication-title: Acta Math. Appl. Sin.
SSID ssj0009895
Score 2.153962
Snippet In this paper, the Painlevé analysis is performed on the physical form of the third-order Burgers’ equation, the Painlevé property and integrability...
In this paper, the Painleve analysis is performed on the physical form of the third-order Burgers' equation, the Painleve property and integrability...
SourceID gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 433
SubjectTerms Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
Title Painlevé Test, Generalized Symmetries, Bäcklund Transformations and Exact Solutions to the Third-Order Burgers’ Equations
URI https://link.springer.com/article/10.1007/s10955-014-1130-8
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NahsxEB5Sh0IupXFa6rYJOgQCaQQra3-kox3shBacQm1wT4uklWiIYydeu7SFQl-j91zyHHmTPElG--Mk0BZ62mWRxKJPGn3SzHwC2M1w14G01lKtLKehCjjVIrDUxkliwiR2sS6ifAfx8Sh8P47GVR53Xke71y7JwlI_SHaTkQ80CylDw0vFE1iP_NYdB_Go3blX2hUyqiXC0fJGtSvzT008Woxqk_zYIVqsM_3n8KwiiKRTIroJa3bahKdFoKbJm7Dh2WEprrwFPz_ivn5iv95ckyFa9wNSiUif_rAZ-fT9_Ly4Lis_IN2bK3M2WU4zMnxAVHHAEYXfet-UWZDVARlZzAjSQjL8cjrP6InX5iTdIns6v_31m_QuS3Xw_AWM-r3h4TGt7lOgBhdiQYVmXDMmjXM6yGxmeKw0FypoO2ZwIrskdJaF1nBpGXfSGSUClem20fgec_4SGtPZ1L4CEkglE2MjlWGlkEllXKRD5SSaCIZYtyCoOzY1ldi4v_Nikt7LJHssUsQi9VikogX7qyoXpdLGvwrvebRSPwuxXaOqZAL8O69nlXa8jBeSGcFa8K4GNK2mZ_73dl__V-k3sIH8KSpPZN5CYzFf2m3kKAu9A-udfrc78M-jzx96O8UYvQMedOQl
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD60Fqkvpd7o9qJ5EArVwGQzl-RxlZW19VLoLPgWkkyC0nVtnbW0hUL_Rt_74u_wn_hLPJmLF1DBt2FIDsN8yTlfknO-AKwUuOpAWuuo0Y7TWEecGhE56tIss3GW-tRUWb676WAYf9xP9ps67rLNdm-PJCtPfaPYTSYh0SymDB0vFU_hGXIBEfK4ht3etdKukEkrEY6eN2mPMu8ycSsYtS759oFoFWc2X8KLhiCSXo3oLDxx4zmYrhI1bTkHM4Ed1uLK8_DnM67rR-7H-RnJ0buvkUZE-vC3K8iXX0dH1XVZ5RpZP_9vv45OxwXJbxBVHHBE47v-T20n5GqDjEyOCdJCkh8cnhR0L2hzkvWqerq8-PuP9L_X6uDlAgw3-_nGgDb3KVCLgVhQYRg3jEnrvYkKV1ieasOFjrqeWZzIPou9Y7GzXDrGvfRWi0gXpmsNPqecL8LU-HjsXgGJpJaZdYkusFPMpLY-MbH2El0EQ6w7ELU_VtlGbDzceTFS1zLJAQuFWKiAhRId-HDV5VuttPFQ4_cBLRVmIdq1uikmwK8LelaqF2S8kMwI1oHVFlDVTM_yfruvH9V6GZ4P8p1ttb21--kNzCCXSurdmbcwNTk5de-Qr0zMUjU-LwG5zeQI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD5oRelL0aq4rZc8CII2dLKZS_K41V3qhVpwF_oWcsXidlo706JCoX_Dd1_8Hf0n_hJP5tILqODbMCRhmC85-ZJzzncAnjo8dSCt9dRoz2mqE06NSDz1eVHYtMhDbpoo3618c5a-2cl2ujqnVR_t3rsk25yGqNJU1usHLqxfSnyTWQw6SylDI0zFdbiB1pjFaT0bji5Ud4XMerlwtMJZ79b80xBXNqbePF91jjZ7zuQ2LHVkkYxadO_ANV8uw80maNNWy7AYmWIrtHwXTrbxjD_3x2c_yRQt_RrpBKV3v3lHPnzd22tKZ1VrZOPsh_00PyodmV4irTj5iMZ34y_a1uT8sozU-wQpIpl-3D109H3U6SQbTSZ19ev0Oxl_bpXCq3swm4ynLzdpV1uBWtyUBRWGccOYtCGYxHlnea4NFzoZBmZxUYciDZ6l3nLpGQ8yWC0S7czQGnzOOb8PC-V-6R8ASaSWhfWZdtgpZVLbkJlUB4nmgiHuA0j6H6tsJzwe61_M1YVkcsRCIRYqYqHEAJ6fdzloVTf-1fhZREvFFYnjWt0lFuDXRW0rNYqSXkhsBBvAix5Q1S3V6u_jrvxX6ydwa_vVRL17vfV2FRaRVmXtRc1DWKgPj_wjpC61edxMz9-9BuhE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Painlev%C3%A9+Test%2C+Generalized+Symmetries%2C+B%C3%A4cklund+Transformations+and+Exact+Solutions+to+the+Third-Order+Burgers%E2%80%99+Equations&rft.jtitle=Journal+of+statistical+physics&rft.au=Liu%2C+Hanze&rft.date=2015-01-01&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=158&rft.issue=2&rft.spage=433&rft.epage=446&rft_id=info:doi/10.1007%2Fs10955-014-1130-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10955_014_1130_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon