Recent advances in bio-medical implants; mechanical properties, surface modifications and applications

The demand for bio-medical implants has significantly increased to treat different medical conditions and complications. The latest research in medical and material science is paving the path for the new generation of biomedical implants that mimic the natural bone and tissues for enhanced biocompat...

Full description

Saved in:
Bibliographic Details
Published inEngineering Research Express Vol. 4; no. 3; pp. 32003 - 32019
Main Author Zwawi, Mohammed
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The demand for bio-medical implants has significantly increased to treat different medical conditions and complications. The latest research in medical and material science is paving the path for the new generation of biomedical implants that mimic the natural bone and tissues for enhanced biocompatibility. A bio-medical implant must be bio-compatible, non-toxic and bioactive. The main reasons for implantation are ageing, overweight, accidents and genetic diseases such as arthritis or joint pain. Diseases such as osteoporosis and osteoarthritis can severely damage the mechanical properties of bones over time. Different materials including polymers, ceramics and metals are used for biomedical implants. Metallic implants have high strength and high resistance to corrosion and wear. Biocompatible metallic materials include Ti, Ta, Zr, Mo, Nb, W and Au while materials such as Ni, V, Al and Cr are considered toxic and hazardous to the body. Bioresorbable and degradable materials dissolve in the body after the healing process. Mg-based metallic alloys are highly degradable in the biological environment. Similarly, different polymers such as Poly-lactic acid (PLA) are used as bio-degradable implants and in tissue engineering. Biodegradable stents are used for the slow release of drugs to avoid blood clotting and other complications. Shape memory alloys are employed for bio-implants due to their unique set of properties. Different surface physical and chemical modification methods are used to improve the interfacial properties and interaction of implant materials with the biological environment. This review explains the properties, materials, modifications and shortcomings of bio-implants.
AbstractList The demand for bio-medical implants has significantly increased to treat different medical conditions and complications. The latest research in medical and material science is paving the path for the new generation of biomedical implants that mimic the natural bone and tissues for enhanced biocompatibility. A bio-medical implant must be bio-compatible, non-toxic and bioactive. The main reasons for implantation are ageing, overweight, accidents and genetic diseases such as arthritis or joint pain. Diseases such as osteoporosis and osteoarthritis can severely damage the mechanical properties of bones over time. Different materials including polymers, ceramics and metals are used for biomedical implants. Metallic implants have high strength and high resistance to corrosion and wear. Biocompatible metallic materials include Ti, Ta, Zr, Mo, Nb, W and Au while materials such as Ni, V, Al and Cr are considered toxic and hazardous to the body. Bioresorbable and degradable materials dissolve in the body after the healing process. Mg-based metallic alloys are highly degradable in the biological environment. Similarly, different polymers such as Poly-lactic acid (PLA) are used as bio-degradable implants and in tissue engineering. Biodegradable stents are used for the slow release of drugs to avoid blood clotting and other complications. Shape memory alloys are employed for bio-implants due to their unique set of properties. Different surface physical and chemical modification methods are used to improve the interfacial properties and interaction of implant materials with the biological environment. This review explains the properties, materials, modifications and shortcomings of bio-implants.
Author Zwawi, Mohammed
Author_xml – sequence: 1
  givenname: Mohammed
  orcidid: 0000-0001-9905-0726
  surname: Zwawi
  fullname: Zwawi, Mohammed
  organization: King Abdulaziz University Department of Mechanical Engineering, Rabigh 21911, Saudi Arabia
BookMark eNp9kMtLAzEQxoNUsNbePebkqat5bLNZPEnxBQVB9BxmswlGdpOQbEX_e_tQEZGeZuab-Q0z3zEa-eANQqeUnFMi5QUTnBZS1PML0BIMO0DjH2n0Kz9C05xdQ0ohqKhoNUb20WjjBwztG3htMnYeNy4UvWmdhg67Pnbgh3yJe6NfwG_FmEI0aXAmz3BeJQva4D60zq67gws-Y_Athhi7b-EEHVrospl-xQl6vrl-WtwVy4fb-8XVstCspEMxpwJoA5ICZRQYAV4yYgXRsrF1o9vaViWzdWkl1eW8pdLKygKHdQVVLQmfILLbq1PIORmrYnI9pA9FidpYpTZeqI0XamfVGhF_EO2G7dVDAtftA2c70IWoXsMq-fVn-8bP_hk36V2ViivCGSFcxdbyT98ajZE
CODEN ERENBL
CitedBy_id crossref_primary_10_1016_j_jmrt_2024_11_152
crossref_primary_10_1016_j_jmapro_2024_03_095
crossref_primary_10_1016_j_jmapro_2023_08_024
crossref_primary_10_1088_1402_4896_ad7cdd
crossref_primary_10_1016_j_ijmecsci_2024_109219
crossref_primary_10_1177_09544119241245503
crossref_primary_10_3390_coatings14060666
crossref_primary_10_21122_2227_1031_2024_23_3_204_218
crossref_primary_10_1007_s40964_024_00922_4
crossref_primary_10_1177_14644207241269609
crossref_primary_10_3390_ma17225632
crossref_primary_10_1016_j_jallcom_2024_177966
crossref_primary_10_1016_j_surfcoat_2023_129624
crossref_primary_10_1016_j_jiec_2024_03_030
crossref_primary_10_3390_polym16070985
crossref_primary_10_1016_j_bmt_2024_05_001
crossref_primary_10_1007_s42247_024_00984_8
crossref_primary_10_1016_j_apsadv_2023_100506
crossref_primary_10_3390_polym15122601
crossref_primary_10_1039_D2TB02392J
crossref_primary_10_1080_15376494_2025_2470412
Cites_doi 10.1038/nmat5016
10.1016/j.jmbbm.2010.12.010
10.1021/acsbiomaterials.7b00215
10.3390/pharmaceutics14040798
10.1016/S0142-9612(03)00340-5
10.1016/j.ijbiomac.2016.11.010
10.1002/jbm.b.33547
10.1002/advs.201902443
10.2319/081619-536.1
10.1002/jbm.b.31483
10.1016/j.jconrel.2010.12.005
10.1002/adem.201801215
10.1016/j.msec.2018.04.100
10.3390/polym12051022
10.1016/j.compositesb.2020.108238
10.1016/S0142-9612(03)00354-5
10.1007/s00264-010-1187-1
10.1016/B978-0-08-100803-4.00003-6
10.1021/acsbiomaterials.5b00429
10.1007/BF02706450
10.1016/j.msea.2003.09.080
10.1016/j.biomaterials.2011.05.046
10.1016/j.matpr.2020.02.649
10.1021/acsbiomaterials.0c00115
10.1016/j.actbio.2010.02.028
10.5507/bp.2012.063
10.1038/nmat1421
10.1002/bip.20871
10.1016/j.matpr.2020.03.538
10.1016/j.jconrel.2005.06.021
10.1016/j.jallcom.2017.04.231
10.1088/1468-6996/16/5/053501
10.1016/j.actbio.2012.11.019
10.1371/journal.pone.0085871
10.1016/j.compstruct.2021.114267
10.1021/am5015309
10.1016/j.biomaterials.2013.09.094
10.1016/j.actbio.2017.11.003
10.1097/01.prs.0000214656.07273.b0
10.52547/jcc.3.1.7
10.1016/j.matdes.2021.109893
10.1111/j.1600-0501.2009.01785.x
10.1136/neurintsurg-2012-010400
10.31399/asm.hb.v23.a0005682
10.2174/138161210794454897
10.1155/2015/171945
10.1016/S0142-9612(02)00030-3
10.1089/ten.teb.2013.0728
10.1016/j.matpr.2019.12.205
10.1016/j.actbio.2005.07.003
10.1016/S0921-5093(02)00285-X
10.1016/j.bioactmat.2016.11.001
10.1016/j.actbio.2017.09.027
10.1002/pat.5263
10.1002/pen.25508
10.1016/j.procir.2013.01.022
10.1007/s10853-008-2552-y
10.1021/acsbiomaterials.6b00355
10.1016/j.colsurfb.2017.07.038
10.1016/j.actbio.2014.07.005
10.1016/j.pmatsci.2008.06.004
10.1007/s10029-021-02553-y
10.3390/ma15072383
10.1161/CIRCULATIONAHA.110.971606
10.1007/s10047-008-0456-x
10.1016/j.carbpol.2018.10.039
10.1016/j.actbio.2019.12.023
10.1016/j.mser.2014.10.001
10.1021/acs.iecr.8b05334
10.1016/j.biomaterials.2007.08.020
10.1002/adfm.201909049
10.1007/s10570-013-0006-4
10.3390/polym11101561
10.1021/acs.bioconjchem.5b00192
10.1586/17434440.4.4.507
10.1007/s40204-018-0097-y
10.3390/coatings2030095
10.1016/j.biomaterials.2010.07.028
10.1016/j.actbio.2009.10.006
10.1016/S0142-1123(00)00052-9
10.3390/ma7128168
10.1007/s12551-016-0246-2
10.1039/C7TB01895A
10.1016/B978-0-12-370869-4.00014-8
10.1016/j.polymdegradstab.2020.109232
10.1111/aor.13851
10.1021/acsapm.1c00363
10.1007/978-3-7091-0385-2_3
10.1016/j.mser.2014.04.001
10.1021/acsbiomaterials.7b00676
10.5530/ijper.56.2.63
10.1088/1757-899X/1017/1/012038
10.1016/j.eurpolymj.2019.05.004
ContentType Journal Article
Copyright 2022 IOP Publishing Ltd
Copyright_xml – notice: 2022 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/2631-8695/ac8ae2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2631-8695
ExternalDocumentID 10_1088_2631_8695_ac8ae2
erxac8ae2
GroupedDBID AAYXX
ABJNI
ALMA_UNASSIGNED_HOLDINGS
CITATION
ID FETCH-LOGICAL-c241t-516a1ba81a121a20a3420f60c8bf9bcd9f742f94f81c45d18f87fa3a1c4a79803
IEDL.DBID O3W
ISSN 2631-8695
IngestDate Tue Jul 01 02:33:22 EDT 2025
Thu Apr 24 23:07:59 EDT 2025
Wed Aug 21 03:41:55 EDT 2024
Wed Sep 14 02:25:15 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c241t-516a1ba81a121a20a3420f60c8bf9bcd9f742f94f81c45d18f87fa3a1c4a79803
Notes ERX-101709.R1
ORCID 0000-0001-9905-0726
PageCount 17
ParticipantIDs crossref_primary_10_1088_2631_8695_ac8ae2
crossref_citationtrail_10_1088_2631_8695_ac8ae2
iop_journals_10_1088_2631_8695_ac8ae2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering Research Express
PublicationTitleAbbrev ERX
PublicationTitleAlternate Eng. Res. Express
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Bose (erxac8ae2bib92) 2018; 66
Mahmoudi Hashemi (erxac8ae2bib15) 2016; 3
Ambekar (erxac8ae2bib77) 2019; 58
Patel (erxac8ae2bib40) 2020; 33
Shekhawat (erxac8ae2bib23) 2021; 1017
Sinha (erxac8ae2bib79) 2021; 3
Teoh (erxac8ae2bib11) 2000; 22
Gallo (erxac8ae2bib36) 2012; 156
Wankar (erxac8ae2bib87) 2020; 30
Nezhad-Mokhtari (erxac8ae2bib81) 2019; 117
Linnes (erxac8ae2bib70) 2007; 28
Hannouche (erxac8ae2bib34) 2011; 35
Mohamad Yunos (erxac8ae2bib83) 2008; 43
Amini (erxac8ae2bib71) 2021; 32
Chen (erxac8ae2bib6) 2015; 87
Zhang (erxac8ae2bib84) 2014; 9
Bhalshankar (erxac8ae2bib85) 2021
Ibrahim (erxac8ae2bib10) 2017; 714
Feller (erxac8ae2bib97) 2015; 2015
Mecenas (erxac8ae2bib7) 2020; 90
Rizvi (erxac8ae2bib31) 2021; 272
Patnaik (erxac8ae2bib14) 2020; 26
Zamani (erxac8ae2bib17) 2021; 3
Khosravi (erxac8ae2bib8) 2020; 12
Schnettler (erxac8ae2bib33) 2003; 24
Parlane (erxac8ae2bib88) 2017; 3
Hu (erxac8ae2bib58) 2018; 91
Hu (erxac8ae2bib75) 2010; 31
Kala (erxac8ae2bib28) 2022; 56
Shankar (erxac8ae2bib63) 2017; 95
Miyoshi (erxac8ae2bib68) 2014; 20
Chen (erxac8ae2bib16) 2014; 10
Zhang (erxac8ae2bib2) 2019; 21
Thierry (erxac8ae2bib38) 2002; 23
Ramos (erxac8ae2bib3) 2017; 9
Liu (erxac8ae2bib50) 2020; 199
Novotna (erxac8ae2bib67) 2013; 20
Uddin (erxac8ae2bib18) 2015; 16
Jiang (erxac8ae2bib54) 2014; 35
Kamachimudali (erxac8ae2bib13) 2003; 28
Fu (erxac8ae2bib39) 2003; 342
Stratton (erxac8ae2bib62) 2016; 1
Radovic (erxac8ae2bib4) 2004; 368
Geetha (erxac8ae2bib12) 2009; 54
Mohammed (erxac8ae2bib5) 2014; 8
Wang (erxac8ae2bib19) 2020; 7
Witte (erxac8ae2bib22) 2010; 6
Holman (erxac8ae2bib37) 2021; 45
Fargen (erxac8ae2bib41) 2013; 5
Rahmany (erxac8ae2bib96) 2013; 9
Borhani (erxac8ae2bib43) 2018; 7
Narayan (erxac8ae2bib1) 2012; 23
Bhattacharya (erxac8ae2bib90) 2020; 6
Huet (erxac8ae2bib35) 2011; 4
Hanawa (erxac8ae2bib56) 2009; 12
Sharma (erxac8ae2bib25) 2018; 17
Jiang (erxac8ae2bib45) 2017; 3
Mas-Moruno (erxac8ae2bib95) 2018
Guo (erxac8ae2bib47) 2005; 107
Andreiotelli (erxac8ae2bib32) 2009; 20
Alexander (erxac8ae2bib55) 2018; 4
Low (erxac8ae2bib78) 2020; 60
Liu (erxac8ae2bib42) 2014; 6
Fernández-Cossío (erxac8ae2bib91) 2006; 117
Sidambe (erxac8ae2bib9) 2014; 7
Glowacki (erxac8ae2bib64) 2008; 89
Verma (erxac8ae2bib20) 2020; 26
Kiani (erxac8ae2bib21) 2020; 103
Tchobanian (erxac8ae2bib69) 2019; 205
Arango-Santander (erxac8ae2bib93) 2022; 15
Jia (erxac8ae2bib30) 2021; 209
Srinivasan (erxac8ae2bib66) 2010; 92
Tang (erxac8ae2bib49) 2011; 151
Kowalik (erxac8ae2bib29) 2022; 26
Bhattacharya (erxac8ae2bib89) 2017; 5
Patricio (erxac8ae2bib74) 2013; 5
Hermawan (erxac8ae2bib57) 2010; 6
Bosco (erxac8ae2bib86) 2012; 2
Chen (erxac8ae2bib44) 2015; 26
Jafari (erxac8ae2bib60) 2017; 105
Onuma (erxac8ae2bib61) 2011; 123
Hollister (erxac8ae2bib72) 2005; 4
Swainson (erxac8ae2bib51) 2019; 11
Teo (erxac8ae2bib24) 2016; 2
Drury (erxac8ae2bib80) 2003; 24
Wu (erxac8ae2bib73) 2014; 80
Bhattacharjee (erxac8ae2bib65) 2017; 63
Rahman (erxac8ae2bib46) 2022; 14
Liu (erxac8ae2bib53) 2011; 32
Hutmacher (erxac8ae2bib59) 2008
Buma (erxac8ae2bib27) 2007; 4
Blaker (erxac8ae2bib76) 2005; 1
Li (erxac8ae2bib82) 2011
Torgbo (erxac8ae2bib26) 2020; 179
Mir (erxac8ae2bib52) 2017; 159
Nouri (erxac8ae2bib94) 2015
Parker (erxac8ae2bib48) 2010; 16
References_xml – volume: 17
  start-page: 96
  year: 2018
  ident: erxac8ae2bib25
  article-title: The development of bioresorbable composite polymeric implants with high mechanical strength
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5016
– volume: 3
  start-page: 202
  year: 2016
  ident: erxac8ae2bib15
  article-title: A review on nanostructured stainless steel implants for biomedical application
  publication-title: Nanomedicine J.
– volume: 4
  start-page: 476
  year: 2011
  ident: erxac8ae2bib35
  article-title: Strength and reliability of alumina ceramic femoral heads: review of design, testing, and retrieval analysis
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2010.12.010
– start-page: 3
  year: 2015
  ident: erxac8ae2bib94
  article-title: Introduction to surface coating and modification for metallic biomaterials
  publication-title: Surf. Coat. Modif. Met. Biomater.
– volume: 3
  start-page: 936
  year: 2017
  ident: erxac8ae2bib45
  article-title: Comparison study on four biodegradable polymer coatings for controlling magnesium degradation and human endothelial cell adhesion and spreading
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.7b00215
– volume: 14
  start-page: 798
  year: 2022
  ident: erxac8ae2bib46
  article-title: Significance of polymers with ‘Allyl’ functionality in biomedicine: an emerging class of functional polymers
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14040798
– volume: 24
  start-page: 4337
  year: 2003
  ident: erxac8ae2bib80
  article-title: Hydrogels for tissue engineering: scaffold design variables and applications
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00340-5
– volume: 95
  start-page: 1199
  year: 2017
  ident: erxac8ae2bib63
  article-title: Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: a comparative analysis
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.11.010
– volume: 105
  start-page: 431
  year: 2017
  ident: erxac8ae2bib60
  article-title: Polymeric scaffolds in tissue engineering: a literature review
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.33547
– volume: 7
  year: 2020
  ident: erxac8ae2bib19
  article-title: Biodegradable magnesium-based implants in orthopedics—a general review and perspectives
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902443
– volume: 90
  start-page: 587
  year: 2020
  ident: erxac8ae2bib7
  article-title: Stainless steel or titanium mini-implants? A systematic review
  publication-title: Angle Orthod.
  doi: 10.2319/081619-536.1
– volume: 92
  start-page: 5
  year: 2010
  ident: erxac8ae2bib66
  article-title: Porous keratin scaffold–promising biomaterial for tissue engineering and drug delivery
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater.
  doi: 10.1002/jbm.b.31483
– volume: 151
  start-page: 18
  year: 2011
  ident: erxac8ae2bib49
  article-title: Block copolymer micelles with acid-labile ortho ester side-chains: synthesis, characterization, and enhanced drug delivery to human glioma cells
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2010.12.005
– volume: 21
  year: 2019
  ident: erxac8ae2bib2
  article-title: A review on biomedical titanium alloys: recent progress and prospect
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201801215
– volume: 91
  start-page: 163
  year: 2018
  ident: erxac8ae2bib58
  article-title: Biodegradable stents for coronary artery disease treatment: recent advances and future perspectives
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.04.100
– volume: 12
  start-page: 1022
  year: 2020
  ident: erxac8ae2bib8
  article-title: Development of a highly proliferated bilayer coating on 316L stainless steel implants
  publication-title: Polymers
  doi: 10.3390/polym12051022
– volume: 199
  year: 2020
  ident: erxac8ae2bib50
  article-title: Current applications of poly (lactic acid) composites in tissue engineering and drug delivery
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2020.108238
– volume: 24
  start-page: 4603
  year: 2003
  ident: erxac8ae2bib33
  article-title: Bone ingrowth in BFGF-coated hydroxyapatite ceramic implants
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00354-5
– volume: 35
  start-page: 207
  year: 2011
  ident: erxac8ae2bib34
  article-title: Thirty years of experience with alumina-on-alumina bearings in total hip arthroplasty
  publication-title: Int. Orthop.
  doi: 10.1007/s00264-010-1187-1
– start-page: pp.73
  year: 2018
  ident: erxac8ae2bib95
  article-title: Surface functionalization of biomaterials for bone tissue regeneration and repair
  doi: 10.1016/B978-0-08-100803-4.00003-6
– volume: 2
  start-page: 454
  year: 2016
  ident: erxac8ae2bib24
  article-title: Polymeric biomaterials for medical implants and devices
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.5b00429
– volume: 28
  start-page: 601
  year: 2003
  ident: erxac8ae2bib13
  article-title: Corrosion of bio implants
  publication-title: Sadhana
  doi: 10.1007/BF02706450
– volume: 368
  start-page: 56
  year: 2004
  ident: erxac8ae2bib4
  article-title: Comparison of different experimental techniques for determination of elastic properties of solids
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2003.09.080
– volume: 32
  start-page: 6646
  year: 2011
  ident: erxac8ae2bib53
  article-title: Biodegradation, biocompatibility, and drug delivery in poly ($ømega$-pentadecalactone-Co-p-Dioxanone) copolyesters
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.05.046
– volume: 26
  start-page: 3148
  year: 2020
  ident: erxac8ae2bib20
  article-title: Titanium based biomaterial for bone implants: a mini review
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.02.649
– volume: 6
  start-page: 3585
  year: 2020
  ident: erxac8ae2bib90
  article-title: Sulfation modulates the targeting properties of hyaluronic acid to P-selectin and CD44
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c00115
– volume: 6
  start-page: 1680
  year: 2010
  ident: erxac8ae2bib22
  article-title: The history of biodegradable magnesium implants: a review
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.02.028
– volume: 156
  start-page: 204
  year: 2012
  ident: erxac8ae2bib36
  article-title: Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: a review
  publication-title: Biomed. Pap.
  doi: 10.5507/bp.2012.063
– volume: 4
  start-page: 518
  year: 2005
  ident: erxac8ae2bib72
  article-title: Porous scaffold design for tissue engineering
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1421
– volume: 89
  start-page: 338
  year: 2008
  ident: erxac8ae2bib64
  article-title: Collagen scaffolds for tissue engineering
  publication-title: Biopolym. Orig. Res. Biomol.
  doi: 10.1002/bip.20871
– volume: 33
  start-page: 5548
  year: 2020
  ident: erxac8ae2bib40
  article-title: A review on NiTi alloys for biomedical applications and their biocompatibility
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.03.538
– volume: 107
  start-page: 513
  year: 2005
  ident: erxac8ae2bib47
  article-title: Synthesis, characterization of novel injectable drug carriers and the antitumor efficacy in mice bearing sarcoma-180 tumor
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2005.06.021
– volume: 714
  start-page: 636
  year: 2017
  ident: erxac8ae2bib10
  article-title: Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants–a review article
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.04.231
– volume: 16
  start-page: 053501
  year: 2015
  ident: erxac8ae2bib18
  article-title: Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/16/5/053501
– volume: 9
  start-page: 5431
  year: 2013
  ident: erxac8ae2bib96
  article-title: Biomimetic approaches to modulate cellular adhesion in biomaterials: a review
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.11.019
– volume: 9
  year: 2014
  ident: erxac8ae2bib84
  article-title: Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085871
– volume: 272
  year: 2021
  ident: erxac8ae2bib31
  article-title: Experimental study on magnesium wire–polylactic acid biodegradable composite implants under in vitro material degradation and fatigue loading conditions
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114267
– volume: 6
  start-page: 8729
  year: 2014
  ident: erxac8ae2bib42
  article-title: Surface modification with Dopamine and Heparin/Poly-L-Lysine nanoparticles provides a favorable release behavior for the healing of vascular stent lesions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5015309
– volume: 35
  start-page: 518
  year: 2014
  ident: erxac8ae2bib54
  article-title: Nanoparticles of 2-Deoxy-D-glucose functionalized poly (Ethylene Glycol)-Co-Poly (Trimethylene Carbonate) for dual-targeted drug delivery in glioma treatment
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.09.094
– volume: 66
  start-page: 6
  year: 2018
  ident: erxac8ae2bib92
  article-title: Surface modification of biomaterials and biomedical devices using additive manufacturing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.11.003
– volume: 117
  start-page: 1789
  year: 2006
  ident: erxac8ae2bib91
  article-title: Biocompatibility of two novel dermal fillers: histological evaluation of implants of a hyaluronic acid filler and a polyacrylamide filler
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/01.prs.0000214656.07273.b0
– volume: 3
  start-page: 71
  year: 2021
  ident: erxac8ae2bib17
  article-title: A review of additive manufacturing of mg-based alloys and composite implants
  publication-title: J. Compos. Compd.
  doi: 10.52547/jcc.3.1.7
– volume: 209
  year: 2021
  ident: erxac8ae2bib30
  article-title: Polyether-Ether-Ketone/Poly (Methyl Methacrylate)/carbon fiber ternary composites prepared by electrospinning and hot pressing for bone implant applications
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109893
– volume: 20
  start-page: 32
  year: 2009
  ident: erxac8ae2bib32
  article-title: Are ceramic implants a viable alternative to titanium implants? A systematic literature review
  publication-title: Clin. Oral Implants Res.
  doi: 10.1111/j.1600-0501.2009.01785.x
– volume: 5
  start-page: 269
  year: 2013
  ident: erxac8ae2bib41
  article-title: The FDA approval process for medical devices: an inherently flawed system or a valuable pathway for innovation? 
  publication-title: J. Neurointerventional Surg.
  doi: 10.1136/neurintsurg-2012-010400
– volume: 23
  start-page: 6
  year: 2012
  ident: erxac8ae2bib1
  article-title: Fundamentals of medical implant materials
  publication-title: ASM Handb.
  doi: 10.31399/asm.hb.v23.a0005682
– volume: 16
  start-page: 3978
  year: 2010
  ident: erxac8ae2bib48
  article-title: Polymers for drug eluting stents
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161210794454897
– volume: 2015
  year: 2015
  ident: erxac8ae2bib97
  article-title: Cellular responses evoked by different surface characteristics of intraosseous titanium implants
  publication-title: BioMed Res. Int.
  doi: 10.1155/2015/171945
– volume: 23
  start-page: 2997
  year: 2002
  ident: erxac8ae2bib38
  article-title: Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00030-3
– volume: 20
  start-page: 609
  year: 2014
  ident: erxac8ae2bib68
  article-title: Topography design concept of a tissue engineering scaffold for controlling cell function and fate through actin cytoskeletal modulation
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2013.0728
– volume: 26
  start-page: 638
  year: 2020
  ident: erxac8ae2bib14
  article-title: Status of nickel free stainless steel in biomedical field: a review of last 10 years and what else can be done
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2019.12.205
– volume: 1
  start-page: 643
  year: 2005
  ident: erxac8ae2bib76
  article-title: Mechanical properties of highly porous PDLLA/Bioglass® composite foams as scaffolds for bone tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2005.07.003
– volume: 342
  start-page: 236
  year: 2003
  ident: erxac8ae2bib39
  article-title: Effects of film composition and annealing on residual stress evolution for shape memory TiNi film
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(02)00285-X
– volume: 1
  start-page: 93
  year: 2016
  ident: erxac8ae2bib62
  article-title: Bioactive polymeric scaffolds for tissue engineering
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2016.11.001
– volume: 63
  start-page: 1
  year: 2017
  ident: erxac8ae2bib65
  article-title: Silk scaffolds in bone tissue engineering: an overview
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.09.027
– volume: 32
  start-page: 2267
  year: 2021
  ident: erxac8ae2bib71
  article-title: Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: advantages and disadvantages
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5263
– volume: 8
  start-page: 726
  year: 2014
  ident: erxac8ae2bib5
  article-title: Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review
  publication-title: Int J Chem Mol Nucl Mater Met. Eng
– volume: 60
  start-page: 2657
  year: 2020
  ident: erxac8ae2bib78
  article-title: Bioresorbable and degradable behaviors of pga: current state and future prospects
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.25508
– volume: 5
  start-page: 110
  year: 2013
  ident: erxac8ae2bib74
  article-title: Characterisation of PCL and PCL/PLA Scaffolds for tissue engineering
  publication-title: Procedia Cirp
  doi: 10.1016/j.procir.2013.01.022
– volume: 43
  start-page: 4433
  year: 2008
  ident: erxac8ae2bib83
  article-title: Polymer-bioceramic composites for tissue engineering scaffolds
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-008-2552-y
– volume: 3
  start-page: 3043
  year: 2017
  ident: erxac8ae2bib88
  article-title: Self-assembled protein-coated polyhydroxyalkanoate beads: properties and biomedical applications
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00355
– volume: 159
  start-page: 217
  year: 2017
  ident: erxac8ae2bib52
  article-title: Recent applications of PLGA based nanostructures in drug delivery
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2017.07.038
– volume: 10
  start-page: 4561
  year: 2014
  ident: erxac8ae2bib16
  article-title: Recent advances on the development of magnesium alloys for biodegradable implants
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.07.005
– volume: 54
  start-page: 397
  year: 2009
  ident: erxac8ae2bib12
  article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants–a review
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2008.06.004
– volume: 26
  start-page: 401
  year: 2022
  ident: erxac8ae2bib29
  article-title: Are polypropylene mesh implants associated with systemic autoimmune inflammatory syndromes ? A systematic review
  publication-title: Hernia
  doi: 10.1007/s10029-021-02553-y
– volume: 15
  start-page: 2383
  year: 2022
  ident: erxac8ae2bib93
  article-title: Bioinspired topographic surface modification of biomaterials
  publication-title: Materials
  doi: 10.3390/ma15072383
– volume: 123
  start-page: 779
  year: 2011
  ident: erxac8ae2bib61
  article-title: Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? 
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.110.971606
– volume: 12
  start-page: 73
  year: 2009
  ident: erxac8ae2bib56
  article-title: Materials for metallic stents
  publication-title: J. Artif. Organs
  doi: 10.1007/s10047-008-0456-x
– volume: 205
  start-page: 601
  year: 2019
  ident: erxac8ae2bib69
  article-title: P. polysaccharides for tissue engineering: current landscape and future prospects
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.10.039
– volume: 103
  start-page: 1
  year: 2020
  ident: erxac8ae2bib21
  article-title: Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—a review
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.12.023
– volume: 87
  start-page: 1
  year: 2015
  ident: erxac8ae2bib6
  article-title: Metallic implant biomaterials
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2014.10.001
– volume: 58
  start-page: 6163
  year: 2019
  ident: erxac8ae2bib77
  article-title: Progress in the advancement of porous biopolymer scaffold: tissue engineering application
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b05334
– volume: 28
  start-page: 5298
  year: 2007
  ident: erxac8ae2bib70
  article-title: A fibrinogen-based precision microporous scaffold for tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.08.020
– volume: 30
  year: 2020
  ident: erxac8ae2bib87
  article-title: Recent advances in host–guest self-assembled cyclodextrin carriers: implications for responsive drug delivery and biomedical engineering
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909049
– volume: 20
  start-page: 2263
  year: 2013
  ident: erxac8ae2bib67
  article-title: Cellulose-based materials as scaffolds for tissue engineering
  publication-title: Cellulose
  doi: 10.1007/s10570-013-0006-4
– volume: 11
  start-page: 1561
  year: 2019
  ident: erxac8ae2bib51
  article-title: Poly (Glycerol Adipate)(PGA), an enzymatically synthesized functionalizable polyester and versatile drug delivery carrier: a literature update
  publication-title: Polymers
  doi: 10.3390/polym11101561
– volume: 26
  start-page: 1277
  year: 2015
  ident: erxac8ae2bib44
  article-title: Polymer-free drug-eluting stents: an overview of coating strategies and comparison with polymer-coated drug-eluting stents
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.5b00192
– volume: 4
  start-page: 507
  year: 2007
  ident: erxac8ae2bib27
  article-title: The collagen meniscus implant
  publication-title: Expert Rev. Med. Devices
  doi: 10.1586/17434440.4.4.507
– volume: 7
  start-page: 175
  year: 2018
  ident: erxac8ae2bib43
  article-title: Cardiovascular stents: overview, evolution, and next generation
  publication-title: Prog. Biomater.
  doi: 10.1007/s40204-018-0097-y
– volume: 2
  start-page: 95
  year: 2012
  ident: erxac8ae2bib86
  article-title: Surface engineering for bone implants: a trend from passive to active surfaces
  publication-title: Coatings
  doi: 10.3390/coatings2030095
– volume: 31
  start-page: 7971
  year: 2010
  ident: erxac8ae2bib75
  article-title: Porous nanofibrous PLLA Scaffolds for vascular tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.07.028
– volume: 6
  start-page: 1693
  year: 2010
  ident: erxac8ae2bib57
  article-title: Developments in metallic biodegradable stents
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.10.006
– volume: 22
  start-page: 825
  year: 2000
  ident: erxac8ae2bib11
  article-title: Fatigue of biomaterials: a review
  publication-title: Int. J. Fatigue
  doi: 10.1016/S0142-1123(00)00052-9
– volume: 7
  start-page: 8168
  year: 2014
  ident: erxac8ae2bib9
  article-title: Biocompatibility of advanced manufactured titanium implants—a review
  publication-title: Materials
  doi: 10.3390/ma7128168
– volume: 9
  start-page: 79
  year: 2017
  ident: erxac8ae2bib3
  article-title: Biomedical applications of nanotechnology
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-016-0246-2
– volume: 5
  start-page: 8183
  year: 2017
  ident: erxac8ae2bib89
  article-title: Impact of structurally modifying hyaluronic acid on CD44 interaction
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB01895A
– start-page: 403
  year: 2008
  ident: erxac8ae2bib59
  article-title: Scaffold Design and Fabrication
  doi: 10.1016/B978-0-12-370869-4.00014-8
– volume: 179
  year: 2020
  ident: erxac8ae2bib26
  article-title: Biodegradation and thermal stability of bacterial cellulose as biomaterial: the relevance in biomedical applications
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2020.109232
– volume: 45
  start-page: 454
  year: 2021
  ident: erxac8ae2bib37
  article-title: Smart materials in cardiovascular implants: shape memory alloys and shape memory polymers
  publication-title: Artif. Organs
  doi: 10.1111/aor.13851
– volume: 3
  start-page: 3788
  year: 2021
  ident: erxac8ae2bib79
  article-title: Additive manufactured scaffolds for bone tissue engineering: physical characterization of thermoplastic composites with functional fillers
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.1c00363
– start-page: pp.47
  year: 2011
  ident: erxac8ae2bib82
  article-title: Fibrous scaffolds for tissue engineering
  doi: 10.1007/978-3-7091-0385-2_3
– year: 2021
  ident: erxac8ae2bib85
– volume: 80
  start-page: 1
  year: 2014
  ident: erxac8ae2bib73
  article-title: Biomimetic porous scaffolds for bone tissue engineering
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2014.04.001
– volume: 4
  start-page: 107
  year: 2018
  ident: erxac8ae2bib55
  article-title: Nanomatrix coated stent enhances endothelialization but reduces platelet, smooth muscle cell, and monocyte adhesion under physiologic conditions
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.7b00676
– volume: 56
  start-page: 429
  year: 2022
  ident: erxac8ae2bib28
  article-title: Synthesis, Characterization and Comparison of Novel Poly (Sebacic Anhydride) Biopolymeric Implants and Microspheres for the Controlled Release of an Anticancer Drug
  publication-title: Indian Journal of Pharmaceutical Education and Research
  doi: 10.5530/ijper.56.2.63
– volume: 1017
  year: 2021
  ident: erxac8ae2bib23
  article-title: A short review on polymer, metal and ceramic based implant materials
  publication-title: In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing
  doi: 10.1088/1757-899X/1017/1/012038
– volume: 117
  start-page: 64
  year: 2019
  ident: erxac8ae2bib81
  article-title: A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2019.05.004
SSID ssib046616717
ssib037096498
ssib052001916
Score 2.3600197
Snippet The demand for bio-medical implants has significantly increased to treat different medical conditions and complications. The latest research in medical and...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 32003
SubjectTerms bio-medical
biodegradable
implants
shape memory alloys
Title Recent advances in bio-medical implants; mechanical properties, surface modifications and applications
URI https://iopscience.iop.org/article/10.1088/2631-8695/ac8ae2
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-QwFA9-XPYiisrqrpqDHgSzkzQffcWTiKKCugdFb-ElTWDA6ZSZEfzzTabVVVjEW1te0_AjzXsvv_dByL5D57iDihnwwFRRcgaqEkyqAo0IUugyJzhf35iLe3X1qB8XyPF7Lsy47bf-P-myKxTcQdgHxMGgMFIwMJUeoAcMaf9dlmAge1638uFtMckyGefqny-hkiIyyXfpqcr_DfRJNS2mz3_QNOerZKU3EelJN6E1shCadRKTfZf0A-05-ykdNtQNx2zUES10OGqfckjLMR2FnMw7f9jmk_ZJLpl6RKfPk4g-0NG4ztFB3UEdxaamHznsDXJ_fnZ3esH6HgnMJ907Y1oYFA5BoCgEFhwTyDwa7sHFyvm6isn3jZWKILzStYAIZUSJ6Q7LCrjcJEvNuAk_CTXRc1mj1nXgKvo0pyooj85obdBE3CKDN3is7wuI5z4WT3ZOZAPYDKjNgNoO0C1y-P5G2xXP-EL2ICFu-z9o-oXc3ie5MHmxykqbG8Fzads6bn9zpF_kR5FzGeYBY7_J0mzyHHaShTFzu2Tx8vbv7nw9vQIGU8zm
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEA4-YNmLrKyyPlZz2D0Ixkk6j06zJ1EH3V0fB0VvoZJOYMDpaWZG8Odv0h1fsIi3dKgOxUd1V1XqhdAPC9ZSqyuitNNEFCUlWlSMcFGAYp4zWaYC5_MLdXojft_JuzzntKuFmbT5138Ql32j4B7CnBCnB4XijGhVyQE4Db4YtHVYRMuSK5VmN1zy2yeB4mU00MWLPyGiMlLRf8nhyv8d9kY9LUYWXmmb4Re0ks1EfNgztYoWfPMVhWjjRR2Bc9x-hkcNtqMJGffBFjwat_cpreUXHvtU0Ntttum2fZrapu7j2cM0gPN4PKlThlB_WYehqfHrOPYauhmeXB-dkjwngbiof-dEMgXMgmbACgYFhQg0DYo6bUNlXV2F6P-GSgTNnJA100GXATjEJygrTfk6Wmomjf-GsAqO8hqkrD0VwUWeKi8cWCWlAhVgAw2e4DEuNxFPsyzuTRfM1tokQE0C1PSAbqC95zfavoHGO7Q_I-Imf0Wzd-h239D56aMRhps0DJ5yE-Vh84Mn7aJPV8dD8_fs4s8W-lyk0oYuf2wbLc2nD_57NDjmdqcTqn_h2M_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+bio-medical+implants%3B+mechanical+properties%2C+surface+modifications+and+applications&rft.jtitle=Engineering+Research+Express&rft.au=Zwawi%2C+Mohammed&rft.date=2022-09-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=4&rft.issue=3&rft_id=info:doi/10.1088%2F2631-8695%2Fac8ae2&rft.externalDocID=erxac8ae2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon