Recent advances in bio-medical implants; mechanical properties, surface modifications and applications
The demand for bio-medical implants has significantly increased to treat different medical conditions and complications. The latest research in medical and material science is paving the path for the new generation of biomedical implants that mimic the natural bone and tissues for enhanced biocompat...
Saved in:
Published in | Engineering Research Express Vol. 4; no. 3; pp. 32003 - 32019 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The demand for bio-medical implants has significantly increased to treat different medical conditions and complications. The latest research in medical and material science is paving the path for the new generation of biomedical implants that mimic the natural bone and tissues for enhanced biocompatibility. A bio-medical implant must be bio-compatible, non-toxic and bioactive. The main reasons for implantation are ageing, overweight, accidents and genetic diseases such as arthritis or joint pain. Diseases such as osteoporosis and osteoarthritis can severely damage the mechanical properties of bones over time. Different materials including polymers, ceramics and metals are used for biomedical implants. Metallic implants have high strength and high resistance to corrosion and wear. Biocompatible metallic materials include Ti, Ta, Zr, Mo, Nb, W and Au while materials such as Ni, V, Al and Cr are considered toxic and hazardous to the body. Bioresorbable and degradable materials dissolve in the body after the healing process. Mg-based metallic alloys are highly degradable in the biological environment. Similarly, different polymers such as Poly-lactic acid (PLA) are used as bio-degradable implants and in tissue engineering. Biodegradable stents are used for the slow release of drugs to avoid blood clotting and other complications. Shape memory alloys are employed for bio-implants due to their unique set of properties. Different surface physical and chemical modification methods are used to improve the interfacial properties and interaction of implant materials with the biological environment. This review explains the properties, materials, modifications and shortcomings of bio-implants. |
---|---|
AbstractList | The demand for bio-medical implants has significantly increased to treat different medical conditions and complications. The latest research in medical and material science is paving the path for the new generation of biomedical implants that mimic the natural bone and tissues for enhanced biocompatibility. A bio-medical implant must be bio-compatible, non-toxic and bioactive. The main reasons for implantation are ageing, overweight, accidents and genetic diseases such as arthritis or joint pain. Diseases such as osteoporosis and osteoarthritis can severely damage the mechanical properties of bones over time. Different materials including polymers, ceramics and metals are used for biomedical implants. Metallic implants have high strength and high resistance to corrosion and wear. Biocompatible metallic materials include Ti, Ta, Zr, Mo, Nb, W and Au while materials such as Ni, V, Al and Cr are considered toxic and hazardous to the body. Bioresorbable and degradable materials dissolve in the body after the healing process. Mg-based metallic alloys are highly degradable in the biological environment. Similarly, different polymers such as Poly-lactic acid (PLA) are used as bio-degradable implants and in tissue engineering. Biodegradable stents are used for the slow release of drugs to avoid blood clotting and other complications. Shape memory alloys are employed for bio-implants due to their unique set of properties. Different surface physical and chemical modification methods are used to improve the interfacial properties and interaction of implant materials with the biological environment. This review explains the properties, materials, modifications and shortcomings of bio-implants. |
Author | Zwawi, Mohammed |
Author_xml | – sequence: 1 givenname: Mohammed orcidid: 0000-0001-9905-0726 surname: Zwawi fullname: Zwawi, Mohammed organization: King Abdulaziz University Department of Mechanical Engineering, Rabigh 21911, Saudi Arabia |
BookMark | eNp9kMtLAzEQxoNUsNbePebkqat5bLNZPEnxBQVB9BxmswlGdpOQbEX_e_tQEZGeZuab-Q0z3zEa-eANQqeUnFMi5QUTnBZS1PML0BIMO0DjH2n0Kz9C05xdQ0ohqKhoNUb20WjjBwztG3htMnYeNy4UvWmdhg67Pnbgh3yJe6NfwG_FmEI0aXAmz3BeJQva4D60zq67gws-Y_Athhi7b-EEHVrospl-xQl6vrl-WtwVy4fb-8XVstCspEMxpwJoA5ICZRQYAV4yYgXRsrF1o9vaViWzdWkl1eW8pdLKygKHdQVVLQmfILLbq1PIORmrYnI9pA9FidpYpTZeqI0XamfVGhF_EO2G7dVDAtftA2c70IWoXsMq-fVn-8bP_hk36V2ViivCGSFcxdbyT98ajZE |
CODEN | ERENBL |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2024_11_152 crossref_primary_10_1016_j_jmapro_2024_03_095 crossref_primary_10_1016_j_jmapro_2023_08_024 crossref_primary_10_1088_1402_4896_ad7cdd crossref_primary_10_1016_j_ijmecsci_2024_109219 crossref_primary_10_1177_09544119241245503 crossref_primary_10_3390_coatings14060666 crossref_primary_10_21122_2227_1031_2024_23_3_204_218 crossref_primary_10_1007_s40964_024_00922_4 crossref_primary_10_1177_14644207241269609 crossref_primary_10_3390_ma17225632 crossref_primary_10_1016_j_jallcom_2024_177966 crossref_primary_10_1016_j_surfcoat_2023_129624 crossref_primary_10_1016_j_jiec_2024_03_030 crossref_primary_10_3390_polym16070985 crossref_primary_10_1016_j_bmt_2024_05_001 crossref_primary_10_1007_s42247_024_00984_8 crossref_primary_10_1016_j_apsadv_2023_100506 crossref_primary_10_3390_polym15122601 crossref_primary_10_1039_D2TB02392J crossref_primary_10_1080_15376494_2025_2470412 |
Cites_doi | 10.1038/nmat5016 10.1016/j.jmbbm.2010.12.010 10.1021/acsbiomaterials.7b00215 10.3390/pharmaceutics14040798 10.1016/S0142-9612(03)00340-5 10.1016/j.ijbiomac.2016.11.010 10.1002/jbm.b.33547 10.1002/advs.201902443 10.2319/081619-536.1 10.1002/jbm.b.31483 10.1016/j.jconrel.2010.12.005 10.1002/adem.201801215 10.1016/j.msec.2018.04.100 10.3390/polym12051022 10.1016/j.compositesb.2020.108238 10.1016/S0142-9612(03)00354-5 10.1007/s00264-010-1187-1 10.1016/B978-0-08-100803-4.00003-6 10.1021/acsbiomaterials.5b00429 10.1007/BF02706450 10.1016/j.msea.2003.09.080 10.1016/j.biomaterials.2011.05.046 10.1016/j.matpr.2020.02.649 10.1021/acsbiomaterials.0c00115 10.1016/j.actbio.2010.02.028 10.5507/bp.2012.063 10.1038/nmat1421 10.1002/bip.20871 10.1016/j.matpr.2020.03.538 10.1016/j.jconrel.2005.06.021 10.1016/j.jallcom.2017.04.231 10.1088/1468-6996/16/5/053501 10.1016/j.actbio.2012.11.019 10.1371/journal.pone.0085871 10.1016/j.compstruct.2021.114267 10.1021/am5015309 10.1016/j.biomaterials.2013.09.094 10.1016/j.actbio.2017.11.003 10.1097/01.prs.0000214656.07273.b0 10.52547/jcc.3.1.7 10.1016/j.matdes.2021.109893 10.1111/j.1600-0501.2009.01785.x 10.1136/neurintsurg-2012-010400 10.31399/asm.hb.v23.a0005682 10.2174/138161210794454897 10.1155/2015/171945 10.1016/S0142-9612(02)00030-3 10.1089/ten.teb.2013.0728 10.1016/j.matpr.2019.12.205 10.1016/j.actbio.2005.07.003 10.1016/S0921-5093(02)00285-X 10.1016/j.bioactmat.2016.11.001 10.1016/j.actbio.2017.09.027 10.1002/pat.5263 10.1002/pen.25508 10.1016/j.procir.2013.01.022 10.1007/s10853-008-2552-y 10.1021/acsbiomaterials.6b00355 10.1016/j.colsurfb.2017.07.038 10.1016/j.actbio.2014.07.005 10.1016/j.pmatsci.2008.06.004 10.1007/s10029-021-02553-y 10.3390/ma15072383 10.1161/CIRCULATIONAHA.110.971606 10.1007/s10047-008-0456-x 10.1016/j.carbpol.2018.10.039 10.1016/j.actbio.2019.12.023 10.1016/j.mser.2014.10.001 10.1021/acs.iecr.8b05334 10.1016/j.biomaterials.2007.08.020 10.1002/adfm.201909049 10.1007/s10570-013-0006-4 10.3390/polym11101561 10.1021/acs.bioconjchem.5b00192 10.1586/17434440.4.4.507 10.1007/s40204-018-0097-y 10.3390/coatings2030095 10.1016/j.biomaterials.2010.07.028 10.1016/j.actbio.2009.10.006 10.1016/S0142-1123(00)00052-9 10.3390/ma7128168 10.1007/s12551-016-0246-2 10.1039/C7TB01895A 10.1016/B978-0-12-370869-4.00014-8 10.1016/j.polymdegradstab.2020.109232 10.1111/aor.13851 10.1021/acsapm.1c00363 10.1007/978-3-7091-0385-2_3 10.1016/j.mser.2014.04.001 10.1021/acsbiomaterials.7b00676 10.5530/ijper.56.2.63 10.1088/1757-899X/1017/1/012038 10.1016/j.eurpolymj.2019.05.004 |
ContentType | Journal Article |
Copyright | 2022 IOP Publishing Ltd |
Copyright_xml | – notice: 2022 IOP Publishing Ltd |
DBID | AAYXX CITATION |
DOI | 10.1088/2631-8695/ac8ae2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2631-8695 |
ExternalDocumentID | 10_1088_2631_8695_ac8ae2 erxac8ae2 |
GroupedDBID | AAYXX ABJNI ALMA_UNASSIGNED_HOLDINGS CITATION |
ID | FETCH-LOGICAL-c241t-516a1ba81a121a20a3420f60c8bf9bcd9f742f94f81c45d18f87fa3a1c4a79803 |
IEDL.DBID | O3W |
ISSN | 2631-8695 |
IngestDate | Tue Jul 01 02:33:22 EDT 2025 Thu Apr 24 23:07:59 EDT 2025 Wed Aug 21 03:41:55 EDT 2024 Wed Sep 14 02:25:15 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c241t-516a1ba81a121a20a3420f60c8bf9bcd9f742f94f81c45d18f87fa3a1c4a79803 |
Notes | ERX-101709.R1 |
ORCID | 0000-0001-9905-0726 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1088_2631_8695_ac8ae2 crossref_citationtrail_10_1088_2631_8695_ac8ae2 iop_journals_10_1088_2631_8695_ac8ae2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Engineering Research Express |
PublicationTitleAbbrev | ERX |
PublicationTitleAlternate | Eng. Res. Express |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Bose (erxac8ae2bib92) 2018; 66 Mahmoudi Hashemi (erxac8ae2bib15) 2016; 3 Ambekar (erxac8ae2bib77) 2019; 58 Patel (erxac8ae2bib40) 2020; 33 Shekhawat (erxac8ae2bib23) 2021; 1017 Sinha (erxac8ae2bib79) 2021; 3 Teoh (erxac8ae2bib11) 2000; 22 Gallo (erxac8ae2bib36) 2012; 156 Wankar (erxac8ae2bib87) 2020; 30 Nezhad-Mokhtari (erxac8ae2bib81) 2019; 117 Linnes (erxac8ae2bib70) 2007; 28 Hannouche (erxac8ae2bib34) 2011; 35 Mohamad Yunos (erxac8ae2bib83) 2008; 43 Amini (erxac8ae2bib71) 2021; 32 Chen (erxac8ae2bib6) 2015; 87 Zhang (erxac8ae2bib84) 2014; 9 Bhalshankar (erxac8ae2bib85) 2021 Ibrahim (erxac8ae2bib10) 2017; 714 Feller (erxac8ae2bib97) 2015; 2015 Mecenas (erxac8ae2bib7) 2020; 90 Rizvi (erxac8ae2bib31) 2021; 272 Patnaik (erxac8ae2bib14) 2020; 26 Zamani (erxac8ae2bib17) 2021; 3 Khosravi (erxac8ae2bib8) 2020; 12 Schnettler (erxac8ae2bib33) 2003; 24 Parlane (erxac8ae2bib88) 2017; 3 Hu (erxac8ae2bib58) 2018; 91 Hu (erxac8ae2bib75) 2010; 31 Kala (erxac8ae2bib28) 2022; 56 Shankar (erxac8ae2bib63) 2017; 95 Miyoshi (erxac8ae2bib68) 2014; 20 Chen (erxac8ae2bib16) 2014; 10 Zhang (erxac8ae2bib2) 2019; 21 Thierry (erxac8ae2bib38) 2002; 23 Ramos (erxac8ae2bib3) 2017; 9 Liu (erxac8ae2bib50) 2020; 199 Novotna (erxac8ae2bib67) 2013; 20 Uddin (erxac8ae2bib18) 2015; 16 Jiang (erxac8ae2bib54) 2014; 35 Kamachimudali (erxac8ae2bib13) 2003; 28 Fu (erxac8ae2bib39) 2003; 342 Stratton (erxac8ae2bib62) 2016; 1 Radovic (erxac8ae2bib4) 2004; 368 Geetha (erxac8ae2bib12) 2009; 54 Mohammed (erxac8ae2bib5) 2014; 8 Wang (erxac8ae2bib19) 2020; 7 Witte (erxac8ae2bib22) 2010; 6 Holman (erxac8ae2bib37) 2021; 45 Fargen (erxac8ae2bib41) 2013; 5 Rahmany (erxac8ae2bib96) 2013; 9 Borhani (erxac8ae2bib43) 2018; 7 Narayan (erxac8ae2bib1) 2012; 23 Bhattacharya (erxac8ae2bib90) 2020; 6 Huet (erxac8ae2bib35) 2011; 4 Hanawa (erxac8ae2bib56) 2009; 12 Sharma (erxac8ae2bib25) 2018; 17 Jiang (erxac8ae2bib45) 2017; 3 Mas-Moruno (erxac8ae2bib95) 2018 Guo (erxac8ae2bib47) 2005; 107 Andreiotelli (erxac8ae2bib32) 2009; 20 Alexander (erxac8ae2bib55) 2018; 4 Low (erxac8ae2bib78) 2020; 60 Liu (erxac8ae2bib42) 2014; 6 Fernández-Cossío (erxac8ae2bib91) 2006; 117 Sidambe (erxac8ae2bib9) 2014; 7 Glowacki (erxac8ae2bib64) 2008; 89 Verma (erxac8ae2bib20) 2020; 26 Kiani (erxac8ae2bib21) 2020; 103 Tchobanian (erxac8ae2bib69) 2019; 205 Arango-Santander (erxac8ae2bib93) 2022; 15 Jia (erxac8ae2bib30) 2021; 209 Srinivasan (erxac8ae2bib66) 2010; 92 Tang (erxac8ae2bib49) 2011; 151 Kowalik (erxac8ae2bib29) 2022; 26 Bhattacharya (erxac8ae2bib89) 2017; 5 Patricio (erxac8ae2bib74) 2013; 5 Hermawan (erxac8ae2bib57) 2010; 6 Bosco (erxac8ae2bib86) 2012; 2 Chen (erxac8ae2bib44) 2015; 26 Jafari (erxac8ae2bib60) 2017; 105 Onuma (erxac8ae2bib61) 2011; 123 Hollister (erxac8ae2bib72) 2005; 4 Swainson (erxac8ae2bib51) 2019; 11 Teo (erxac8ae2bib24) 2016; 2 Drury (erxac8ae2bib80) 2003; 24 Wu (erxac8ae2bib73) 2014; 80 Bhattacharjee (erxac8ae2bib65) 2017; 63 Rahman (erxac8ae2bib46) 2022; 14 Liu (erxac8ae2bib53) 2011; 32 Hutmacher (erxac8ae2bib59) 2008 Buma (erxac8ae2bib27) 2007; 4 Blaker (erxac8ae2bib76) 2005; 1 Li (erxac8ae2bib82) 2011 Torgbo (erxac8ae2bib26) 2020; 179 Mir (erxac8ae2bib52) 2017; 159 Nouri (erxac8ae2bib94) 2015 Parker (erxac8ae2bib48) 2010; 16 |
References_xml | – volume: 17 start-page: 96 year: 2018 ident: erxac8ae2bib25 article-title: The development of bioresorbable composite polymeric implants with high mechanical strength publication-title: Nat. Mater. doi: 10.1038/nmat5016 – volume: 3 start-page: 202 year: 2016 ident: erxac8ae2bib15 article-title: A review on nanostructured stainless steel implants for biomedical application publication-title: Nanomedicine J. – volume: 4 start-page: 476 year: 2011 ident: erxac8ae2bib35 article-title: Strength and reliability of alumina ceramic femoral heads: review of design, testing, and retrieval analysis publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2010.12.010 – start-page: 3 year: 2015 ident: erxac8ae2bib94 article-title: Introduction to surface coating and modification for metallic biomaterials publication-title: Surf. Coat. Modif. Met. Biomater. – volume: 3 start-page: 936 year: 2017 ident: erxac8ae2bib45 article-title: Comparison study on four biodegradable polymer coatings for controlling magnesium degradation and human endothelial cell adhesion and spreading publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b00215 – volume: 14 start-page: 798 year: 2022 ident: erxac8ae2bib46 article-title: Significance of polymers with ‘Allyl’ functionality in biomedicine: an emerging class of functional polymers publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14040798 – volume: 24 start-page: 4337 year: 2003 ident: erxac8ae2bib80 article-title: Hydrogels for tissue engineering: scaffold design variables and applications publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00340-5 – volume: 95 start-page: 1199 year: 2017 ident: erxac8ae2bib63 article-title: Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: a comparative analysis publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.11.010 – volume: 105 start-page: 431 year: 2017 ident: erxac8ae2bib60 article-title: Polymeric scaffolds in tissue engineering: a literature review publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.33547 – volume: 7 year: 2020 ident: erxac8ae2bib19 article-title: Biodegradable magnesium-based implants in orthopedics—a general review and perspectives publication-title: Adv. Sci. doi: 10.1002/advs.201902443 – volume: 90 start-page: 587 year: 2020 ident: erxac8ae2bib7 article-title: Stainless steel or titanium mini-implants? A systematic review publication-title: Angle Orthod. doi: 10.2319/081619-536.1 – volume: 92 start-page: 5 year: 2010 ident: erxac8ae2bib66 article-title: Porous keratin scaffold–promising biomaterial for tissue engineering and drug delivery publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. doi: 10.1002/jbm.b.31483 – volume: 151 start-page: 18 year: 2011 ident: erxac8ae2bib49 article-title: Block copolymer micelles with acid-labile ortho ester side-chains: synthesis, characterization, and enhanced drug delivery to human glioma cells publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2010.12.005 – volume: 21 year: 2019 ident: erxac8ae2bib2 article-title: A review on biomedical titanium alloys: recent progress and prospect publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201801215 – volume: 91 start-page: 163 year: 2018 ident: erxac8ae2bib58 article-title: Biodegradable stents for coronary artery disease treatment: recent advances and future perspectives publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.04.100 – volume: 12 start-page: 1022 year: 2020 ident: erxac8ae2bib8 article-title: Development of a highly proliferated bilayer coating on 316L stainless steel implants publication-title: Polymers doi: 10.3390/polym12051022 – volume: 199 year: 2020 ident: erxac8ae2bib50 article-title: Current applications of poly (lactic acid) composites in tissue engineering and drug delivery publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2020.108238 – volume: 24 start-page: 4603 year: 2003 ident: erxac8ae2bib33 article-title: Bone ingrowth in BFGF-coated hydroxyapatite ceramic implants publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00354-5 – volume: 35 start-page: 207 year: 2011 ident: erxac8ae2bib34 article-title: Thirty years of experience with alumina-on-alumina bearings in total hip arthroplasty publication-title: Int. Orthop. doi: 10.1007/s00264-010-1187-1 – start-page: pp.73 year: 2018 ident: erxac8ae2bib95 article-title: Surface functionalization of biomaterials for bone tissue regeneration and repair doi: 10.1016/B978-0-08-100803-4.00003-6 – volume: 2 start-page: 454 year: 2016 ident: erxac8ae2bib24 article-title: Polymeric biomaterials for medical implants and devices publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.5b00429 – volume: 28 start-page: 601 year: 2003 ident: erxac8ae2bib13 article-title: Corrosion of bio implants publication-title: Sadhana doi: 10.1007/BF02706450 – volume: 368 start-page: 56 year: 2004 ident: erxac8ae2bib4 article-title: Comparison of different experimental techniques for determination of elastic properties of solids publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2003.09.080 – volume: 32 start-page: 6646 year: 2011 ident: erxac8ae2bib53 article-title: Biodegradation, biocompatibility, and drug delivery in poly ($ømega$-pentadecalactone-Co-p-Dioxanone) copolyesters publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.05.046 – volume: 26 start-page: 3148 year: 2020 ident: erxac8ae2bib20 article-title: Titanium based biomaterial for bone implants: a mini review publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.02.649 – volume: 6 start-page: 3585 year: 2020 ident: erxac8ae2bib90 article-title: Sulfation modulates the targeting properties of hyaluronic acid to P-selectin and CD44 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c00115 – volume: 6 start-page: 1680 year: 2010 ident: erxac8ae2bib22 article-title: The history of biodegradable magnesium implants: a review publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.02.028 – volume: 156 start-page: 204 year: 2012 ident: erxac8ae2bib36 article-title: Advantages and disadvantages of ceramic on ceramic total hip arthroplasty: a review publication-title: Biomed. Pap. doi: 10.5507/bp.2012.063 – volume: 4 start-page: 518 year: 2005 ident: erxac8ae2bib72 article-title: Porous scaffold design for tissue engineering publication-title: Nat. Mater. doi: 10.1038/nmat1421 – volume: 89 start-page: 338 year: 2008 ident: erxac8ae2bib64 article-title: Collagen scaffolds for tissue engineering publication-title: Biopolym. Orig. Res. Biomol. doi: 10.1002/bip.20871 – volume: 33 start-page: 5548 year: 2020 ident: erxac8ae2bib40 article-title: A review on NiTi alloys for biomedical applications and their biocompatibility publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.03.538 – volume: 107 start-page: 513 year: 2005 ident: erxac8ae2bib47 article-title: Synthesis, characterization of novel injectable drug carriers and the antitumor efficacy in mice bearing sarcoma-180 tumor publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2005.06.021 – volume: 714 start-page: 636 year: 2017 ident: erxac8ae2bib10 article-title: Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants–a review article publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.04.231 – volume: 16 start-page: 053501 year: 2015 ident: erxac8ae2bib18 article-title: Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/16/5/053501 – volume: 9 start-page: 5431 year: 2013 ident: erxac8ae2bib96 article-title: Biomimetic approaches to modulate cellular adhesion in biomaterials: a review publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.11.019 – volume: 9 year: 2014 ident: erxac8ae2bib84 article-title: Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts publication-title: PLoS One doi: 10.1371/journal.pone.0085871 – volume: 272 year: 2021 ident: erxac8ae2bib31 article-title: Experimental study on magnesium wire–polylactic acid biodegradable composite implants under in vitro material degradation and fatigue loading conditions publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114267 – volume: 6 start-page: 8729 year: 2014 ident: erxac8ae2bib42 article-title: Surface modification with Dopamine and Heparin/Poly-L-Lysine nanoparticles provides a favorable release behavior for the healing of vascular stent lesions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5015309 – volume: 35 start-page: 518 year: 2014 ident: erxac8ae2bib54 article-title: Nanoparticles of 2-Deoxy-D-glucose functionalized poly (Ethylene Glycol)-Co-Poly (Trimethylene Carbonate) for dual-targeted drug delivery in glioma treatment publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.09.094 – volume: 66 start-page: 6 year: 2018 ident: erxac8ae2bib92 article-title: Surface modification of biomaterials and biomedical devices using additive manufacturing publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.11.003 – volume: 117 start-page: 1789 year: 2006 ident: erxac8ae2bib91 article-title: Biocompatibility of two novel dermal fillers: histological evaluation of implants of a hyaluronic acid filler and a polyacrylamide filler publication-title: Plast. Reconstr. Surg. doi: 10.1097/01.prs.0000214656.07273.b0 – volume: 3 start-page: 71 year: 2021 ident: erxac8ae2bib17 article-title: A review of additive manufacturing of mg-based alloys and composite implants publication-title: J. Compos. Compd. doi: 10.52547/jcc.3.1.7 – volume: 209 year: 2021 ident: erxac8ae2bib30 article-title: Polyether-Ether-Ketone/Poly (Methyl Methacrylate)/carbon fiber ternary composites prepared by electrospinning and hot pressing for bone implant applications publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109893 – volume: 20 start-page: 32 year: 2009 ident: erxac8ae2bib32 article-title: Are ceramic implants a viable alternative to titanium implants? A systematic literature review publication-title: Clin. Oral Implants Res. doi: 10.1111/j.1600-0501.2009.01785.x – volume: 5 start-page: 269 year: 2013 ident: erxac8ae2bib41 article-title: The FDA approval process for medical devices: an inherently flawed system or a valuable pathway for innovation? publication-title: J. Neurointerventional Surg. doi: 10.1136/neurintsurg-2012-010400 – volume: 23 start-page: 6 year: 2012 ident: erxac8ae2bib1 article-title: Fundamentals of medical implant materials publication-title: ASM Handb. doi: 10.31399/asm.hb.v23.a0005682 – volume: 16 start-page: 3978 year: 2010 ident: erxac8ae2bib48 article-title: Polymers for drug eluting stents publication-title: Curr. Pharm. Des. doi: 10.2174/138161210794454897 – volume: 2015 year: 2015 ident: erxac8ae2bib97 article-title: Cellular responses evoked by different surface characteristics of intraosseous titanium implants publication-title: BioMed Res. Int. doi: 10.1155/2015/171945 – volume: 23 start-page: 2997 year: 2002 ident: erxac8ae2bib38 article-title: Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00030-3 – volume: 20 start-page: 609 year: 2014 ident: erxac8ae2bib68 article-title: Topography design concept of a tissue engineering scaffold for controlling cell function and fate through actin cytoskeletal modulation publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2013.0728 – volume: 26 start-page: 638 year: 2020 ident: erxac8ae2bib14 article-title: Status of nickel free stainless steel in biomedical field: a review of last 10 years and what else can be done publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2019.12.205 – volume: 1 start-page: 643 year: 2005 ident: erxac8ae2bib76 article-title: Mechanical properties of highly porous PDLLA/Bioglass® composite foams as scaffolds for bone tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2005.07.003 – volume: 342 start-page: 236 year: 2003 ident: erxac8ae2bib39 article-title: Effects of film composition and annealing on residual stress evolution for shape memory TiNi film publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(02)00285-X – volume: 1 start-page: 93 year: 2016 ident: erxac8ae2bib62 article-title: Bioactive polymeric scaffolds for tissue engineering publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2016.11.001 – volume: 63 start-page: 1 year: 2017 ident: erxac8ae2bib65 article-title: Silk scaffolds in bone tissue engineering: an overview publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.09.027 – volume: 32 start-page: 2267 year: 2021 ident: erxac8ae2bib71 article-title: Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: advantages and disadvantages publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5263 – volume: 8 start-page: 726 year: 2014 ident: erxac8ae2bib5 article-title: Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review publication-title: Int J Chem Mol Nucl Mater Met. Eng – volume: 60 start-page: 2657 year: 2020 ident: erxac8ae2bib78 article-title: Bioresorbable and degradable behaviors of pga: current state and future prospects publication-title: Polym. Eng. Sci. doi: 10.1002/pen.25508 – volume: 5 start-page: 110 year: 2013 ident: erxac8ae2bib74 article-title: Characterisation of PCL and PCL/PLA Scaffolds for tissue engineering publication-title: Procedia Cirp doi: 10.1016/j.procir.2013.01.022 – volume: 43 start-page: 4433 year: 2008 ident: erxac8ae2bib83 article-title: Polymer-bioceramic composites for tissue engineering scaffolds publication-title: J. Mater. Sci. doi: 10.1007/s10853-008-2552-y – volume: 3 start-page: 3043 year: 2017 ident: erxac8ae2bib88 article-title: Self-assembled protein-coated polyhydroxyalkanoate beads: properties and biomedical applications publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00355 – volume: 159 start-page: 217 year: 2017 ident: erxac8ae2bib52 article-title: Recent applications of PLGA based nanostructures in drug delivery publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2017.07.038 – volume: 10 start-page: 4561 year: 2014 ident: erxac8ae2bib16 article-title: Recent advances on the development of magnesium alloys for biodegradable implants publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.07.005 – volume: 54 start-page: 397 year: 2009 ident: erxac8ae2bib12 article-title: Ti based biomaterials, the ultimate choice for orthopaedic implants–a review publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2008.06.004 – volume: 26 start-page: 401 year: 2022 ident: erxac8ae2bib29 article-title: Are polypropylene mesh implants associated with systemic autoimmune inflammatory syndromes ? A systematic review publication-title: Hernia doi: 10.1007/s10029-021-02553-y – volume: 15 start-page: 2383 year: 2022 ident: erxac8ae2bib93 article-title: Bioinspired topographic surface modification of biomaterials publication-title: Materials doi: 10.3390/ma15072383 – volume: 123 start-page: 779 year: 2011 ident: erxac8ae2bib61 article-title: Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.971606 – volume: 12 start-page: 73 year: 2009 ident: erxac8ae2bib56 article-title: Materials for metallic stents publication-title: J. Artif. Organs doi: 10.1007/s10047-008-0456-x – volume: 205 start-page: 601 year: 2019 ident: erxac8ae2bib69 article-title: P. polysaccharides for tissue engineering: current landscape and future prospects publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.10.039 – volume: 103 start-page: 1 year: 2020 ident: erxac8ae2bib21 article-title: Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites—a review publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.12.023 – volume: 87 start-page: 1 year: 2015 ident: erxac8ae2bib6 article-title: Metallic implant biomaterials publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2014.10.001 – volume: 58 start-page: 6163 year: 2019 ident: erxac8ae2bib77 article-title: Progress in the advancement of porous biopolymer scaffold: tissue engineering application publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05334 – volume: 28 start-page: 5298 year: 2007 ident: erxac8ae2bib70 article-title: A fibrinogen-based precision microporous scaffold for tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.08.020 – volume: 30 year: 2020 ident: erxac8ae2bib87 article-title: Recent advances in host–guest self-assembled cyclodextrin carriers: implications for responsive drug delivery and biomedical engineering publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909049 – volume: 20 start-page: 2263 year: 2013 ident: erxac8ae2bib67 article-title: Cellulose-based materials as scaffolds for tissue engineering publication-title: Cellulose doi: 10.1007/s10570-013-0006-4 – volume: 11 start-page: 1561 year: 2019 ident: erxac8ae2bib51 article-title: Poly (Glycerol Adipate)(PGA), an enzymatically synthesized functionalizable polyester and versatile drug delivery carrier: a literature update publication-title: Polymers doi: 10.3390/polym11101561 – volume: 26 start-page: 1277 year: 2015 ident: erxac8ae2bib44 article-title: Polymer-free drug-eluting stents: an overview of coating strategies and comparison with polymer-coated drug-eluting stents publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.5b00192 – volume: 4 start-page: 507 year: 2007 ident: erxac8ae2bib27 article-title: The collagen meniscus implant publication-title: Expert Rev. Med. Devices doi: 10.1586/17434440.4.4.507 – volume: 7 start-page: 175 year: 2018 ident: erxac8ae2bib43 article-title: Cardiovascular stents: overview, evolution, and next generation publication-title: Prog. Biomater. doi: 10.1007/s40204-018-0097-y – volume: 2 start-page: 95 year: 2012 ident: erxac8ae2bib86 article-title: Surface engineering for bone implants: a trend from passive to active surfaces publication-title: Coatings doi: 10.3390/coatings2030095 – volume: 31 start-page: 7971 year: 2010 ident: erxac8ae2bib75 article-title: Porous nanofibrous PLLA Scaffolds for vascular tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.07.028 – volume: 6 start-page: 1693 year: 2010 ident: erxac8ae2bib57 article-title: Developments in metallic biodegradable stents publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.10.006 – volume: 22 start-page: 825 year: 2000 ident: erxac8ae2bib11 article-title: Fatigue of biomaterials: a review publication-title: Int. J. Fatigue doi: 10.1016/S0142-1123(00)00052-9 – volume: 7 start-page: 8168 year: 2014 ident: erxac8ae2bib9 article-title: Biocompatibility of advanced manufactured titanium implants—a review publication-title: Materials doi: 10.3390/ma7128168 – volume: 9 start-page: 79 year: 2017 ident: erxac8ae2bib3 article-title: Biomedical applications of nanotechnology publication-title: Biophys. Rev. doi: 10.1007/s12551-016-0246-2 – volume: 5 start-page: 8183 year: 2017 ident: erxac8ae2bib89 article-title: Impact of structurally modifying hyaluronic acid on CD44 interaction publication-title: J. Mater. Chem. B doi: 10.1039/C7TB01895A – start-page: 403 year: 2008 ident: erxac8ae2bib59 article-title: Scaffold Design and Fabrication doi: 10.1016/B978-0-12-370869-4.00014-8 – volume: 179 year: 2020 ident: erxac8ae2bib26 article-title: Biodegradation and thermal stability of bacterial cellulose as biomaterial: the relevance in biomedical applications publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2020.109232 – volume: 45 start-page: 454 year: 2021 ident: erxac8ae2bib37 article-title: Smart materials in cardiovascular implants: shape memory alloys and shape memory polymers publication-title: Artif. Organs doi: 10.1111/aor.13851 – volume: 3 start-page: 3788 year: 2021 ident: erxac8ae2bib79 article-title: Additive manufactured scaffolds for bone tissue engineering: physical characterization of thermoplastic composites with functional fillers publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.1c00363 – start-page: pp.47 year: 2011 ident: erxac8ae2bib82 article-title: Fibrous scaffolds for tissue engineering doi: 10.1007/978-3-7091-0385-2_3 – year: 2021 ident: erxac8ae2bib85 – volume: 80 start-page: 1 year: 2014 ident: erxac8ae2bib73 article-title: Biomimetic porous scaffolds for bone tissue engineering publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2014.04.001 – volume: 4 start-page: 107 year: 2018 ident: erxac8ae2bib55 article-title: Nanomatrix coated stent enhances endothelialization but reduces platelet, smooth muscle cell, and monocyte adhesion under physiologic conditions publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b00676 – volume: 56 start-page: 429 year: 2022 ident: erxac8ae2bib28 article-title: Synthesis, Characterization and Comparison of Novel Poly (Sebacic Anhydride) Biopolymeric Implants and Microspheres for the Controlled Release of an Anticancer Drug publication-title: Indian Journal of Pharmaceutical Education and Research doi: 10.5530/ijper.56.2.63 – volume: 1017 year: 2021 ident: erxac8ae2bib23 article-title: A short review on polymer, metal and ceramic based implant materials publication-title: In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing doi: 10.1088/1757-899X/1017/1/012038 – volume: 117 start-page: 64 year: 2019 ident: erxac8ae2bib81 article-title: A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2019.05.004 |
SSID | ssib046616717 ssib037096498 ssib052001916 |
Score | 2.3600197 |
Snippet | The demand for bio-medical implants has significantly increased to treat different medical conditions and complications. The latest research in medical and... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 32003 |
SubjectTerms | bio-medical biodegradable implants shape memory alloys |
Title | Recent advances in bio-medical implants; mechanical properties, surface modifications and applications |
URI | https://iopscience.iop.org/article/10.1088/2631-8695/ac8ae2 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-QwFA9-XPYiisrqrpqDHgSzkzQffcWTiKKCugdFb-ElTWDA6ZSZEfzzTabVVVjEW1te0_AjzXsvv_dByL5D57iDihnwwFRRcgaqEkyqAo0IUugyJzhf35iLe3X1qB8XyPF7Lsy47bf-P-myKxTcQdgHxMGgMFIwMJUeoAcMaf9dlmAge1638uFtMckyGefqny-hkiIyyXfpqcr_DfRJNS2mz3_QNOerZKU3EelJN6E1shCadRKTfZf0A-05-ykdNtQNx2zUES10OGqfckjLMR2FnMw7f9jmk_ZJLpl6RKfPk4g-0NG4ztFB3UEdxaamHznsDXJ_fnZ3esH6HgnMJ907Y1oYFA5BoCgEFhwTyDwa7sHFyvm6isn3jZWKILzStYAIZUSJ6Q7LCrjcJEvNuAk_CTXRc1mj1nXgKvo0pyooj85obdBE3CKDN3is7wuI5z4WT3ZOZAPYDKjNgNoO0C1y-P5G2xXP-EL2ICFu-z9o-oXc3ie5MHmxykqbG8Fzads6bn9zpF_kR5FzGeYBY7_J0mzyHHaShTFzu2Tx8vbv7nw9vQIGU8zm |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSyQxEA4-YNmLrKyyPlZz2D0Ixkk6j06zJ1EH3V0fB0VvoZJOYMDpaWZG8Odv0h1fsIi3dKgOxUd1V1XqhdAPC9ZSqyuitNNEFCUlWlSMcFGAYp4zWaYC5_MLdXojft_JuzzntKuFmbT5138Ql32j4B7CnBCnB4XijGhVyQE4Db4YtHVYRMuSK5VmN1zy2yeB4mU00MWLPyGiMlLRf8nhyv8d9kY9LUYWXmmb4Re0ks1EfNgztYoWfPMVhWjjRR2Bc9x-hkcNtqMJGffBFjwat_cpreUXHvtU0Ntttum2fZrapu7j2cM0gPN4PKlThlB_WYehqfHrOPYauhmeXB-dkjwngbiof-dEMgXMgmbACgYFhQg0DYo6bUNlXV2F6P-GSgTNnJA100GXATjEJygrTfk6Wmomjf-GsAqO8hqkrD0VwUWeKi8cWCWlAhVgAw2e4DEuNxFPsyzuTRfM1tokQE0C1PSAbqC95zfavoHGO7Q_I-Imf0Wzd-h239D56aMRhps0DJ5yE-Vh84Mn7aJPV8dD8_fs4s8W-lyk0oYuf2wbLc2nD_57NDjmdqcTqn_h2M_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+bio-medical+implants%3B+mechanical+properties%2C+surface+modifications+and+applications&rft.jtitle=Engineering+Research+Express&rft.au=Zwawi%2C+Mohammed&rft.date=2022-09-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=4&rft.issue=3&rft_id=info:doi/10.1088%2F2631-8695%2Fac8ae2&rft.externalDocID=erxac8ae2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon |