Magnetic‐Driven Viscous Mechanisms in Ultra‐Soft Magnetorheological Elastomers Offer History‐Dependent Actuation with Reprogrammability Options

This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. e06790; p. e06790
Main Authors Gonzalez‐Saiz, Ernesto, Lopez‐Donaire, Maria Luisa, Gutiérrez, Lucía, Danas, Kostas, Garcia‐Gonzalez, Daniel
Format Journal Article
LanguageEnglish
Published Germany Wiley Open Access 13.08.2025
Subjects
Online AccessGet full text
ISSN2198-3844
2198-3844
DOI10.1002/advs.202506790

Cover

Loading…
Abstract This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force‐memory. Specifically, due to the magnetically induced long‐term viscous relaxation, one can induce magnetic‐driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto‐mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game‐changing concept for designing a new branch of soft sensor‐actuator and reservoir computing systems.
AbstractList This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force‐memory. Specifically, due to the magnetically induced long‐term viscous relaxation, one can induce magnetic‐driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto‐mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game‐changing concept for designing a new branch of soft sensor‐actuator and reservoir computing systems.
This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force-memory. Specifically, due to the magnetically induced long-term viscous relaxation, one can induce magnetic-driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto-mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game-changing concept for designing a new branch of soft sensor-actuator and reservoir computing systems.
This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force-memory. Specifically, due to the magnetically induced long-term viscous relaxation, one can induce magnetic-driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for 1 h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto-mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game-changing concept for designing a new branch of soft sensor-actuator and reservoir computing systems.
This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force-memory. Specifically, due to the magnetically induced long-term viscous relaxation, one can induce magnetic-driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for 1 $\hskip.001pt 1$ h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto-mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game-changing concept for designing a new branch of soft sensor-actuator and reservoir computing systems.This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force-memory. Specifically, due to the magnetically induced long-term viscous relaxation, one can induce magnetic-driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for 1 $\hskip.001pt 1$ h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto-mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game-changing concept for designing a new branch of soft sensor-actuator and reservoir computing systems.
Author Gutiérrez, Lucía
Garcia‐Gonzalez, Daniel
Danas, Kostas
Gonzalez‐Saiz, Ernesto
Lopez‐Donaire, Maria Luisa
Author_xml – sequence: 1
  givenname: Ernesto
  surname: Gonzalez‐Saiz
  fullname: Gonzalez‐Saiz, Ernesto
  organization: Department of Continuum Mechanics and Structural Analysis Universidad Carlos III de Madrid Calle Butarque 15, Leganes 28911 Madrid Spain
– sequence: 2
  givenname: Maria Luisa
  surname: Lopez‐Donaire
  fullname: Lopez‐Donaire, Maria Luisa
  organization: Department of Continuum Mechanics and Structural Analysis Universidad Carlos III de Madrid Calle Butarque 15, Leganes 28911 Madrid Spain
– sequence: 3
  givenname: Lucía
  surname: Gutiérrez
  fullname: Gutiérrez, Lucía
  organization: Instituto de Nanociencia y Materiales de Aragón (INMA, CSIC/UNIZAR) and CIBER‐BBN Zaragoza 50018 Spain
– sequence: 4
  givenname: Kostas
  surname: Danas
  fullname: Danas, Kostas
  organization: LMS, CNRS, École Polytechnique Institut Polytechnique de Paris Palaiseau 91128 France
– sequence: 5
  givenname: Daniel
  orcidid: 0000-0003-4692-3508
  surname: Garcia‐Gonzalez
  fullname: Garcia‐Gonzalez, Daniel
  organization: Department of Continuum Mechanics and Structural Analysis Universidad Carlos III de Madrid Calle Butarque 15, Leganes 28911 Madrid Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40799085$$D View this record in MEDLINE/PubMed
https://hal.science/hal-05220894$$DView record in HAL
BookMark eNpNkc1uEzEUhS1UREvpliXyEhYJ_puOvYxKIUipIgFlazmeO4mRxw62E5RdH6EbXpAnwaOUiNX1Pf58ZJ3zEp2FGACh15RMKSHsven2ecoIa8h1q8gzdMGokhMuhTj773yOrnL-QQihDW8FlS_QuSCtUkQ2F-j3nVkHKM7-eXj8kNweAv7uso27jO_AbkxwecjYBXzvSzIV-hr7go-PYtpA9HHtrPH41ptc4gAp42XfQ8JzV_d0GH1hC6GDUPDMlp0pLgb8y5UN_gLbFNfJDINZOe_KAS-3421-hZ73xme4epqX6P7j7beb-WSx_PT5ZraYWCYomYiOt1y1VDEQUhkpODOyV82qazvZSkt7SpWtuqJWtkwpS5qeX_OVEkx0yvJL9O7ouzFeb5MbTDroaJyezxZ61EjDGJFK7Gll3x7Z-uefO8hFDzUo8N4EqHFpzriitKmxVvTNE7pbDdCdnP_FXoHpEbAp5pygPyGU6LFaPVarT9Xyv3i5mqo
Cites_doi 10.1002/aisy.202570007
10.1016/j.jmps.2024.105764
10.3389/frobt.2020.588391
10.1016/j.jmps.2017.04.016
10.1016/j.ijnonlinmec.2019.103380
10.1002/adfm.202005319
10.1002/adfm.202313865
10.1088/1361-665X/aa7f81
10.1016/S0142-9418(02)00175-7
10.1016/j.mechmat.2024.105187
10.1016/j.ijsolstr.2022.111513
10.1177/1081286513485773
10.1016/j.colsurfa.2019.123975
10.1126/sciadv.adf9758
10.1021/acsbiomaterials.3c00710
10.1016/j.compositesb.2019.107648
10.1016/j.polymer.2005.10.139
10.1073/pnas.1007862108
10.1038/s41586-018-0185-0
10.1039/C7SM00996H
10.1016/j.jsv.2022.116870
10.1016/j.neunet.2024.106766
10.1039/C6RA23435F
10.1007/s00707-003-0061-2
10.1016/j.eml.2021.101382
10.1126/sciadv.abc6414
10.1063/1.1711937
10.1073/pnas.2212489120
10.1016/j.apmt.2022.101437
10.1093/qjmam/57.4.599
10.1016/j.ijsolstr.2022.111981
10.1016/j.compositesb.2021.109148
10.3390/robotics13010016
10.1016/j.jmps.2019.103734
10.1103/PhysRevE.95.032503
10.1007/s00397-020-01218-4
10.1038/s41524-022-00844-1
10.1039/C5SM02949J
10.1142/S0217979202012499
10.1016/j.cma.2021.114500
10.1016/j.mechmat.2023.104742
10.1016/j.jmps.2024.105934
10.1088/0964-1726/16/6/069
10.1016/j.neunet.2019.03.005
10.1007/BF01262690
10.1016/j.jmps.2011.09.006
10.1016/j.ijsolstr.2023.112396
10.1002/adma.202312497
10.1016/j.jmps.2021.104361
10.1002/adem.202001458
10.1016/j.jmps.2017.06.017
10.1016/j.matdes.2018.08.009
10.1177/1045389X21990888
10.1016/j.neucom.2006.10.148
10.1002/adfm.202401077
10.1088/1361-665X/ac6bd3
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Attribution
Copyright_xml – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: Attribution
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
DOI 10.1002/advs.202506790
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
ExternalDocumentID oai_HAL_hal_05220894v1
40799085
10_1002_advs_202506790
Genre Journal Article
GrantInformation_xml – fundername: HORIZON EUROPE European Research Council
  grantid: 101081821
– fundername: Ministerio de Ciencia e Innovación
  grantid: PID2020-117894GA-I00
– fundername: H2020 European Research Council
  grantid: 947723
– fundername: Ministerio de Ciencia, Innovación y Universidades
  grantid: CNS2023-144321
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAMMB
AAYXX
AAZKR
ABDBF
ABUWG
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADMLS
ADZMN
AEFGJ
AFBPY
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
CITATION
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IGS
ITC
KQ8
M2O
M2P
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
NPM
7X8
1XC
PUEGO
VOOES
ID FETCH-LOGICAL-c2410-4d37397192e489a8432a8f95bd7d878c1f119ca8491c87299c05f363b9424d9c3
ISSN 2198-3844
IngestDate Wed Aug 27 07:33:36 EDT 2025
Wed Aug 13 23:58:37 EDT 2025
Thu Aug 14 01:42:15 EDT 2025
Thu Aug 21 00:07:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mechanical memory
magnetorheological elastomer
constitutive model
resevoir computing
viscoelasticity
constitutive model magnetorheological elastomer mechanical memory resevoir computing viscoelasticity
Language English
License 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2410-4d37397192e489a8432a8f95bd7d878c1f119ca8491c87299c05f363b9424d9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4692-3508
0000-0002-1177-5149
OpenAccessLink http://dx.doi.org/10.1002/advs.202506790
PMID 40799085
PQID 3239115908
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_05220894v1
proquest_miscellaneous_3239115908
pubmed_primary_40799085
crossref_primary_10_1002_advs_202506790
PublicationCentury 2000
PublicationDate 2025-Aug-13
PublicationDateYYYYMMDD 2025-08-13
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug-13
  day: 13
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2025
Publisher Wiley Open Access
Publisher_xml – name: Wiley Open Access
References Tanaka G. (e_1_2_9_41_1) 2019; 115
Arora N. (e_1_2_9_50_1) 2024; 34
Kalita V. M. (e_1_2_9_28_1) 2017; 95
e_1_2_9_52_1
Slesarenko V. (e_1_2_9_38_1) 2016; 12
Varga Z. (e_1_2_9_6_1) 2006; 47
Vatandoost H. (e_1_2_9_18_1) 2020; 182
Chen L. (e_1_2_9_24_1) 2007; 16
Bastola A. K. (e_1_2_9_1_1) 2018; 157
Stepanov G. V. (e_1_2_9_23_1) 2008; 20
Berasategi J. (e_1_2_9_37_1) 2020; 59
Alapan Y. (e_1_2_9_15_1) 2020; 6
Melnik A. (e_1_2_9_60_1) 2013; 18
Bira N. (e_1_2_9_4_1) 2020; 7
Danas K. (e_1_2_9_58_1) 2024; 191
Moreno‐Mateos M. A. (e_1_2_9_7_1) 2022; 27
Mukherjee D. (e_1_2_9_44_1) 2022; 257
Lum G. Z. (e_1_2_9_12_1) 2016; 113
Mukherjee D. (e_1_2_9_47_1) 2021; 151
Coleman B. D. (e_1_2_9_62_1) 1967; 47
Garcia‐Gonzalez D. (e_1_2_9_57_1) 2021; 48
Sun X. (e_1_2_9_9_1) 2023; 9
Moreno‐Mateos M. A. (e_1_2_9_8_1) 2022; 8
Zhang Q. (e_1_2_9_21_1) 2023; 280
Psarra E. (e_1_2_9_11_1) 2019; 133
Kalina K. A. (e_1_2_9_19_1) 2017; 26
Mukherjee D. (e_1_2_9_48_1) 2022; 257
Zhao X. (e_1_2_9_5_1) 2011; 108
Bastola A. (e_1_2_9_29_1) 2019; 583
BELLAN C. (e_1_2_9_27_1) 2002; 16
Böse H. (e_1_2_9_36_1) 2021; 32
Dorfmann A. (e_1_2_9_56_1) 2004; 167
Linke J. M. (e_1_2_9_22_1) 2016; 6
Crook N. (e_1_2_9_39_1) 2007; 70
He S. (e_1_2_9_40_1) 2025; 181
e_1_2_9_51_1
Coleman B. D. (e_1_2_9_63_1) 1963; 13
Stewart E. M. (e_1_2_9_35_1) 2025; 194
Danas K. (e_1_2_9_13_1) 2017; 105
Moreno M. (e_1_2_9_30_1) 2021; 224
Rambausek M. (e_1_2_9_49_1) 2022; 391
Lefèvre V. (e_1_2_9_33_1) 2017; 107
Brovko G. (e_1_2_9_61_1) 2019; 24
Moreno‐Mateos M. A. (e_1_2_9_20_1) 2022; 31
Montgomery S. M. (e_1_2_9_16_1) 2021; 31
Dorfmann A. (e_1_2_9_59_1) 2004; 57
Moreno‐Mateos M. A. (e_1_2_9_34_1) 2023; 184
Danas K. (e_1_2_9_26_1) 2012; 60
Stepanov G. (e_1_2_9_17_1)
Lokander M. (e_1_2_9_25_1) 2003; 22
Lucarini S. (e_1_2_9_42_1) 2022; 256
Kim Y. (e_1_2_9_14_1) 2018; 558
Wang Y. (e_1_2_9_2_1) 2022; 527
Perez‐Garcia C. (e_1_2_9_54_1) 2024; 34
Thiagarajan S. (e_1_2_9_31_1) 2021; 23
Pal A. (e_1_2_9_55_1) 2023; 120
Rambausek M. (e_1_2_9_43_1) 2022; 391
Moreno‐Mateos M. A. (e_1_2_9_45_1) 2022; 8
Atakuru T. (e_1_2_9_3_1) 2024; 13
Gomez‐Cruz C. (e_1_2_9_32_1) 2024; 36
Danas K. (e_1_2_9_64_1) 2025; 200
Psarra E. (e_1_2_9_10_1) 2017; 13
Mukherjee D. (e_1_2_9_46_1) 2020; 120
Huerta‐López C. (e_1_2_9_53_1) 2024; 10
References_xml – ident: e_1_2_9_52_1
  doi: 10.1002/aisy.202570007
– volume: 191
  year: 2024
  ident: e_1_2_9_58_1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2024.105764
– volume: 7
  year: 2020
  ident: e_1_2_9_4_1
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2020.588391
– volume: 105
  start-page: 25
  year: 2017
  ident: e_1_2_9_13_1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.04.016
– volume: 120
  year: 2020
  ident: e_1_2_9_46_1
  publication-title: Int. J. Non‐Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2019.103380
– volume: 31
  year: 2021
  ident: e_1_2_9_16_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202005319
– volume: 34
  year: 2024
  ident: e_1_2_9_54_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202313865
– volume: 26
  year: 2017
  ident: e_1_2_9_19_1
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa7f81
– volume: 22
  start-page: 677
  year: 2003
  ident: e_1_2_9_25_1
  publication-title: Polym. Test.
  doi: 10.1016/S0142-9418(02)00175-7
– volume: 200
  year: 2025
  ident: e_1_2_9_64_1
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2024.105187
– volume: 257
  year: 2022
  ident: e_1_2_9_44_1
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2022.111513
– volume: 24
  start-page: 79
  year: 2019
  ident: e_1_2_9_61_1
  publication-title: Math. Comput. Appl.
– volume: 18
  start-page: 634
  year: 2013
  ident: e_1_2_9_60_1
  publication-title: Math. Mech. Solids
  doi: 10.1177/1081286513485773
– volume: 583
  year: 2019
  ident: e_1_2_9_29_1
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2019.123975
– ident: e_1_2_9_51_1
– volume: 10
  year: 2024
  ident: e_1_2_9_53_1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adf9758
– volume: 9
  start-page: 6915
  year: 2023
  ident: e_1_2_9_9_1
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.3c00710
– volume: 182
  year: 2020
  ident: e_1_2_9_18_1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2019.107648
– volume: 47
  start-page: 227
  year: 2006
  ident: e_1_2_9_6_1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.10.139
– volume: 108
  start-page: 67
  year: 2011
  ident: e_1_2_9_5_1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1007862108
– volume: 558
  start-page: 274
  year: 2018
  ident: e_1_2_9_14_1
  publication-title: Nature
  doi: 10.1038/s41586-018-0185-0
– volume: 13
  start-page: 6576
  year: 2017
  ident: e_1_2_9_10_1
  publication-title: Soft Matter
  doi: 10.1039/C7SM00996H
– volume: 527
  year: 2022
  ident: e_1_2_9_2_1
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2022.116870
– volume: 181
  year: 2025
  ident: e_1_2_9_40_1
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2024.106766
– volume: 6
  year: 2016
  ident: e_1_2_9_22_1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA23435F
– volume: 167
  start-page: 13
  year: 2004
  ident: e_1_2_9_56_1
  publication-title: Acta Mech.
  doi: 10.1007/s00707-003-0061-2
– volume: 48
  year: 2021
  ident: e_1_2_9_57_1
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2021.101382
– volume: 113
  start-page: E6007
  year: 2016
  ident: e_1_2_9_12_1
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  year: 2020
  ident: e_1_2_9_15_1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc6414
– volume: 47
  start-page: 597
  year: 1967
  ident: e_1_2_9_62_1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1711937
– volume: 120
  year: 2023
  ident: e_1_2_9_55_1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2212489120
– volume: 27
  year: 2022
  ident: e_1_2_9_7_1
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2022.101437
– volume: 57
  start-page: 599
  year: 2004
  ident: e_1_2_9_59_1
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/57.4.599
– volume: 256
  year: 2022
  ident: e_1_2_9_42_1
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2022.111981
– volume: 224
  year: 2021
  ident: e_1_2_9_30_1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2021.109148
– volume: 13
  start-page: 1
  year: 2024
  ident: e_1_2_9_3_1
  publication-title: Robotics
  doi: 10.3390/robotics13010016
– volume: 133
  year: 2019
  ident: e_1_2_9_11_1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2019.103734
– volume: 95
  year: 2017
  ident: e_1_2_9_28_1
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.032503
– volume: 20
  year: 2008
  ident: e_1_2_9_23_1
  publication-title: J. Phys.: Condens. Matter
– volume: 257
  year: 2022
  ident: e_1_2_9_48_1
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2022.111513
– volume: 59
  start-page: 469
  year: 2020
  ident: e_1_2_9_37_1
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-020-01218-4
– volume: 8
  start-page: 162
  year: 2022
  ident: e_1_2_9_8_1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00844-1
– volume: 12
  start-page: 3677
  year: 2016
  ident: e_1_2_9_38_1
  publication-title: Soft Matter
  doi: 10.1039/C5SM02949J
– volume: 16
  start-page: 2447
  year: 2002
  ident: e_1_2_9_27_1
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979202012499
– start-page: 2013
  volume-title: Journal of Physics: Conference Series
  ident: e_1_2_9_17_1
– volume: 391
  year: 2022
  ident: e_1_2_9_43_1
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114500
– volume: 184
  year: 2023
  ident: e_1_2_9_34_1
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2023.104742
– volume: 194
  year: 2025
  ident: e_1_2_9_35_1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2024.105934
– volume: 16
  start-page: 2645
  year: 2007
  ident: e_1_2_9_24_1
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/6/069
– volume: 115
  start-page: 100
  year: 2019
  ident: e_1_2_9_41_1
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.03.005
– volume: 391
  year: 2022
  ident: e_1_2_9_49_1
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114500
– volume: 13
  start-page: 167
  year: 1963
  ident: e_1_2_9_63_1
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF01262690
– volume: 60
  start-page: 120
  year: 2012
  ident: e_1_2_9_26_1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2011.09.006
– volume: 280
  year: 2023
  ident: e_1_2_9_21_1
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2023.112396
– volume: 36
  year: 2024
  ident: e_1_2_9_32_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202312497
– volume: 151
  year: 2021
  ident: e_1_2_9_47_1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2021.104361
– volume: 23
  year: 2021
  ident: e_1_2_9_31_1
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.202001458
– volume: 107
  start-page: 343
  year: 2017
  ident: e_1_2_9_33_1
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.06.017
– volume: 8
  start-page: 162
  year: 2022
  ident: e_1_2_9_45_1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00844-1
– volume: 157
  start-page: 431
  year: 2018
  ident: e_1_2_9_1_1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.08.009
– volume: 32
  start-page: 1550
  year: 2021
  ident: e_1_2_9_36_1
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X21990888
– volume: 70
  start-page: 1167
  year: 2007
  ident: e_1_2_9_39_1
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.10.148
– volume: 34
  year: 2024
  ident: e_1_2_9_50_1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202401077
– volume: 31
  year: 2022
  ident: e_1_2_9_20_1
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ac6bd3
SSID ssj0001537418
Score 2.3291967
Snippet This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements...
SourceID hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e06790
SubjectTerms Engineering Sciences
Mechanics
Mechanics of materials
Solid mechanics
Title Magnetic‐Driven Viscous Mechanisms in Ultra‐Soft Magnetorheological Elastomers Offer History‐Dependent Actuation with Reprogrammability Options
URI https://www.ncbi.nlm.nih.gov/pubmed/40799085
https://www.proquest.com/docview/3239115908
https://hal.science/hal-05220894
Volume e06790
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj9JAEN9w3IsvxvMTPy6rMVHT9Gy7LbSPKJxECxgBw1uz3bZeE68lpVxy_A0m_svOdPshgsnpSyFDu5CdH7MzszO_JeSlHsBfDBxV1eE6V80oELhJGKqWxrUuxLg8KIoxx5PuaGF-XFrLVuvHb1VLm9w_E9uDfSX_o1WQgV6xS_YfNFsPCgJ4D_qFK2gYrjfS8Zh_S7AJUR1kaLSUr_FaYEnrOMR-3nh9WRS7Lr7nGVdnYG8V-UCaXYS1zRuC-5ynmL1WpnhWSkkccq0OyuNxc6WPTSYFToqsLfjssqjrUnJ8XyvTVZP2qxhtq9qCcomt63zSZAtr0lad8XgrDXGCh9vUhUHpCj7EjHWVNIdgnivuJl7XC8gHmFK5wZ9lMgHubkQhGNT3AJplq9qnFPzfneSGYWG2VvamShsI9tRWmS0pIs_CAzJpd0PMh2kHlwRJMcuDKyRnB4evunGXe3sy9c4XruvNh8v5ETk2IOgw2uS4Pxi7syZnZzEk-8HzCqvfUPGAasbb3a_Y8XOOLrDK9m8hTOHKzO-Q22UMQvsSUCekFSZ3yUlp5df0dUlF_uYe-fkHwmiJMNogjMYJbRBG9xFGG4TRAmF0D2G0RhhFhNE9hNESYffJ4nw4fz9SyyM8VAGuoaaaAeuBxwthRGjaDrdNZnA7ciw_6IGRsIUe6bojQO7owoY4zxGaFbEu8x3TMANHsAeknaRJ-IjQsMsiIzJ9PB8BVh3H6fmBH5gs4H6PdwXvkFfVhHsrydTiSU5uw0PVeLVqOuQF6KO-CQnWR33XQ5kG4YgG41_pHfK8UpcHFhe30XgSwgx7zGDgIViOZnfIQ6nHeixT64F7Z1uPb_D0E3KrgfxT0s6zTfgMPNzcPy2BB6_vhpPPX06LTNEvxRquOA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic-Driven+Viscous+Mechanisms+in+Ultra-Soft+Magnetorheological+Elastomers+Offer+History-Dependent+Actuation+with+Reprogrammability+Options&rft.jtitle=Advanced+science&rft.au=Gonzalez-Saiz%2C+Ernesto&rft.au=Lopez-Donaire%2C+Maria+Luisa&rft.au=Guti%C3%A9rrez%2C+Luc%C3%ADa&rft.au=Danas%2C+Kostas&rft.date=2025-08-13&rft.issn=2198-3844&rft.eissn=2198-3844&rft.spage=e06790&rft_id=info:doi/10.1002%2Fadvs.202506790&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon