Magnetic‐Driven Viscous Mechanisms in Ultra‐Soft Magnetorheological Elastomers Offer History‐Dependent Actuation with Reprogrammability Options
This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that...
Saved in:
Published in | Advanced science Vol. e06790; p. e06790 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Open Access
13.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2198-3844 2198-3844 |
DOI | 10.1002/advs.202506790 |
Cover
Loading…
Abstract | This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force‐memory. Specifically, due to the magnetically induced long‐term viscous relaxation, one can induce magnetic‐driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto‐mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game‐changing concept for designing a new branch of soft sensor‐actuator and reservoir computing systems. |
---|---|
AbstractList | This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force‐memory. Specifically, due to the magnetically induced long‐term viscous relaxation, one can induce magnetic‐driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto‐mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game‐changing concept for designing a new branch of soft sensor‐actuator and reservoir computing systems. This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force-memory. Specifically, due to the magnetically induced long-term viscous relaxation, one can induce magnetic-driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto-mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game-changing concept for designing a new branch of soft sensor-actuator and reservoir computing systems. This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force-memory. Specifically, due to the magnetically induced long-term viscous relaxation, one can induce magnetic-driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for 1 h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto-mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game-changing concept for designing a new branch of soft sensor-actuator and reservoir computing systems. This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force-memory. Specifically, due to the magnetically induced long-term viscous relaxation, one can induce magnetic-driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for 1 $\hskip.001pt 1$ h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto-mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game-changing concept for designing a new branch of soft sensor-actuator and reservoir computing systems.This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements during magnetic actuation modulate their viscoelastic behavior. Experimental assays are provided on mechanically confined and very soft MREs that, under magnetic actuation, show an order of magnitude increase in relaxation times compared to purely mechanical cases. It is demonstrated that such a modulation in the viscous response can be tuned by the amplitude and actuation rate of the magnetic stimuli, and is intrinsically linked to microstructural rearrangements of the magnetic particles. Motivated by these experimental observations, magnetic actuation protocols are conceived to enable mechanical responses in soft materials with force-memory. Specifically, due to the magnetically induced long-term viscous relaxation, one can induce magnetic-driven yielding by introducing material hardening during cycling loading. This mechanical memory of the MRE can be subsequently removed by releasing the magnetic stimuli for 1 $\hskip.001pt 1$ h, resetting the material performance and its microstructural state. These mechanisms are deeply understood by a combination of different experimental approaches and a new theoretical magneto-mechanical continuum model. The results reported herein respond to unraveled fundamental questions in soft MREs, and provide a game-changing concept for designing a new branch of soft sensor-actuator and reservoir computing systems. |
Author | Gutiérrez, Lucía Garcia‐Gonzalez, Daniel Danas, Kostas Gonzalez‐Saiz, Ernesto Lopez‐Donaire, Maria Luisa |
Author_xml | – sequence: 1 givenname: Ernesto surname: Gonzalez‐Saiz fullname: Gonzalez‐Saiz, Ernesto organization: Department of Continuum Mechanics and Structural Analysis Universidad Carlos III de Madrid Calle Butarque 15, Leganes 28911 Madrid Spain – sequence: 2 givenname: Maria Luisa surname: Lopez‐Donaire fullname: Lopez‐Donaire, Maria Luisa organization: Department of Continuum Mechanics and Structural Analysis Universidad Carlos III de Madrid Calle Butarque 15, Leganes 28911 Madrid Spain – sequence: 3 givenname: Lucía surname: Gutiérrez fullname: Gutiérrez, Lucía organization: Instituto de Nanociencia y Materiales de Aragón (INMA, CSIC/UNIZAR) and CIBER‐BBN Zaragoza 50018 Spain – sequence: 4 givenname: Kostas surname: Danas fullname: Danas, Kostas organization: LMS, CNRS, École Polytechnique Institut Polytechnique de Paris Palaiseau 91128 France – sequence: 5 givenname: Daniel orcidid: 0000-0003-4692-3508 surname: Garcia‐Gonzalez fullname: Garcia‐Gonzalez, Daniel organization: Department of Continuum Mechanics and Structural Analysis Universidad Carlos III de Madrid Calle Butarque 15, Leganes 28911 Madrid Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40799085$$D View this record in MEDLINE/PubMed https://hal.science/hal-05220894$$DView record in HAL |
BookMark | eNpNkc1uEzEUhS1UREvpliXyEhYJ_puOvYxKIUipIgFlazmeO4mRxw62E5RdH6EbXpAnwaOUiNX1Pf58ZJ3zEp2FGACh15RMKSHsven2ecoIa8h1q8gzdMGokhMuhTj773yOrnL-QQihDW8FlS_QuSCtUkQ2F-j3nVkHKM7-eXj8kNweAv7uso27jO_AbkxwecjYBXzvSzIV-hr7go-PYtpA9HHtrPH41ptc4gAp42XfQ8JzV_d0GH1hC6GDUPDMlp0pLgb8y5UN_gLbFNfJDINZOe_KAS-3421-hZ73xme4epqX6P7j7beb-WSx_PT5ZraYWCYomYiOt1y1VDEQUhkpODOyV82qazvZSkt7SpWtuqJWtkwpS5qeX_OVEkx0yvJL9O7ouzFeb5MbTDroaJyezxZ61EjDGJFK7Gll3x7Z-uefO8hFDzUo8N4EqHFpzriitKmxVvTNE7pbDdCdnP_FXoHpEbAp5pygPyGU6LFaPVarT9Xyv3i5mqo |
Cites_doi | 10.1002/aisy.202570007 10.1016/j.jmps.2024.105764 10.3389/frobt.2020.588391 10.1016/j.jmps.2017.04.016 10.1016/j.ijnonlinmec.2019.103380 10.1002/adfm.202005319 10.1002/adfm.202313865 10.1088/1361-665X/aa7f81 10.1016/S0142-9418(02)00175-7 10.1016/j.mechmat.2024.105187 10.1016/j.ijsolstr.2022.111513 10.1177/1081286513485773 10.1016/j.colsurfa.2019.123975 10.1126/sciadv.adf9758 10.1021/acsbiomaterials.3c00710 10.1016/j.compositesb.2019.107648 10.1016/j.polymer.2005.10.139 10.1073/pnas.1007862108 10.1038/s41586-018-0185-0 10.1039/C7SM00996H 10.1016/j.jsv.2022.116870 10.1016/j.neunet.2024.106766 10.1039/C6RA23435F 10.1007/s00707-003-0061-2 10.1016/j.eml.2021.101382 10.1126/sciadv.abc6414 10.1063/1.1711937 10.1073/pnas.2212489120 10.1016/j.apmt.2022.101437 10.1093/qjmam/57.4.599 10.1016/j.ijsolstr.2022.111981 10.1016/j.compositesb.2021.109148 10.3390/robotics13010016 10.1016/j.jmps.2019.103734 10.1103/PhysRevE.95.032503 10.1007/s00397-020-01218-4 10.1038/s41524-022-00844-1 10.1039/C5SM02949J 10.1142/S0217979202012499 10.1016/j.cma.2021.114500 10.1016/j.mechmat.2023.104742 10.1016/j.jmps.2024.105934 10.1088/0964-1726/16/6/069 10.1016/j.neunet.2019.03.005 10.1007/BF01262690 10.1016/j.jmps.2011.09.006 10.1016/j.ijsolstr.2023.112396 10.1002/adma.202312497 10.1016/j.jmps.2021.104361 10.1002/adem.202001458 10.1016/j.jmps.2017.06.017 10.1016/j.matdes.2018.08.009 10.1177/1045389X21990888 10.1016/j.neucom.2006.10.148 10.1002/adfm.202401077 10.1088/1361-665X/ac6bd3 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. Attribution |
Copyright_xml | – notice: 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: Attribution |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES |
DOI | 10.1002/advs.202506790 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
ExternalDocumentID | oai_HAL_hal_05220894v1 40799085 10_1002_advs_202506790 |
Genre | Journal Article |
GrantInformation_xml | – fundername: HORIZON EUROPE European Research Council grantid: 101081821 – fundername: Ministerio de Ciencia e Innovación grantid: PID2020-117894GA-I00 – fundername: H2020 European Research Council grantid: 947723 – fundername: Ministerio de Ciencia, Innovación y Universidades grantid: CNS2023-144321 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAMMB AAYXX AAZKR ABDBF ABUWG ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN AEFGJ AFBPY AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU CITATION DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM WIN NPM 7X8 1XC PUEGO VOOES |
ID | FETCH-LOGICAL-c2410-4d37397192e489a8432a8f95bd7d878c1f119ca8491c87299c05f363b9424d9c3 |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 07:33:36 EDT 2025 Wed Aug 13 23:58:37 EDT 2025 Thu Aug 14 01:42:15 EDT 2025 Thu Aug 21 00:07:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | mechanical memory magnetorheological elastomer constitutive model resevoir computing viscoelasticity constitutive model magnetorheological elastomer mechanical memory resevoir computing viscoelasticity |
Language | English |
License | 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH. Attribution: http://creativecommons.org/licenses/by |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2410-4d37397192e489a8432a8f95bd7d878c1f119ca8491c87299c05f363b9424d9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4692-3508 0000-0002-1177-5149 |
OpenAccessLink | http://dx.doi.org/10.1002/advs.202506790 |
PMID | 40799085 |
PQID | 3239115908 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_05220894v1 proquest_miscellaneous_3239115908 pubmed_primary_40799085 crossref_primary_10_1002_advs_202506790 |
PublicationCentury | 2000 |
PublicationDate | 2025-Aug-13 |
PublicationDateYYYYMMDD | 2025-08-13 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2025 |
Publisher | Wiley Open Access |
Publisher_xml | – name: Wiley Open Access |
References | Tanaka G. (e_1_2_9_41_1) 2019; 115 Arora N. (e_1_2_9_50_1) 2024; 34 Kalita V. M. (e_1_2_9_28_1) 2017; 95 e_1_2_9_52_1 Slesarenko V. (e_1_2_9_38_1) 2016; 12 Varga Z. (e_1_2_9_6_1) 2006; 47 Vatandoost H. (e_1_2_9_18_1) 2020; 182 Chen L. (e_1_2_9_24_1) 2007; 16 Bastola A. K. (e_1_2_9_1_1) 2018; 157 Stepanov G. V. (e_1_2_9_23_1) 2008; 20 Berasategi J. (e_1_2_9_37_1) 2020; 59 Alapan Y. (e_1_2_9_15_1) 2020; 6 Melnik A. (e_1_2_9_60_1) 2013; 18 Bira N. (e_1_2_9_4_1) 2020; 7 Danas K. (e_1_2_9_58_1) 2024; 191 Moreno‐Mateos M. A. (e_1_2_9_7_1) 2022; 27 Mukherjee D. (e_1_2_9_44_1) 2022; 257 Lum G. Z. (e_1_2_9_12_1) 2016; 113 Mukherjee D. (e_1_2_9_47_1) 2021; 151 Coleman B. D. (e_1_2_9_62_1) 1967; 47 Garcia‐Gonzalez D. (e_1_2_9_57_1) 2021; 48 Sun X. (e_1_2_9_9_1) 2023; 9 Moreno‐Mateos M. A. (e_1_2_9_8_1) 2022; 8 Zhang Q. (e_1_2_9_21_1) 2023; 280 Psarra E. (e_1_2_9_11_1) 2019; 133 Kalina K. A. (e_1_2_9_19_1) 2017; 26 Mukherjee D. (e_1_2_9_48_1) 2022; 257 Zhao X. (e_1_2_9_5_1) 2011; 108 Bastola A. (e_1_2_9_29_1) 2019; 583 BELLAN C. (e_1_2_9_27_1) 2002; 16 Böse H. (e_1_2_9_36_1) 2021; 32 Dorfmann A. (e_1_2_9_56_1) 2004; 167 Linke J. M. (e_1_2_9_22_1) 2016; 6 Crook N. (e_1_2_9_39_1) 2007; 70 He S. (e_1_2_9_40_1) 2025; 181 e_1_2_9_51_1 Coleman B. D. (e_1_2_9_63_1) 1963; 13 Stewart E. M. (e_1_2_9_35_1) 2025; 194 Danas K. (e_1_2_9_13_1) 2017; 105 Moreno M. (e_1_2_9_30_1) 2021; 224 Rambausek M. (e_1_2_9_49_1) 2022; 391 Lefèvre V. (e_1_2_9_33_1) 2017; 107 Brovko G. (e_1_2_9_61_1) 2019; 24 Moreno‐Mateos M. A. (e_1_2_9_20_1) 2022; 31 Montgomery S. M. (e_1_2_9_16_1) 2021; 31 Dorfmann A. (e_1_2_9_59_1) 2004; 57 Moreno‐Mateos M. A. (e_1_2_9_34_1) 2023; 184 Danas K. (e_1_2_9_26_1) 2012; 60 Stepanov G. (e_1_2_9_17_1) Lokander M. (e_1_2_9_25_1) 2003; 22 Lucarini S. (e_1_2_9_42_1) 2022; 256 Kim Y. (e_1_2_9_14_1) 2018; 558 Wang Y. (e_1_2_9_2_1) 2022; 527 Perez‐Garcia C. (e_1_2_9_54_1) 2024; 34 Thiagarajan S. (e_1_2_9_31_1) 2021; 23 Pal A. (e_1_2_9_55_1) 2023; 120 Rambausek M. (e_1_2_9_43_1) 2022; 391 Moreno‐Mateos M. A. (e_1_2_9_45_1) 2022; 8 Atakuru T. (e_1_2_9_3_1) 2024; 13 Gomez‐Cruz C. (e_1_2_9_32_1) 2024; 36 Danas K. (e_1_2_9_64_1) 2025; 200 Psarra E. (e_1_2_9_10_1) 2017; 13 Mukherjee D. (e_1_2_9_46_1) 2020; 120 Huerta‐López C. (e_1_2_9_53_1) 2024; 10 |
References_xml | – ident: e_1_2_9_52_1 doi: 10.1002/aisy.202570007 – volume: 191 year: 2024 ident: e_1_2_9_58_1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2024.105764 – volume: 7 year: 2020 ident: e_1_2_9_4_1 publication-title: Front. Robot. AI doi: 10.3389/frobt.2020.588391 – volume: 105 start-page: 25 year: 2017 ident: e_1_2_9_13_1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.04.016 – volume: 120 year: 2020 ident: e_1_2_9_46_1 publication-title: Int. J. Non‐Linear Mech. doi: 10.1016/j.ijnonlinmec.2019.103380 – volume: 31 year: 2021 ident: e_1_2_9_16_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005319 – volume: 34 year: 2024 ident: e_1_2_9_54_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202313865 – volume: 26 year: 2017 ident: e_1_2_9_19_1 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa7f81 – volume: 22 start-page: 677 year: 2003 ident: e_1_2_9_25_1 publication-title: Polym. Test. doi: 10.1016/S0142-9418(02)00175-7 – volume: 200 year: 2025 ident: e_1_2_9_64_1 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2024.105187 – volume: 257 year: 2022 ident: e_1_2_9_44_1 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2022.111513 – volume: 24 start-page: 79 year: 2019 ident: e_1_2_9_61_1 publication-title: Math. Comput. Appl. – volume: 18 start-page: 634 year: 2013 ident: e_1_2_9_60_1 publication-title: Math. Mech. Solids doi: 10.1177/1081286513485773 – volume: 583 year: 2019 ident: e_1_2_9_29_1 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2019.123975 – ident: e_1_2_9_51_1 – volume: 10 year: 2024 ident: e_1_2_9_53_1 publication-title: Sci. Adv. doi: 10.1126/sciadv.adf9758 – volume: 9 start-page: 6915 year: 2023 ident: e_1_2_9_9_1 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.3c00710 – volume: 182 year: 2020 ident: e_1_2_9_18_1 publication-title: Composites, Part B doi: 10.1016/j.compositesb.2019.107648 – volume: 47 start-page: 227 year: 2006 ident: e_1_2_9_6_1 publication-title: Polymer doi: 10.1016/j.polymer.2005.10.139 – volume: 108 start-page: 67 year: 2011 ident: e_1_2_9_5_1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1007862108 – volume: 558 start-page: 274 year: 2018 ident: e_1_2_9_14_1 publication-title: Nature doi: 10.1038/s41586-018-0185-0 – volume: 13 start-page: 6576 year: 2017 ident: e_1_2_9_10_1 publication-title: Soft Matter doi: 10.1039/C7SM00996H – volume: 527 year: 2022 ident: e_1_2_9_2_1 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2022.116870 – volume: 181 year: 2025 ident: e_1_2_9_40_1 publication-title: Neural Netw. doi: 10.1016/j.neunet.2024.106766 – volume: 6 year: 2016 ident: e_1_2_9_22_1 publication-title: RSC Adv. doi: 10.1039/C6RA23435F – volume: 167 start-page: 13 year: 2004 ident: e_1_2_9_56_1 publication-title: Acta Mech. doi: 10.1007/s00707-003-0061-2 – volume: 48 year: 2021 ident: e_1_2_9_57_1 publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2021.101382 – volume: 113 start-page: E6007 year: 2016 ident: e_1_2_9_12_1 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 year: 2020 ident: e_1_2_9_15_1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abc6414 – volume: 47 start-page: 597 year: 1967 ident: e_1_2_9_62_1 publication-title: J. Chem. Phys. doi: 10.1063/1.1711937 – volume: 120 year: 2023 ident: e_1_2_9_55_1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2212489120 – volume: 27 year: 2022 ident: e_1_2_9_7_1 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2022.101437 – volume: 57 start-page: 599 year: 2004 ident: e_1_2_9_59_1 publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/57.4.599 – volume: 256 year: 2022 ident: e_1_2_9_42_1 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2022.111981 – volume: 224 year: 2021 ident: e_1_2_9_30_1 publication-title: Composites, Part B doi: 10.1016/j.compositesb.2021.109148 – volume: 13 start-page: 1 year: 2024 ident: e_1_2_9_3_1 publication-title: Robotics doi: 10.3390/robotics13010016 – volume: 133 year: 2019 ident: e_1_2_9_11_1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2019.103734 – volume: 95 year: 2017 ident: e_1_2_9_28_1 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.032503 – volume: 20 year: 2008 ident: e_1_2_9_23_1 publication-title: J. Phys.: Condens. Matter – volume: 257 year: 2022 ident: e_1_2_9_48_1 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2022.111513 – volume: 59 start-page: 469 year: 2020 ident: e_1_2_9_37_1 publication-title: Rheol. Acta doi: 10.1007/s00397-020-01218-4 – volume: 8 start-page: 162 year: 2022 ident: e_1_2_9_8_1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00844-1 – volume: 12 start-page: 3677 year: 2016 ident: e_1_2_9_38_1 publication-title: Soft Matter doi: 10.1039/C5SM02949J – volume: 16 start-page: 2447 year: 2002 ident: e_1_2_9_27_1 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979202012499 – start-page: 2013 volume-title: Journal of Physics: Conference Series ident: e_1_2_9_17_1 – volume: 391 year: 2022 ident: e_1_2_9_43_1 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114500 – volume: 184 year: 2023 ident: e_1_2_9_34_1 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2023.104742 – volume: 194 year: 2025 ident: e_1_2_9_35_1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2024.105934 – volume: 16 start-page: 2645 year: 2007 ident: e_1_2_9_24_1 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/6/069 – volume: 115 start-page: 100 year: 2019 ident: e_1_2_9_41_1 publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.03.005 – volume: 391 year: 2022 ident: e_1_2_9_49_1 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114500 – volume: 13 start-page: 167 year: 1963 ident: e_1_2_9_63_1 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF01262690 – volume: 60 start-page: 120 year: 2012 ident: e_1_2_9_26_1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2011.09.006 – volume: 280 year: 2023 ident: e_1_2_9_21_1 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2023.112396 – volume: 36 year: 2024 ident: e_1_2_9_32_1 publication-title: Adv. Mater. doi: 10.1002/adma.202312497 – volume: 151 year: 2021 ident: e_1_2_9_47_1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2021.104361 – volume: 23 year: 2021 ident: e_1_2_9_31_1 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202001458 – volume: 107 start-page: 343 year: 2017 ident: e_1_2_9_33_1 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.06.017 – volume: 8 start-page: 162 year: 2022 ident: e_1_2_9_45_1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00844-1 – volume: 157 start-page: 431 year: 2018 ident: e_1_2_9_1_1 publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.08.009 – volume: 32 start-page: 1550 year: 2021 ident: e_1_2_9_36_1 publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X21990888 – volume: 70 start-page: 1167 year: 2007 ident: e_1_2_9_39_1 publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.10.148 – volume: 34 year: 2024 ident: e_1_2_9_50_1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202401077 – volume: 31 year: 2022 ident: e_1_2_9_20_1 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ac6bd3 |
SSID | ssj0001537418 |
Score | 2.3291967 |
Snippet | This work elucidates an important open question in the field of mechanically soft magnetorheological elastomers (MREs): how microstructural rearrangements... |
SourceID | hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | e06790 |
SubjectTerms | Engineering Sciences Mechanics Mechanics of materials Solid mechanics |
Title | Magnetic‐Driven Viscous Mechanisms in Ultra‐Soft Magnetorheological Elastomers Offer History‐Dependent Actuation with Reprogrammability Options |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40799085 https://www.proquest.com/docview/3239115908 https://hal.science/hal-05220894 |
Volume | e06790 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj9JAEN9w3IsvxvMTPy6rMVHT9Gy7LbSPKJxECxgBw1uz3bZeE68lpVxy_A0m_svOdPshgsnpSyFDu5CdH7MzszO_JeSlHsBfDBxV1eE6V80oELhJGKqWxrUuxLg8KIoxx5PuaGF-XFrLVuvHb1VLm9w_E9uDfSX_o1WQgV6xS_YfNFsPCgJ4D_qFK2gYrjfS8Zh_S7AJUR1kaLSUr_FaYEnrOMR-3nh9WRS7Lr7nGVdnYG8V-UCaXYS1zRuC-5ynmL1WpnhWSkkccq0OyuNxc6WPTSYFToqsLfjssqjrUnJ8XyvTVZP2qxhtq9qCcomt63zSZAtr0lad8XgrDXGCh9vUhUHpCj7EjHWVNIdgnivuJl7XC8gHmFK5wZ9lMgHubkQhGNT3AJplq9qnFPzfneSGYWG2VvamShsI9tRWmS0pIs_CAzJpd0PMh2kHlwRJMcuDKyRnB4evunGXe3sy9c4XruvNh8v5ETk2IOgw2uS4Pxi7syZnZzEk-8HzCqvfUPGAasbb3a_Y8XOOLrDK9m8hTOHKzO-Q22UMQvsSUCekFSZ3yUlp5df0dUlF_uYe-fkHwmiJMNogjMYJbRBG9xFGG4TRAmF0D2G0RhhFhNE9hNESYffJ4nw4fz9SyyM8VAGuoaaaAeuBxwthRGjaDrdNZnA7ciw_6IGRsIUe6bojQO7owoY4zxGaFbEu8x3TMANHsAeknaRJ-IjQsMsiIzJ9PB8BVh3H6fmBH5gs4H6PdwXvkFfVhHsrydTiSU5uw0PVeLVqOuQF6KO-CQnWR33XQ5kG4YgG41_pHfK8UpcHFhe30XgSwgx7zGDgIViOZnfIQ6nHeixT64F7Z1uPb_D0E3KrgfxT0s6zTfgMPNzcPy2BB6_vhpPPX06LTNEvxRquOA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic-Driven+Viscous+Mechanisms+in+Ultra-Soft+Magnetorheological+Elastomers+Offer+History-Dependent+Actuation+with+Reprogrammability+Options&rft.jtitle=Advanced+science&rft.au=Gonzalez-Saiz%2C+Ernesto&rft.au=Lopez-Donaire%2C+Maria+Luisa&rft.au=Guti%C3%A9rrez%2C+Luc%C3%ADa&rft.au=Danas%2C+Kostas&rft.date=2025-08-13&rft.issn=2198-3844&rft.eissn=2198-3844&rft.spage=e06790&rft_id=info:doi/10.1002%2Fadvs.202506790&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |