On Design and Implementation of a Generic Number Type for Real Algebraic Number Computations Based on Expression Dags

We report on the design and implementation of a number type called Real_algebraic. This number type allows us to compute the sign of arithmetic expressions involving the operations . The sign computation is always correct and, in this sense, not subject to rounding errors. We focus on modularity and...

Full description

Saved in:
Bibliographic Details
Published inMathematics in computer science Vol. 4; no. 4; pp. 539 - 556
Main Authors Mörig, Marc, Rössling, Ivo, Schirra, Stefan
Format Journal Article
LanguageEnglish
Published Basel SP Birkhäuser Verlag Basel 01.12.2010
Subjects
Online AccessGet full text
ISSN1661-8270
1661-8289
DOI10.1007/s11786-011-0086-1

Cover

Loading…
Abstract We report on the design and implementation of a number type called Real_algebraic. This number type allows us to compute the sign of arithmetic expressions involving the operations . The sign computation is always correct and, in this sense, not subject to rounding errors. We focus on modularity and use generic programming techniques to make key parts of the implementation exchangeable. Thus, our design allows for easily performing experiments with different implementations or thereby tailoring the number type for specific tasks. For many problems in computational geometry, instantiations of our number type Real_algebraic are a user-friendly alternative for implementing the exact geometric computation paradigm in order to abandon numerical robustness problems.
AbstractList We report on the design and implementation of a number type called Real_algebraic. This number type allows us to compute the sign of arithmetic expressions involving the operations . The sign computation is always correct and, in this sense, not subject to rounding errors. We focus on modularity and use generic programming techniques to make key parts of the implementation exchangeable. Thus, our design allows for easily performing experiments with different implementations or thereby tailoring the number type for specific tasks. For many problems in computational geometry, instantiations of our number type Real_algebraic are a user-friendly alternative for implementing the exact geometric computation paradigm in order to abandon numerical robustness problems.
Author Rössling, Ivo
Schirra, Stefan
Mörig, Marc
Author_xml – sequence: 1
  givenname: Marc
  surname: Mörig
  fullname: Mörig, Marc
  email: marc.moerig@ovgu.de
  organization: Department of Simulation and Graphics, Faculty of Computer Science, University of Magdeburg
– sequence: 2
  givenname: Ivo
  surname: Rössling
  fullname: Rössling, Ivo
  organization: Department of Simulation and Graphics, Faculty of Computer Science, University of Magdeburg
– sequence: 3
  givenname: Stefan
  surname: Schirra
  fullname: Schirra, Stefan
  organization: Department of Simulation and Graphics, Faculty of Computer Science, University of Magdeburg
BookMark eNp9kMFKw0AQhhepYFt9AG_7AtGZTZpNj7WttVAsSD0vm2Q2pCSbsNuAfXsTInrzND_MfD_DN2MT21hi7BHhCQHks0eUSRwAYgDQB7xhU4xjDBKRLCe_WcIdm3l_BogFRjhl3dHyDfmysFzbnO_rtqKa7EVfysbyxnDNd2TJlRl_7-qUHD9dW-KmcfyDdMVXVUGp03_rdVO33Yh7_qI95bwv2n61jrwfOje68Pfs1ujK08PPnLPP1-1p_RYcjrv9enUIMhHBJciXCQij8_53DKM4iQFNqrWWUogwXILAHEwopVykBvJokck4QpEmMjISyFA4Zzj2Zq7x3pFRrStr7a4KQQ3e1OhN9d7U4E1hz4iR8f2tLcipc9M527_5D_QN-YtyBA
Cites_doi 10.1145/363707.363723
10.1007/978-3-642-15582-6_23
10.1007/978-0-8176-4705-6
10.1016/0925-7721(95)00040-2
10.1016/j.comgeo.2004.12.007
10.1007/s00453-007-9132-4
10.1137/030601818
10.1007/978-3-642-15582-6_24
10.1145/777792.777831
10.1201/9781420035315.ch41
10.1007/978-3-642-03456-5_27
10.1007/BF01397083
10.1007/PL00009321
10.1145/304893.304989
10.1145/304893.304988
ContentType Journal Article
Copyright Springer Basel AG 2011
Copyright_xml – notice: Springer Basel AG 2011
DBID AAYXX
CITATION
DOI 10.1007/s11786-011-0086-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1661-8289
EndPage 556
ExternalDocumentID 10_1007_s11786_011_0086_1
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UCJ
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c240t-d9802fad66113468601fbaaa7722339021d0f37775bf0d45c76412b874f70efe3
IEDL.DBID U2A
ISSN 1661-8270
IngestDate Tue Jul 01 04:27:31 EDT 2025
Fri Feb 21 02:37:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Primary 68W30
Exact geometric computation
Algorithm engineering
Secondary 65D99
Symbolic numeric computation
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c240t-d9802fad66113468601fbaaa7722339021d0f37775bf0d45c76412b874f70efe3
PageCount 18
ParticipantIDs crossref_primary_10_1007_s11786_011_0086_1
springer_journals_10_1007_s11786_011_0086_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20101200
2010-12-00
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 20101200
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics in computer science
PublicationTitleAbbrev Math.Comput.Sci
PublicationYear 2010
Publisher SP Birkhäuser Verlag Basel
Publisher_xml – name: SP Birkhäuser Verlag Basel
References Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser Boston 2010
Mörig, M., Schirra, S.: On the design and performance of reliable geometric predicates using error-free transformations and exact sign of sum algorithms. In: 19th Canadian Conference on Computational Geometry (CCCG’07), pp. 45–48, August 2007
Du, Z.: Guaranteed precision for transcendental and algebraic computation made easy. PhD thesis, Courant Institute of Mathematical Sciences, New York University, May 2006
GMP: The GNU multiple precision arithmetic library. http://www.gmplib.org
DekkerT.J.A floating-point technique for extending the available precisionNum. Math.19711822242422990070226.6503410.1007/BF01397083
Schirra, S.: Much Ado about Zero. In: Efficient Algorithms. LNCS, vol. 5760, pp. 408–421, September 2009
Li, C., Yap, C.: A new constructive root bound for algebraic expressions. In: SODA ’01: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 496–505, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (2001)
LEDA: Library of Efficient Data Structures and Algorithms. http://www.algorithmic-solutions.com
Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric and geometric computation. In: 15th ACM Symposium on Computational Geometry (SCG’99), pp. 351–359. ACM, New York (1999)
YapC.Towards exact geometric computationComput. Geom. Theory Appl.199771-232314299050869.68104
KahanW.Further remarks on reducing truncation errorsCommun. ACM1965814010.1145/363707.363723
MPFR: A multiple precision floating-point library. http://www.mpfr.org
AlexandrescuA.Modern C++ design: generic programming and design patterns applied2001BostonAddison-Wesley Longman Publishing Co. Inc.
Pion, S., Yap, C.: Constructive root bound for k-ary rational input numbers. In: Proceedings of the 19th ACM Symposium on Computational Geometry, pp. 256–263. ACM Press, San Diego, January 2003
BurnikelC.FunkeS.MehlhornK.SchirraS.SchmittS.A separation bound for real algebraic expressionsAlgorithmica2009551142825069251180.6830410.1007/s00453-007-9132-4
Shewchuk, J.R.: http://www.cs.cmu.edu/~quake/robust.html (1997)
Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Efficient exact geometric computation made easy. In: 15th ACM Symposium on Computational Geometry (SCG’99), pp. 341–350. ACM, New York (1999)
KnuthD.E.Seminumerical algorithms. The Art of Computer Programming, vol. 219973ReadingAddison-Wesley
GammaE.HelmR.JohnsonR.VlissidesJ.Design Patterns: Elements of Reusable Object-Oriented Software1995ReadingAddison-Wesley
boost C++ Libraries. http://www.boost.org
Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of Core 2: a library for exact numeric computation in geometry and algebra. In: 3rd International Congress on Mathematical Software (ICMS 2010). LNCS, vol. 6327, September 2010
RealAlgebraic: A number type for exact geometric computation. http://www.isg.cs.uni-magdeburg.de/ag/RealAlgebraic
OgitaT.RumpS.M.OishiS.Accurate sum and dot productSIAM J. Sci. Comput.20052661955198821965841084.6504110.1137/030601818
Mörig, M.: Deferring dag construction by storing sums of floats speeds-up exact decision computations based on expression dags. In: 3rd International Congress on Mathematical Software (ICMS 2010). LNCS, vol. 6327, pp. 109–120, September 2010
Yap, C.-K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, chap. 41, 2nd edn., pp. 927–952. Chapman & Hall/CRC (2004)
ShewchukJ.R.Adaptive precision floating-point arithmetic and fast robust geometric predicatesDiscrete Comput. Geom.199718330536314876470892.6809810.1007/PL00009321
FunkeS.MehlhornK.NäherS.Structural filtering: a paradigm for efficient and exact geometric programsComput. Geometry20053131791941078.6501510.1016/j.comgeo.2004.12.007
CGAL: Computational Geometry Algorithms Library http://www.cgal.org
86_CR27
W. Kahan (86_CR11) 1965; 8
86_CR28
86_CR23
86_CR22
86_CR25
86_CR5
86_CR21
86_CR7
86_CR2
86_CR3
T. Ogita (86_CR20) 2005; 26
T.J. Dekker (86_CR6) 1971; 18
C. Yap (86_CR26) 1997; 7
C. Burnikel (86_CR4) 2009; 55
A. Alexandrescu (86_CR1) 2001
86_CR19
D.E. Knuth (86_CR13) 1997
86_CR16
86_CR15
86_CR18
86_CR17
86_CR12
86_CR14
86_CR10
E. Gamma (86_CR9) 1995
J.R. Shewchuk (86_CR24) 1997; 18
S. Funke (86_CR8) 2005; 31
References_xml – reference: Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric and geometric computation. In: 15th ACM Symposium on Computational Geometry (SCG’99), pp. 351–359. ACM, New York (1999)
– reference: GammaE.HelmR.JohnsonR.VlissidesJ.Design Patterns: Elements of Reusable Object-Oriented Software1995ReadingAddison-Wesley
– reference: DekkerT.J.A floating-point technique for extending the available precisionNum. Math.19711822242422990070226.6503410.1007/BF01397083
– reference: KnuthD.E.Seminumerical algorithms. The Art of Computer Programming, vol. 219973ReadingAddison-Wesley
– reference: YapC.Towards exact geometric computationComput. Geom. Theory Appl.199771-232314299050869.68104
– reference: KahanW.Further remarks on reducing truncation errorsCommun. ACM1965814010.1145/363707.363723
– reference: MPFR: A multiple precision floating-point library. http://www.mpfr.org/
– reference: OgitaT.RumpS.M.OishiS.Accurate sum and dot productSIAM J. Sci. Comput.20052661955198821965841084.6504110.1137/030601818
– reference: Shewchuk, J.R.: http://www.cs.cmu.edu/~quake/robust.html (1997)
– reference: Schirra, S.: Much Ado about Zero. In: Efficient Algorithms. LNCS, vol. 5760, pp. 408–421, September 2009
– reference: Yap, C.-K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, chap. 41, 2nd edn., pp. 927–952. Chapman & Hall/CRC (2004)
– reference: GMP: The GNU multiple precision arithmetic library. http://www.gmplib.org/
– reference: Pion, S., Yap, C.: Constructive root bound for k-ary rational input numbers. In: Proceedings of the 19th ACM Symposium on Computational Geometry, pp. 256–263. ACM Press, San Diego, January 2003
– reference: Mörig, M., Schirra, S.: On the design and performance of reliable geometric predicates using error-free transformations and exact sign of sum algorithms. In: 19th Canadian Conference on Computational Geometry (CCCG’07), pp. 45–48, August 2007
– reference: AlexandrescuA.Modern C++ design: generic programming and design patterns applied2001BostonAddison-Wesley Longman Publishing Co. Inc.
– reference: boost C++ Libraries. http://www.boost.org/
– reference: RealAlgebraic: A number type for exact geometric computation. http://www.isg.cs.uni-magdeburg.de/ag/RealAlgebraic/
– reference: LEDA: Library of Efficient Data Structures and Algorithms. http://www.algorithmic-solutions.com/
– reference: FunkeS.MehlhornK.NäherS.Structural filtering: a paradigm for efficient and exact geometric programsComput. Geometry20053131791941078.6501510.1016/j.comgeo.2004.12.007
– reference: Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser Boston 2010
– reference: Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Efficient exact geometric computation made easy. In: 15th ACM Symposium on Computational Geometry (SCG’99), pp. 341–350. ACM, New York (1999)
– reference: Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of Core 2: a library for exact numeric computation in geometry and algebra. In: 3rd International Congress on Mathematical Software (ICMS 2010). LNCS, vol. 6327, September 2010
– reference: ShewchukJ.R.Adaptive precision floating-point arithmetic and fast robust geometric predicatesDiscrete Comput. Geom.199718330536314876470892.6809810.1007/PL00009321
– reference: Li, C., Yap, C.: A new constructive root bound for algebraic expressions. In: SODA ’01: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 496–505, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (2001)
– reference: Du, Z.: Guaranteed precision for transcendental and algebraic computation made easy. PhD thesis, Courant Institute of Mathematical Sciences, New York University, May 2006
– reference: Mörig, M.: Deferring dag construction by storing sums of floats speeds-up exact decision computations based on expression dags. In: 3rd International Congress on Mathematical Software (ICMS 2010). LNCS, vol. 6327, pp. 109–120, September 2010
– reference: CGAL: Computational Geometry Algorithms Library http://www.cgal.org/
– reference: BurnikelC.FunkeS.MehlhornK.SchirraS.SchmittS.A separation bound for real algebraic expressionsAlgorithmica2009551142825069251180.6830410.1007/s00453-007-9132-4
– volume: 8
  start-page: 40
  issue: 1
  year: 1965
  ident: 86_CR11
  publication-title: Commun. ACM
  doi: 10.1145/363707.363723
– ident: 86_CR10
– ident: 86_CR16
  doi: 10.1007/978-3-642-15582-6_23
– ident: 86_CR14
– volume-title: Modern C++ design: generic programming and design patterns applied
  year: 2001
  ident: 86_CR1
– ident: 86_CR19
  doi: 10.1007/978-0-8176-4705-6
– volume-title: Design Patterns: Elements of Reusable Object-Oriented Software
  year: 1995
  ident: 86_CR9
– ident: 86_CR17
– volume-title: Seminumerical algorithms. The Art of Computer Programming, vol. 2
  year: 1997
  ident: 86_CR13
– ident: 86_CR22
– volume: 7
  start-page: 3
  issue: 1-2
  year: 1997
  ident: 86_CR26
  publication-title: Comput. Geom. Theory Appl.
  doi: 10.1016/0925-7721(95)00040-2
– ident: 86_CR2
– volume: 31
  start-page: 179
  issue: 3
  year: 2005
  ident: 86_CR8
  publication-title: Comput. Geometry
  doi: 10.1016/j.comgeo.2004.12.007
– volume: 55
  start-page: 14
  issue: 1
  year: 2009
  ident: 86_CR4
  publication-title: Algorithmica
  doi: 10.1007/s00453-007-9132-4
– volume: 26
  start-page: 1955
  issue: 6
  year: 2005
  ident: 86_CR20
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/030601818
– ident: 86_CR28
  doi: 10.1007/978-3-642-15582-6_24
– ident: 86_CR21
  doi: 10.1145/777792.777831
– ident: 86_CR15
– ident: 86_CR18
– ident: 86_CR27
  doi: 10.1201/9781420035315.ch41
– ident: 86_CR7
– ident: 86_CR23
  doi: 10.1007/978-3-642-03456-5_27
– ident: 86_CR5
– volume: 18
  start-page: 224
  issue: 2
  year: 1971
  ident: 86_CR6
  publication-title: Num. Math.
  doi: 10.1007/BF01397083
– volume: 18
  start-page: 305
  issue: 3
  year: 1997
  ident: 86_CR24
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/PL00009321
– ident: 86_CR12
  doi: 10.1145/304893.304989
– ident: 86_CR3
  doi: 10.1145/304893.304988
– ident: 86_CR25
SSID ssj0062141
Score 1.8633703
Snippet We report on the design and implementation of a number type called Real_algebraic. This number type allows us to compute the sign of arithmetic expressions...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 539
SubjectTerms Computer Science
Mathematics
Mathematics and Statistics
Title On Design and Implementation of a Generic Number Type for Real Algebraic Number Computations Based on Expression Dags
URI https://link.springer.com/article/10.1007/s11786-011-0086-1
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-yveiDH1Nxfow8-KQU2iRt2sdNN4fiBHEwn0rSJEPQTmwH_vle0nZjoA8-9aEhB7nm7ne9u98hdClMoEKm7PQyaVtyIu0lUkovo1RzQzLA0I7tcxKNp-x-Fs7qPu6iqXZvUpLOUq-b3QIe2-gXwl_A4R6EPO0QQndbxzcl_cb8RqQaVxmA4_FiwlepzN-22HRGm5lQ52BG-2i3Roa4X6nyAG3pvIP2mqkLuL6EHbTzuGJaLQ7R8inHt64KA4tcYUf2-1H3E-V4YbDAjln6LcMTN_wD28gTA1TFz9qKe5_b1PH6dSWw-o-HB-DjFIaNht91wSxIE_PiCE1Hw5ebsVePUvAycNmlp5LYJ0YoOJSAsiiGMMxIIQRga0JpAo5e-YZyzkNpfMXCjEcsIDLmzHBfG02PUStf5PoEYRYyE0QqC6mImAJ8ZxIttGZgCogUieyiq-ZM08-KMSNdcyNbBaSggNQqIA266Lo59bS-PMXfq0__tfoMbZNV7ck5apVfS30BCKKUPdTujwaDiX3evT4Me-4L-gHPlb_R
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQdgAODAaI8cyBE6hobdOmPQ7YGOyBhDZpnKqkSSYEdIhuEuLX4742DcFh50Zx5Dz8ubY_A5xzbUqHyqR7mUhKclxl-EIII7RtxbQVIoZO2T77bntIH0bOKK_jjots9yIkmb7Ui2I3k3mJ94vuL-JwA12eMkUXnJag3Lh77jSLB9i1soaVJpoew7PYPJj51yTL5mg5FpqamFYFBsXissyS16vZVFyF3794G1dc_TZs5ZCTNLIzsgNrKqpCpWjnQPLbXYXN3pzCNd6F2WNEbtP0DsIjSVIW4fe8UCkiE004SSmrX0LST7uKkMSlJYiByZNKxL2Nk5j04nMmMPtBSK7ReEqCEzW_8kxclMbH8R4MW83BTdvIezQYIWKBqSF9r25pLlHXpk1dD_07LTjnCNot2_YRQci6thljjtB1SZ2QudS0hMeoZnWllb0PpWgSqQMg1KHadGXo2NylEoGj9hVXiuIbYwnuixpcFFsVfGRUHMGCdDlRb4DqDRL1BmYNLot9CPJbGf8_-nCl0Wew3h70ukH3vt85gg1rnuByDKXp50ydIEyZitP8WP4A8GHccw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQJiE4MJ7iTQ6cQGVrmzbtkcfGYDAQAmmcStIkCAHdxDoJ8etx-tgEggPi3ChunYc_1_ZngF2ubelRabqXCVOS4ysrFEJYsesqpp0YMXTG9tn123f0vOf1ij6nwzLbvQxJ5jUNhqUpSesDqeuTwjebBcYTRlcYMbmF7k-VGm72ClQPT-87zfIy9p28eaWNZsgKHDYObP40yVfT9DUumpmbVg0eyhfNs0yeD0apOIg_vnE4_uNL5mGugKLkMN87CzClkkWolW0eSHHqF2H2ckztOlyC0VVCTrK0D8ITSTJ24deigCkhfU04yaisn2LSzbqNEOPqEsTG5EYZcS-PJlY9eZwLzH8ckiM0qpLgRM33IkMXpfHH4TLctZq3x22r6N1gxYgRUkuGQcPRXKLebZf6Afp9WnDOEcw7rhsispAN7TLGPKEbknox86ntiIBRzRpKK3cFKkk_UatAqEe17cvYc7lPJQJKHSquFMW7xxE8FGuwVy5bNMgpOqIJGbNRb4TqjYx6I3sN9ss1iYrTOvx99PqfRu_A9PVJK7o463Y2YMYZ571sQiV9G6ktRC-p2C526CfcCeVX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Design+and+Implementation+of+a+Generic+Number+Type+for+Real+Algebraic+Number+Computations+Based+on+Expression+Dags&rft.jtitle=Mathematics+in+computer+science&rft.au=M%C3%B6rig%2C+Marc&rft.au=R%C3%B6ssling%2C+Ivo&rft.au=Schirra%2C+Stefan&rft.date=2010-12-01&rft.pub=SP+Birkh%C3%A4user+Verlag+Basel&rft.issn=1661-8270&rft.eissn=1661-8289&rft.volume=4&rft.issue=4&rft_id=info:doi/10.1007%2Fs11786-011-0086-1&rft.externalDocID=10_1007_s11786_011_0086_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8270&client=summon