On Design and Implementation of a Generic Number Type for Real Algebraic Number Computations Based on Expression Dags
We report on the design and implementation of a number type called Real_algebraic. This number type allows us to compute the sign of arithmetic expressions involving the operations . The sign computation is always correct and, in this sense, not subject to rounding errors. We focus on modularity and...
Saved in:
Published in | Mathematics in computer science Vol. 4; no. 4; pp. 539 - 556 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
SP Birkhäuser Verlag Basel
01.12.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1661-8270 1661-8289 |
DOI | 10.1007/s11786-011-0086-1 |
Cover
Loading…
Abstract | We report on the design and implementation of a number type called Real_algebraic. This number type allows us to compute the sign of arithmetic expressions involving the operations
. The sign computation is always correct and, in this sense, not subject to rounding errors. We focus on modularity and use generic programming techniques to make key parts of the implementation exchangeable. Thus, our design allows for easily performing experiments with different implementations or thereby tailoring the number type for specific tasks. For many problems in computational geometry, instantiations of our number type Real_algebraic are a user-friendly alternative for implementing the exact geometric computation paradigm in order to abandon numerical robustness problems. |
---|---|
AbstractList | We report on the design and implementation of a number type called Real_algebraic. This number type allows us to compute the sign of arithmetic expressions involving the operations
. The sign computation is always correct and, in this sense, not subject to rounding errors. We focus on modularity and use generic programming techniques to make key parts of the implementation exchangeable. Thus, our design allows for easily performing experiments with different implementations or thereby tailoring the number type for specific tasks. For many problems in computational geometry, instantiations of our number type Real_algebraic are a user-friendly alternative for implementing the exact geometric computation paradigm in order to abandon numerical robustness problems. |
Author | Rössling, Ivo Schirra, Stefan Mörig, Marc |
Author_xml | – sequence: 1 givenname: Marc surname: Mörig fullname: Mörig, Marc email: marc.moerig@ovgu.de organization: Department of Simulation and Graphics, Faculty of Computer Science, University of Magdeburg – sequence: 2 givenname: Ivo surname: Rössling fullname: Rössling, Ivo organization: Department of Simulation and Graphics, Faculty of Computer Science, University of Magdeburg – sequence: 3 givenname: Stefan surname: Schirra fullname: Schirra, Stefan organization: Department of Simulation and Graphics, Faculty of Computer Science, University of Magdeburg |
BookMark | eNp9kMFKw0AQhhepYFt9AG_7AtGZTZpNj7WttVAsSD0vm2Q2pCSbsNuAfXsTInrzND_MfD_DN2MT21hi7BHhCQHks0eUSRwAYgDQB7xhU4xjDBKRLCe_WcIdm3l_BogFRjhl3dHyDfmysFzbnO_rtqKa7EVfysbyxnDNd2TJlRl_7-qUHD9dW-KmcfyDdMVXVUGp03_rdVO33Yh7_qI95bwv2n61jrwfOje68Pfs1ujK08PPnLPP1-1p_RYcjrv9enUIMhHBJciXCQij8_53DKM4iQFNqrWWUogwXILAHEwopVykBvJokck4QpEmMjISyFA4Zzj2Zq7x3pFRrStr7a4KQQ3e1OhN9d7U4E1hz4iR8f2tLcipc9M527_5D_QN-YtyBA |
Cites_doi | 10.1145/363707.363723 10.1007/978-3-642-15582-6_23 10.1007/978-0-8176-4705-6 10.1016/0925-7721(95)00040-2 10.1016/j.comgeo.2004.12.007 10.1007/s00453-007-9132-4 10.1137/030601818 10.1007/978-3-642-15582-6_24 10.1145/777792.777831 10.1201/9781420035315.ch41 10.1007/978-3-642-03456-5_27 10.1007/BF01397083 10.1007/PL00009321 10.1145/304893.304989 10.1145/304893.304988 |
ContentType | Journal Article |
Copyright | Springer Basel AG 2011 |
Copyright_xml | – notice: Springer Basel AG 2011 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11786-011-0086-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1661-8289 |
EndPage | 556 |
ExternalDocumentID | 10_1007_s11786_011_0086_1 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BAPOH BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UCJ UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c240t-d9802fad66113468601fbaaa7722339021d0f37775bf0d45c76412b874f70efe3 |
IEDL.DBID | U2A |
ISSN | 1661-8270 |
IngestDate | Tue Jul 01 04:27:31 EDT 2025 Fri Feb 21 02:37:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Primary 68W30 Exact geometric computation Algorithm engineering Secondary 65D99 Symbolic numeric computation |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c240t-d9802fad66113468601fbaaa7722339021d0f37775bf0d45c76412b874f70efe3 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1007_s11786_011_0086_1 springer_journals_10_1007_s11786_011_0086_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20101200 2010-12-00 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 20101200 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics in computer science |
PublicationTitleAbbrev | Math.Comput.Sci |
PublicationYear | 2010 |
Publisher | SP Birkhäuser Verlag Basel |
Publisher_xml | – name: SP Birkhäuser Verlag Basel |
References | Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser Boston 2010 Mörig, M., Schirra, S.: On the design and performance of reliable geometric predicates using error-free transformations and exact sign of sum algorithms. In: 19th Canadian Conference on Computational Geometry (CCCG’07), pp. 45–48, August 2007 Du, Z.: Guaranteed precision for transcendental and algebraic computation made easy. PhD thesis, Courant Institute of Mathematical Sciences, New York University, May 2006 GMP: The GNU multiple precision arithmetic library. http://www.gmplib.org DekkerT.J.A floating-point technique for extending the available precisionNum. Math.19711822242422990070226.6503410.1007/BF01397083 Schirra, S.: Much Ado about Zero. In: Efficient Algorithms. LNCS, vol. 5760, pp. 408–421, September 2009 Li, C., Yap, C.: A new constructive root bound for algebraic expressions. In: SODA ’01: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 496–505, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (2001) LEDA: Library of Efficient Data Structures and Algorithms. http://www.algorithmic-solutions.com Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric and geometric computation. In: 15th ACM Symposium on Computational Geometry (SCG’99), pp. 351–359. ACM, New York (1999) YapC.Towards exact geometric computationComput. Geom. Theory Appl.199771-232314299050869.68104 KahanW.Further remarks on reducing truncation errorsCommun. ACM1965814010.1145/363707.363723 MPFR: A multiple precision floating-point library. http://www.mpfr.org AlexandrescuA.Modern C++ design: generic programming and design patterns applied2001BostonAddison-Wesley Longman Publishing Co. Inc. Pion, S., Yap, C.: Constructive root bound for k-ary rational input numbers. In: Proceedings of the 19th ACM Symposium on Computational Geometry, pp. 256–263. ACM Press, San Diego, January 2003 BurnikelC.FunkeS.MehlhornK.SchirraS.SchmittS.A separation bound for real algebraic expressionsAlgorithmica2009551142825069251180.6830410.1007/s00453-007-9132-4 Shewchuk, J.R.: http://www.cs.cmu.edu/~quake/robust.html (1997) Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Efficient exact geometric computation made easy. In: 15th ACM Symposium on Computational Geometry (SCG’99), pp. 341–350. ACM, New York (1999) KnuthD.E.Seminumerical algorithms. The Art of Computer Programming, vol. 219973ReadingAddison-Wesley GammaE.HelmR.JohnsonR.VlissidesJ.Design Patterns: Elements of Reusable Object-Oriented Software1995ReadingAddison-Wesley boost C++ Libraries. http://www.boost.org Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of Core 2: a library for exact numeric computation in geometry and algebra. In: 3rd International Congress on Mathematical Software (ICMS 2010). LNCS, vol. 6327, September 2010 RealAlgebraic: A number type for exact geometric computation. http://www.isg.cs.uni-magdeburg.de/ag/RealAlgebraic OgitaT.RumpS.M.OishiS.Accurate sum and dot productSIAM J. Sci. Comput.20052661955198821965841084.6504110.1137/030601818 Mörig, M.: Deferring dag construction by storing sums of floats speeds-up exact decision computations based on expression dags. In: 3rd International Congress on Mathematical Software (ICMS 2010). LNCS, vol. 6327, pp. 109–120, September 2010 Yap, C.-K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, chap. 41, 2nd edn., pp. 927–952. Chapman & Hall/CRC (2004) ShewchukJ.R.Adaptive precision floating-point arithmetic and fast robust geometric predicatesDiscrete Comput. Geom.199718330536314876470892.6809810.1007/PL00009321 FunkeS.MehlhornK.NäherS.Structural filtering: a paradigm for efficient and exact geometric programsComput. Geometry20053131791941078.6501510.1016/j.comgeo.2004.12.007 CGAL: Computational Geometry Algorithms Library http://www.cgal.org 86_CR27 W. Kahan (86_CR11) 1965; 8 86_CR28 86_CR23 86_CR22 86_CR25 86_CR5 86_CR21 86_CR7 86_CR2 86_CR3 T. Ogita (86_CR20) 2005; 26 T.J. Dekker (86_CR6) 1971; 18 C. Yap (86_CR26) 1997; 7 C. Burnikel (86_CR4) 2009; 55 A. Alexandrescu (86_CR1) 2001 86_CR19 D.E. Knuth (86_CR13) 1997 86_CR16 86_CR15 86_CR18 86_CR17 86_CR12 86_CR14 86_CR10 E. Gamma (86_CR9) 1995 J.R. Shewchuk (86_CR24) 1997; 18 S. Funke (86_CR8) 2005; 31 |
References_xml | – reference: Karamcheti, V., Li, C., Pechtchanski, I., Yap, C.: A core library for robust numeric and geometric computation. In: 15th ACM Symposium on Computational Geometry (SCG’99), pp. 351–359. ACM, New York (1999) – reference: GammaE.HelmR.JohnsonR.VlissidesJ.Design Patterns: Elements of Reusable Object-Oriented Software1995ReadingAddison-Wesley – reference: DekkerT.J.A floating-point technique for extending the available precisionNum. Math.19711822242422990070226.6503410.1007/BF01397083 – reference: KnuthD.E.Seminumerical algorithms. The Art of Computer Programming, vol. 219973ReadingAddison-Wesley – reference: YapC.Towards exact geometric computationComput. Geom. Theory Appl.199771-232314299050869.68104 – reference: KahanW.Further remarks on reducing truncation errorsCommun. ACM1965814010.1145/363707.363723 – reference: MPFR: A multiple precision floating-point library. http://www.mpfr.org/ – reference: OgitaT.RumpS.M.OishiS.Accurate sum and dot productSIAM J. Sci. Comput.20052661955198821965841084.6504110.1137/030601818 – reference: Shewchuk, J.R.: http://www.cs.cmu.edu/~quake/robust.html (1997) – reference: Schirra, S.: Much Ado about Zero. In: Efficient Algorithms. LNCS, vol. 5760, pp. 408–421, September 2009 – reference: Yap, C.-K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, chap. 41, 2nd edn., pp. 927–952. Chapman & Hall/CRC (2004) – reference: GMP: The GNU multiple precision arithmetic library. http://www.gmplib.org/ – reference: Pion, S., Yap, C.: Constructive root bound for k-ary rational input numbers. In: Proceedings of the 19th ACM Symposium on Computational Geometry, pp. 256–263. ACM Press, San Diego, January 2003 – reference: Mörig, M., Schirra, S.: On the design and performance of reliable geometric predicates using error-free transformations and exact sign of sum algorithms. In: 19th Canadian Conference on Computational Geometry (CCCG’07), pp. 45–48, August 2007 – reference: AlexandrescuA.Modern C++ design: generic programming and design patterns applied2001BostonAddison-Wesley Longman Publishing Co. Inc. – reference: boost C++ Libraries. http://www.boost.org/ – reference: RealAlgebraic: A number type for exact geometric computation. http://www.isg.cs.uni-magdeburg.de/ag/RealAlgebraic/ – reference: LEDA: Library of Efficient Data Structures and Algorithms. http://www.algorithmic-solutions.com/ – reference: FunkeS.MehlhornK.NäherS.Structural filtering: a paradigm for efficient and exact geometric programsComput. Geometry20053131791941078.6501510.1016/j.comgeo.2004.12.007 – reference: Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser Boston 2010 – reference: Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: Efficient exact geometric computation made easy. In: 15th ACM Symposium on Computational Geometry (SCG’99), pp. 341–350. ACM, New York (1999) – reference: Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of Core 2: a library for exact numeric computation in geometry and algebra. In: 3rd International Congress on Mathematical Software (ICMS 2010). LNCS, vol. 6327, September 2010 – reference: ShewchukJ.R.Adaptive precision floating-point arithmetic and fast robust geometric predicatesDiscrete Comput. Geom.199718330536314876470892.6809810.1007/PL00009321 – reference: Li, C., Yap, C.: A new constructive root bound for algebraic expressions. In: SODA ’01: Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 496–505, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (2001) – reference: Du, Z.: Guaranteed precision for transcendental and algebraic computation made easy. PhD thesis, Courant Institute of Mathematical Sciences, New York University, May 2006 – reference: Mörig, M.: Deferring dag construction by storing sums of floats speeds-up exact decision computations based on expression dags. In: 3rd International Congress on Mathematical Software (ICMS 2010). LNCS, vol. 6327, pp. 109–120, September 2010 – reference: CGAL: Computational Geometry Algorithms Library http://www.cgal.org/ – reference: BurnikelC.FunkeS.MehlhornK.SchirraS.SchmittS.A separation bound for real algebraic expressionsAlgorithmica2009551142825069251180.6830410.1007/s00453-007-9132-4 – volume: 8 start-page: 40 issue: 1 year: 1965 ident: 86_CR11 publication-title: Commun. ACM doi: 10.1145/363707.363723 – ident: 86_CR10 – ident: 86_CR16 doi: 10.1007/978-3-642-15582-6_23 – ident: 86_CR14 – volume-title: Modern C++ design: generic programming and design patterns applied year: 2001 ident: 86_CR1 – ident: 86_CR19 doi: 10.1007/978-0-8176-4705-6 – volume-title: Design Patterns: Elements of Reusable Object-Oriented Software year: 1995 ident: 86_CR9 – ident: 86_CR17 – volume-title: Seminumerical algorithms. The Art of Computer Programming, vol. 2 year: 1997 ident: 86_CR13 – ident: 86_CR22 – volume: 7 start-page: 3 issue: 1-2 year: 1997 ident: 86_CR26 publication-title: Comput. Geom. Theory Appl. doi: 10.1016/0925-7721(95)00040-2 – ident: 86_CR2 – volume: 31 start-page: 179 issue: 3 year: 2005 ident: 86_CR8 publication-title: Comput. Geometry doi: 10.1016/j.comgeo.2004.12.007 – volume: 55 start-page: 14 issue: 1 year: 2009 ident: 86_CR4 publication-title: Algorithmica doi: 10.1007/s00453-007-9132-4 – volume: 26 start-page: 1955 issue: 6 year: 2005 ident: 86_CR20 publication-title: SIAM J. Sci. Comput. doi: 10.1137/030601818 – ident: 86_CR28 doi: 10.1007/978-3-642-15582-6_24 – ident: 86_CR21 doi: 10.1145/777792.777831 – ident: 86_CR15 – ident: 86_CR18 – ident: 86_CR27 doi: 10.1201/9781420035315.ch41 – ident: 86_CR7 – ident: 86_CR23 doi: 10.1007/978-3-642-03456-5_27 – ident: 86_CR5 – volume: 18 start-page: 224 issue: 2 year: 1971 ident: 86_CR6 publication-title: Num. Math. doi: 10.1007/BF01397083 – volume: 18 start-page: 305 issue: 3 year: 1997 ident: 86_CR24 publication-title: Discrete Comput. Geom. doi: 10.1007/PL00009321 – ident: 86_CR12 doi: 10.1145/304893.304989 – ident: 86_CR3 doi: 10.1145/304893.304988 – ident: 86_CR25 |
SSID | ssj0062141 |
Score | 1.8633703 |
Snippet | We report on the design and implementation of a number type called Real_algebraic. This number type allows us to compute the sign of arithmetic expressions... |
SourceID | crossref springer |
SourceType | Index Database Publisher |
StartPage | 539 |
SubjectTerms | Computer Science Mathematics Mathematics and Statistics |
Title | On Design and Implementation of a Generic Number Type for Real Algebraic Number Computations Based on Expression Dags |
URI | https://link.springer.com/article/10.1007/s11786-011-0086-1 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-yveiDH1Nxfow8-KQU2iRt2sdNN4fiBHEwn0rSJEPQTmwH_vle0nZjoA8-9aEhB7nm7ne9u98hdClMoEKm7PQyaVtyIu0lUkovo1RzQzLA0I7tcxKNp-x-Fs7qPu6iqXZvUpLOUq-b3QIe2-gXwl_A4R6EPO0QQndbxzcl_cb8RqQaVxmA4_FiwlepzN-22HRGm5lQ52BG-2i3Roa4X6nyAG3pvIP2mqkLuL6EHbTzuGJaLQ7R8inHt64KA4tcYUf2-1H3E-V4YbDAjln6LcMTN_wD28gTA1TFz9qKe5_b1PH6dSWw-o-HB-DjFIaNht91wSxIE_PiCE1Hw5ebsVePUvAycNmlp5LYJ0YoOJSAsiiGMMxIIQRga0JpAo5e-YZyzkNpfMXCjEcsIDLmzHBfG02PUStf5PoEYRYyE0QqC6mImAJ8ZxIttGZgCogUieyiq-ZM08-KMSNdcyNbBaSggNQqIA266Lo59bS-PMXfq0__tfoMbZNV7ck5apVfS30BCKKUPdTujwaDiX3evT4Me-4L-gHPlb_R |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQdgAODAaI8cyBE6hobdOmPQ7YGOyBhDZpnKqkSSYEdIhuEuLX4742DcFh50Zx5Dz8ubY_A5xzbUqHyqR7mUhKclxl-EIII7RtxbQVIoZO2T77bntIH0bOKK_jjots9yIkmb7Ui2I3k3mJ94vuL-JwA12eMkUXnJag3Lh77jSLB9i1soaVJpoew7PYPJj51yTL5mg5FpqamFYFBsXissyS16vZVFyF3794G1dc_TZs5ZCTNLIzsgNrKqpCpWjnQPLbXYXN3pzCNd6F2WNEbtP0DsIjSVIW4fe8UCkiE004SSmrX0LST7uKkMSlJYiByZNKxL2Nk5j04nMmMPtBSK7ReEqCEzW_8kxclMbH8R4MW83BTdvIezQYIWKBqSF9r25pLlHXpk1dD_07LTjnCNot2_YRQci6thljjtB1SZ2QudS0hMeoZnWllb0PpWgSqQMg1KHadGXo2NylEoGj9hVXiuIbYwnuixpcFFsVfGRUHMGCdDlRb4DqDRL1BmYNLot9CPJbGf8_-nCl0Wew3h70ukH3vt85gg1rnuByDKXp50ydIEyZitP8WP4A8GHccw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbQJiE4MJ7iTQ6cQGVrmzbtkcfGYDAQAmmcStIkCAHdxDoJ8etx-tgEggPi3ChunYc_1_ZngF2ubelRabqXCVOS4ysrFEJYsesqpp0YMXTG9tn123f0vOf1ij6nwzLbvQxJ5jUNhqUpSesDqeuTwjebBcYTRlcYMbmF7k-VGm72ClQPT-87zfIy9p28eaWNZsgKHDYObP40yVfT9DUumpmbVg0eyhfNs0yeD0apOIg_vnE4_uNL5mGugKLkMN87CzClkkWolW0eSHHqF2H2ckztOlyC0VVCTrK0D8ITSTJ24deigCkhfU04yaisn2LSzbqNEOPqEsTG5EYZcS-PJlY9eZwLzH8ckiM0qpLgRM33IkMXpfHH4TLctZq3x22r6N1gxYgRUkuGQcPRXKLebZf6Afp9WnDOEcw7rhsispAN7TLGPKEbknox86ntiIBRzRpKK3cFKkk_UatAqEe17cvYc7lPJQJKHSquFMW7xxE8FGuwVy5bNMgpOqIJGbNRb4TqjYx6I3sN9ss1iYrTOvx99PqfRu_A9PVJK7o463Y2YMYZ571sQiV9G6ktRC-p2C526CfcCeVX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Design+and+Implementation+of+a+Generic+Number+Type+for+Real+Algebraic+Number+Computations+Based+on+Expression+Dags&rft.jtitle=Mathematics+in+computer+science&rft.au=M%C3%B6rig%2C+Marc&rft.au=R%C3%B6ssling%2C+Ivo&rft.au=Schirra%2C+Stefan&rft.date=2010-12-01&rft.pub=SP+Birkh%C3%A4user+Verlag+Basel&rft.issn=1661-8270&rft.eissn=1661-8289&rft.volume=4&rft.issue=4&rft_id=info:doi/10.1007%2Fs11786-011-0086-1&rft.externalDocID=10_1007_s11786_011_0086_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1661-8270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1661-8270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1661-8270&client=summon |