The colonic polyphenol catabolite dihydroferulic acid (DHFA) regulates macrophages activated by oxidized LDL, 7-ketocholesterol, and LPS switching from pro- to anti-inflammatory mediators

Macrophage activation plays a central role in the development of atherosclerotic plaques. Interaction with oxidized low-density lipoprotein (oxLDL) leads to macrophage differentiation into foam cells and oxylipin production, contributing to plaque formation. 7-Ketocholesterol (7KC) is an oxidative b...

Full description

Saved in:
Bibliographic Details
Published inFood & function Vol. 15; no. 20; pp. 10399 - 10413
Main Authors Lara-Guzmán, Oscar J, Arango-González, Ángela, Rivera, Diego A, Muñoz-Durango, Katalina, Sierra, Jelver A
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Macrophage activation plays a central role in the development of atherosclerotic plaques. Interaction with oxidized low-density lipoprotein (oxLDL) leads to macrophage differentiation into foam cells and oxylipin production, contributing to plaque formation. 7-Ketocholesterol (7KC) is an oxidative byproduct of cholesterol found in oxLDL particles and is considered a factor contributing to plaque progression. During atherosclerotic lesion regression or stabilization, macrophages undergo a transformation from a pro-inflammatory phenotype to a reparative anti-inflammatory state. Interleukin-10 (IL-10) and PGE appear to be crucial in resolving both acute and chronic inflammatory processes. After coffee consumption, the gut microbiota processes non-absorbed chlorogenic acids producing various lower size phenolic acids. These colonic catabolites, including dihydroferulic acid (DHFA), may exert various local and systemic effects. We focused on DHFA's impact on inflammation and oxidative stress in THP-1 macrophages exposed to oxLDL, 7KC, and lipopolysaccharides (LPS). Our findings reveal that DHFA inhibits the release of several pro-inflammatory mediators induced by LPS in macrophages, such as CCL-2, CCL-3, CCL-5, TNF-α, IL-6, and IL-17. Furthermore, DHFA reduces IL-18 and IL-1β secretion in an inflammasome-like model. DHFA demonstrated additional benefits: it decreased oxLDL uptake and CD36 expression induced by oxLDL, regulated reactive oxygen species (ROS) and 8-isoprostane secretion (indicating oxidative stress modulation), and selectively increased IL-10 and PGE levels in the presence of inflammatory stimuli (LPS and 7KC). Finally, our study highlights the pivotal role of PGE in foam cell inhibition and inflammation regulation within activated macrophages. This study highlights DHFA's potential as an antioxidant and anti-inflammatory agent, particularly due to its ability to induce PGE and IL-10.
AbstractList Macrophage activation plays a central role in the development of atherosclerotic plaques. Interaction with oxidized low-density lipoprotein (oxLDL) leads to macrophage differentiation into foam cells and oxylipin production, contributing to plaque formation. 7-Ketocholesterol (7KC) is an oxidative byproduct of cholesterol found in oxLDL particles and is considered a factor contributing to plaque progression. During atherosclerotic lesion regression or stabilization, macrophages undergo a transformation from a pro-inflammatory phenotype to a reparative anti-inflammatory state. Interleukin-10 (IL-10) and PGE appear to be crucial in resolving both acute and chronic inflammatory processes. After coffee consumption, the gut microbiota processes non-absorbed chlorogenic acids producing various lower size phenolic acids. These colonic catabolites, including dihydroferulic acid (DHFA), may exert various local and systemic effects. We focused on DHFA's impact on inflammation and oxidative stress in THP-1 macrophages exposed to oxLDL, 7KC, and lipopolysaccharides (LPS). Our findings reveal that DHFA inhibits the release of several pro-inflammatory mediators induced by LPS in macrophages, such as CCL-2, CCL-3, CCL-5, TNF-α, IL-6, and IL-17. Furthermore, DHFA reduces IL-18 and IL-1β secretion in an inflammasome-like model. DHFA demonstrated additional benefits: it decreased oxLDL uptake and CD36 expression induced by oxLDL, regulated reactive oxygen species (ROS) and 8-isoprostane secretion (indicating oxidative stress modulation), and selectively increased IL-10 and PGE levels in the presence of inflammatory stimuli (LPS and 7KC). Finally, our study highlights the pivotal role of PGE in foam cell inhibition and inflammation regulation within activated macrophages. This study highlights DHFA's potential as an antioxidant and anti-inflammatory agent, particularly due to its ability to induce PGE and IL-10.
Macrophage activation plays a central role in the development of atherosclerotic plaques. Interaction with oxidized low-density lipoprotein (oxLDL) leads to macrophage differentiation into foam cells and oxylipin production, contributing to plaque formation. 7-Ketocholesterol (7KC) is an oxidative byproduct of cholesterol found in oxLDL particles and is considered a factor contributing to plaque progression. During atherosclerotic lesion regression or stabilization, macrophages undergo a transformation from a pro-inflammatory phenotype to a reparative anti-inflammatory state. Interleukin-10 (IL-10) and PGE1 appear to be crucial in resolving both acute and chronic inflammatory processes. After coffee consumption, the gut microbiota processes non-absorbed chlorogenic acids producing various lower size phenolic acids. These colonic catabolites, including dihydroferulic acid (DHFA), may exert various local and systemic effects. We focused on DHFA's impact on inflammation and oxidative stress in THP-1 macrophages exposed to oxLDL, 7KC, and lipopolysaccharides (LPS). Our findings reveal that DHFA inhibits the release of several pro-inflammatory mediators induced by LPS in macrophages, such as CCL-2, CCL-3, CCL-5, TNF-α, IL-6, and IL-17. Furthermore, DHFA reduces IL-18 and IL-1β secretion in an inflammasome-like model. DHFA demonstrated additional benefits: it decreased oxLDL uptake and CD36 expression induced by oxLDL, regulated reactive oxygen species (ROS) and 8-isoprostane secretion (indicating oxidative stress modulation), and selectively increased IL-10 and PGE1 levels in the presence of inflammatory stimuli (LPS and 7KC). Finally, our study highlights the pivotal role of PGE1 in foam cell inhibition and inflammation regulation within activated macrophages. This study highlights DHFA's potential as an antioxidant and anti-inflammatory agent, particularly due to its ability to induce PGE1 and IL-10.
Macrophage activation plays a central role in the development of atherosclerotic plaques. Interaction with oxidized low-density lipoprotein (oxLDL) leads to macrophage differentiation into foam cells and oxylipin production, contributing to plaque formation. 7-Ketocholesterol (7KC) is an oxidative byproduct of cholesterol found in oxLDL particles and is considered a factor contributing to plaque progression. During atherosclerotic lesion regression or stabilization, macrophages undergo a transformation from a pro-inflammatory phenotype to a reparative anti-inflammatory state. Interleukin-10 (IL-10) and PGE1 appear to be crucial in resolving both acute and chronic inflammatory processes. After coffee consumption, the gut microbiota processes non-absorbed chlorogenic acids producing various lower size phenolic acids. These colonic catabolites, including dihydroferulic acid (DHFA), may exert various local and systemic effects. We focused on DHFA's impact on inflammation and oxidative stress in THP-1 macrophages exposed to oxLDL, 7KC, and lipopolysaccharides (LPS). Our findings reveal that DHFA inhibits the release of several pro-inflammatory mediators induced by LPS in macrophages, such as CCL-2, CCL-3, CCL-5, TNF-α, IL-6, and IL-17. Furthermore, DHFA reduces IL-18 and IL-1β secretion in an inflammasome-like model. DHFA demonstrated additional benefits: it decreased oxLDL uptake and CD36 expression induced by oxLDL, regulated reactive oxygen species (ROS) and 8-isoprostane secretion (indicating oxidative stress modulation), and selectively increased IL-10 and PGE1 levels in the presence of inflammatory stimuli (LPS and 7KC). Finally, our study highlights the pivotal role of PGE1 in foam cell inhibition and inflammation regulation within activated macrophages. This study highlights DHFA's potential as an antioxidant and anti-inflammatory agent, particularly due to its ability to induce PGE1 and IL-10.Macrophage activation plays a central role in the development of atherosclerotic plaques. Interaction with oxidized low-density lipoprotein (oxLDL) leads to macrophage differentiation into foam cells and oxylipin production, contributing to plaque formation. 7-Ketocholesterol (7KC) is an oxidative byproduct of cholesterol found in oxLDL particles and is considered a factor contributing to plaque progression. During atherosclerotic lesion regression or stabilization, macrophages undergo a transformation from a pro-inflammatory phenotype to a reparative anti-inflammatory state. Interleukin-10 (IL-10) and PGE1 appear to be crucial in resolving both acute and chronic inflammatory processes. After coffee consumption, the gut microbiota processes non-absorbed chlorogenic acids producing various lower size phenolic acids. These colonic catabolites, including dihydroferulic acid (DHFA), may exert various local and systemic effects. We focused on DHFA's impact on inflammation and oxidative stress in THP-1 macrophages exposed to oxLDL, 7KC, and lipopolysaccharides (LPS). Our findings reveal that DHFA inhibits the release of several pro-inflammatory mediators induced by LPS in macrophages, such as CCL-2, CCL-3, CCL-5, TNF-α, IL-6, and IL-17. Furthermore, DHFA reduces IL-18 and IL-1β secretion in an inflammasome-like model. DHFA demonstrated additional benefits: it decreased oxLDL uptake and CD36 expression induced by oxLDL, regulated reactive oxygen species (ROS) and 8-isoprostane secretion (indicating oxidative stress modulation), and selectively increased IL-10 and PGE1 levels in the presence of inflammatory stimuli (LPS and 7KC). Finally, our study highlights the pivotal role of PGE1 in foam cell inhibition and inflammation regulation within activated macrophages. This study highlights DHFA's potential as an antioxidant and anti-inflammatory agent, particularly due to its ability to induce PGE1 and IL-10.
Macrophage activation plays a central role in the development of atherosclerotic plaques. Interaction with oxidized low-density lipoprotein (oxLDL) leads to macrophage differentiation into foam cells and oxylipin production, contributing to plaque formation. 7-Ketocholesterol (7KC) is an oxidative byproduct of cholesterol found in oxLDL particles and is considered a factor contributing to plaque progression. During atherosclerotic lesion regression or stabilization, macrophages undergo a transformation from a pro-inflammatory phenotype to a reparative anti-inflammatory state. Interleukin-10 (IL-10) and PGE 1 appear to be crucial in resolving both acute and chronic inflammatory processes. After coffee consumption, the gut microbiota processes non-absorbed chlorogenic acids producing various lower size phenolic acids. These colonic catabolites, including dihydroferulic acid (DHFA), may exert various local and systemic effects. We focused on DHFA's impact on inflammation and oxidative stress in THP-1 macrophages exposed to oxLDL, 7KC, and lipopolysaccharides (LPS). Our findings reveal that DHFA inhibits the release of several pro-inflammatory mediators induced by LPS in macrophages, such as CCL-2, CCL-3, CCL-5, TNF-α, IL-6, and IL-17. Furthermore, DHFA reduces IL-18 and IL-1β secretion in an inflammasome-like model. DHFA demonstrated additional benefits: it decreased oxLDL uptake and CD36 expression induced by oxLDL, regulated reactive oxygen species (ROS) and 8-isoprostane secretion (indicating oxidative stress modulation), and selectively increased IL-10 and PGE 1 levels in the presence of inflammatory stimuli (LPS and 7KC). Finally, our study highlights the pivotal role of PGE 1 in foam cell inhibition and inflammation regulation within activated macrophages. This study highlights DHFA's potential as an antioxidant and anti-inflammatory agent, particularly due to its ability to induce PGE 1 and IL-10.
Author Sierra, Jelver A
Rivera, Diego A
Muñoz-Durango, Katalina
Arango-González, Ángela
Lara-Guzmán, Oscar J
Author_xml – sequence: 1
  givenname: Oscar J
  orcidid: 0000-0003-2434-6228
  surname: Lara-Guzmán
  fullname: Lara-Guzmán, Oscar J
  email: ojlara@serviciosnutresa.com
  organization: Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia. ojlara@serviciosnutresa.com
– sequence: 2
  givenname: Ángela
  surname: Arango-González
  fullname: Arango-González, Ángela
  email: ojlara@serviciosnutresa.com
  organization: Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia. ojlara@serviciosnutresa.com
– sequence: 3
  givenname: Diego A
  surname: Rivera
  fullname: Rivera, Diego A
  email: ojlara@serviciosnutresa.com
  organization: Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia. ojlara@serviciosnutresa.com
– sequence: 4
  givenname: Katalina
  surname: Muñoz-Durango
  fullname: Muñoz-Durango, Katalina
  email: ojlara@serviciosnutresa.com
  organization: Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia. ojlara@serviciosnutresa.com
– sequence: 5
  givenname: Jelver A
  orcidid: 0000-0001-8541-1535
  surname: Sierra
  fullname: Sierra, Jelver A
  email: ojlara@serviciosnutresa.com
  organization: Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia. ojlara@serviciosnutresa.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39320081$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1u1TAQhS3UipbSDQ-ALLEpqIHxz81NlqWX2yJdqUgUiV3kOM6Ni5MJtgNNX60vV_ePBbOZI8-n0RmfV2RnwMEQ8obBRwai_NTIFoEzJusXZJ-D5Fm-gJ87z1qW-R45DOEKUomyLMriJdkTpeAABdsnt5edoRodDlbTEd08dmZAR7WKqkZno6GN7ebGY2v85BKktG3o0ep8ffKeerOdnIom0F5pj2OntkkrHe2f9NrQeqZ4bRt7k_RmtTmmy-yXiag7dCZE49EdUzWk2bfvNPy1UXd22NLWY09HjxmNmMbRZnZonep7FdHPtDeNvVfhNdltlQvm8KkfkB_rL5en59nm4uzr6ckm01xCzOo8lyJXUi0XIi-1zHWrAKQwdQ3A-UKW0kBd1KyVjHGm9VKwBTCuuZYaCiMOyNHj3uTp95SMV70N2jinBoNTqASDUgooljKh7_5Dr3DyQ3KXKJZzmYsH6sMjlf4sBG_aavS2V36uGFT3qVYrub54SPVzgt8-rZzqdPo_9DlDcQffAJ_k
Cites_doi 10.3390/ijms20122876
10.1007/978-3-031-43883-7_11
10.1097/00003246-200007000-00004
10.3390/genes13050756
10.1038/srep41539
10.1615/CritRevImmunol.2018026483
10.1016/j.steroids.2021.108854
10.1016/j.freeradbiomed.2021.10.012
10.1038/aps.2018.24
10.1002/hep.510300606
10.3945/ajcn.114.088120
10.1194/jlr.M400324-JLR200
10.1016/j.redox.2017.11.017
10.1017/S0007114512003881
10.1038/ni.2639
10.1016/j.bcp.2012.03.005
10.1039/C4FO00316K
10.1186/s11658-023-00462-9
10.1016/j.redox.2019.101380
10.1046/j.1365-2362.2002.01069.x
10.1038/ni.1836
10.1016/j.cmet.2010.09.010
10.4049/jimmunol.168.11.5811
10.1002/mnfr.201600315
10.1089/ars.2020.8022
10.1007/BF03402102
10.1155/2013/152786
10.1074/jbc.M706571200
10.1371/journal.pone.0230427
10.1039/C6FO01404F
10.1167/iovs.14-14557
10.1093/ajcn/79.5.727
10.1016/j.btre.2014.09.002
10.1016/j.plefa.2010.02.032
10.1002/mnfr.200900056
10.1167/iovs.09-4854
10.1002/mnfr.201300349
10.1016/j.prostaglandins.2004.07.005
10.1016/j.freeradbiomed.2020.07.020
10.1161/hh0901.090440
10.1371/journal.pone.0100985
10.1002/mnfr.201800147
10.3892/ijmm.2014.1755
10.1177/24705470221076390
10.1038/s41419-019-1413-8
10.1007/s13273-021-00219-5
10.1590/fst.33719
10.1194/jlr.M600181-JLR200
10.1371/journal.pone.0087552
10.1615/CritRevImmunol.v32.i1.30
10.3389/fphar.2020.613780
10.1161/01.ATV.19.12.2847
10.3390/nu13093152
10.3390/ijms24010017
10.1016/j.clim.2024.110298
10.3945/ajcn.113.058958
10.1186/s12944-017-0579-2
10.5551/jat.No430
10.3390/nu2080820
10.1084/jem.174.5.1209
10.1016/j.bbamem.2022.183951
10.3389/fcell.2020.597423
10.3390/ijms24021440
10.1017/S0007114507617218
10.1017/S0007114510003946
10.1046/j.1365-2567.2002.01474.x
10.1016/0163-7827(86)90132-3
10.1111/j.1476-5381.1991.tb09838.x
10.3390/molecules29010088
10.3390/nu10111615
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID NPM
AAYXX
CITATION
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
DOI 10.1039/d4fo02114b
DatabaseName PubMed
CrossRef
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
Oncogenes and Growth Factors Abstracts
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 2042-650X
EndPage 10413
ExternalDocumentID 10_1039_D4FO02114B
39320081
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
4.4
53G
705
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
NPM
O-G
O9-
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
AAYXX
CITATION
7T5
7T7
7TO
7U7
8FD
C1K
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c240t-b66436a4a75369c46cfa0043ebb00225494e0b8b1f41121cc7315012c2c4c08e3
ISSN 2042-6496
2042-650X
IngestDate Tue Oct 15 21:44:14 EDT 2024
Mon Oct 14 14:00:58 EDT 2024
Wed Oct 16 15:12:07 EDT 2024
Wed Oct 23 09:48:50 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c240t-b66436a4a75369c46cfa0043ebb00225494e0b8b1f41121cc7315012c2c4c08e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8541-1535
0000-0003-2434-6228
OpenAccessLink https://doi.org/10.1039/d4fo02114b
PMID 39320081
PQID 3116246374
PQPubID 2047526
PageCount 15
ParticipantIDs proquest_miscellaneous_3109430874
proquest_journals_3116246374
crossref_primary_10_1039_D4FO02114B
pubmed_primary_39320081
PublicationCentury 2000
PublicationDate 2024-10-14
PublicationDateYYYYMMDD 2024-10-14
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Food & function
PublicationTitleAlternate Food Funct
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Le (D4FO02114B/cit31/1) 2020; 40
Anderson (D4FO02114B/cit40/1) 2020; 29
Sheedy (D4FO02114B/cit5/1) 2013; 14
de Waal Malefyt (D4FO02114B/cit58/1) 1991; 174
Ravi (D4FO02114B/cit19/1) 2021; 172
Xie (D4FO02114B/cit23/1) 2014; 34
Clifford (D4FO02114B/cit53/1) 2013; 98
Treffkorn (D4FO02114B/cit69/1) 2004; 74
Kawai (D4FO02114B/cit51/1) 2008; 283
Huang (D4FO02114B/cit20/1) 2014; 9
Aschoff (D4FO02114B/cit56/1) 2016; 60
Vitaglione (D4FO02114B/cit62/1) 2015; 101
Sinzinger (D4FO02114B/cit12/1) 1989; 301
Caligiuri (D4FO02114B/cit8/1) 2003; 9
Waehre (D4FO02114B/cit9/1) 2002; 32
Mokuno (D4FO02114B/cit17/1) 1999; 30
Goya (D4FO02114B/cit64/1) 2023; 29
Zmysłowski (D4FO02114B/cit18/1) 2017; 16
Eshghjoo (D4FO02114B/cit36/1) 2022; 13
Seimon (D4FO02114B/cit4/1) 2010; 12
Yi (D4FO02114B/cit26/1) 2018; 62
González (D4FO02114B/cit44/1) 2022; 24
Willis (D4FO02114B/cit14/1) 1986; 25
Chen (D4FO02114B/cit21/1) 2023; 28
Tedgui (D4FO02114B/cit6/1) 2001; 88
Williamson (D4FO02114B/cit55/1) 2010; 104
Rezende (D4FO02114B/cit47/1) 2022; 1864
Stewart (D4FO02114B/cit3/1) 2010; 11
Renouf (D4FO02114B/cit29/1) 2014; 58
Poznyak (D4FO02114B/cit2/1) 2020; 11
Luquain-Costaz (D4FO02114B/cit50/1) 2024; 1440
Kakutani (D4FO02114B/cit70/1) 2010; 83
Yuan (D4FO02114B/cit43/1) 2020; 8
Kumar (D4FO02114B/cit67/1) 2014; 4
Liu (D4FO02114B/cit25/1) 2022; 18
Uematsu (D4FO02114B/cit68/1) 2002; 168
Kawamura (D4FO02114B/cit60/1) 2000; 28
Pirillo (D4FO02114B/cit1/1) 2013; 2013
Li (D4FO02114B/cit42/1) 2014; 9
Groeneweg (D4FO02114B/cit37/1) 2006; 47
Yang (D4FO02114B/cit22/1) 2019; 10
Samiea (D4FO02114B/cit71/1) 2020; 15
Hu (D4FO02114B/cit57/1) 2012; 84
Halvorsen (D4FO02114B/cit10/1) 2005; 46
Takai (D4FO02114B/cit13/1) 2009; 16
Călinoiu (D4FO02114B/cit66/1) 2018; 10
Lara-Guzmán (D4FO02114B/cit35/1) 2018; 15
Pellegrini (D4FO02114B/cit27/1) 2019; 20
Dias (D4FO02114B/cit39/1) 2020; 33
Nayeem (D4FO02114B/cit49/1) 2018; 39
Sinzinger (D4FO02114B/cit15/1) 1991; 103
Domiciano (D4FO02114B/cit24/1) 2017; 7
Dooper (D4FO02114B/cit16/1) 2002; 107
Vitaglione (D4FO02114B/cit54/1) 2013; 109
Renouf (D4FO02114B/cit28/1) 2010; 54
Lara-Guzmán (D4FO02114B/cit48/1) 2021; 176
Page (D4FO02114B/cit45/1) 2022; 6
Rhoads (D4FO02114B/cit46/1) 2018; 38
Azzini (D4FO02114B/cit63/1) 2007; 97
Iyer (D4FO02114B/cit59/1) 2012; 32
Shi (D4FO02114B/cit41/1) 2015; 56
Serreli (D4FO02114B/cit30/1) 2021; 13
Sánchez-Medina (D4FO02114B/cit32/1) 2023; 24
Lara-Guzmán (D4FO02114B/cit34/1) 2020; 160
Luo (D4FO02114B/cit11/1) 2024; 265
Manach (D4FO02114B/cit65/1) 2004; 79
Pinderski Oslund (D4FO02114B/cit7/1) 1999; 19
Baeza (D4FO02114B/cit33/1) 2017; 8
Del Rio (D4FO02114B/cit52/1) 2010; 2
Larrayoz (D4FO02114B/cit38/1) 2010; 51
Stalmach (D4FO02114B/cit61/1) 2014; 5
References_xml – volume: 20
  start-page: 2876
  year: 2019
  ident: D4FO02114B/cit27/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20122876
  contributor:
    fullname: Pellegrini
– volume: 1440
  start-page: 213
  year: 2024
  ident: D4FO02114B/cit50/1
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-031-43883-7_11
  contributor:
    fullname: Luquain-Costaz
– volume: 28
  start-page: 2201
  year: 2000
  ident: D4FO02114B/cit60/1
  publication-title: Crit. Care Med.
  doi: 10.1097/00003246-200007000-00004
  contributor:
    fullname: Kawamura
– volume: 13
  start-page: 756
  year: 2022
  ident: D4FO02114B/cit36/1
  publication-title: Genes
  doi: 10.3390/genes13050756
  contributor:
    fullname: Eshghjoo
– volume: 7
  start-page: 41539
  year: 2017
  ident: D4FO02114B/cit24/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep41539
  contributor:
    fullname: Domiciano
– volume: 38
  start-page: 333
  year: 2018
  ident: D4FO02114B/cit46/1
  publication-title: Crit. Rev. Immunol.
  doi: 10.1615/CritRevImmunol.2018026483
  contributor:
    fullname: Rhoads
– volume: 172
  start-page: 108854
  year: 2021
  ident: D4FO02114B/cit19/1
  publication-title: Steroids
  doi: 10.1016/j.steroids.2021.108854
  contributor:
    fullname: Ravi
– volume: 176
  start-page: 345
  year: 2021
  ident: D4FO02114B/cit48/1
  publication-title: Free Radicals Biol. Med.
  doi: 10.1016/j.freeradbiomed.2021.10.012
  contributor:
    fullname: Lara-Guzmán
– volume: 39
  start-page: 1142
  year: 2018
  ident: D4FO02114B/cit49/1
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2018.24
  contributor:
    fullname: Nayeem
– volume: 30
  start-page: 1464
  year: 1999
  ident: D4FO02114B/cit17/1
  publication-title: Hepatology
  doi: 10.1002/hep.510300606
  contributor:
    fullname: Mokuno
– volume: 101
  start-page: 251
  year: 2015
  ident: D4FO02114B/cit62/1
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.114.088120
  contributor:
    fullname: Vitaglione
– volume: 46
  start-page: 211
  year: 2005
  ident: D4FO02114B/cit10/1
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M400324-JLR200
  contributor:
    fullname: Halvorsen
– volume: 15
  start-page: 1
  year: 2018
  ident: D4FO02114B/cit35/1
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.11.017
  contributor:
    fullname: Lara-Guzmán
– volume: 109
  start-page: 1832
  year: 2013
  ident: D4FO02114B/cit54/1
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114512003881
  contributor:
    fullname: Vitaglione
– volume: 14
  start-page: 812
  year: 2013
  ident: D4FO02114B/cit5/1
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2639
  contributor:
    fullname: Sheedy
– volume: 84
  start-page: 113
  year: 2012
  ident: D4FO02114B/cit57/1
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2012.03.005
  contributor:
    fullname: Hu
– volume: 5
  start-page: 1727
  year: 2014
  ident: D4FO02114B/cit61/1
  publication-title: Food Funct.
  doi: 10.1039/C4FO00316K
  contributor:
    fullname: Stalmach
– volume: 28
  start-page: 51
  year: 2023
  ident: D4FO02114B/cit21/1
  publication-title: Cell. Mol. Biol. Lett.
  doi: 10.1186/s11658-023-00462-9
  contributor:
    fullname: Chen
– volume: 29
  start-page: 101380
  year: 2020
  ident: D4FO02114B/cit40/1
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101380
  contributor:
    fullname: Anderson
– volume: 32
  start-page: 803
  year: 2002
  ident: D4FO02114B/cit9/1
  publication-title: Eur. J. Clin. Invest.
  doi: 10.1046/j.1365-2362.2002.01069.x
  contributor:
    fullname: Waehre
– volume: 11
  start-page: 155
  year: 2010
  ident: D4FO02114B/cit3/1
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1836
  contributor:
    fullname: Stewart
– volume: 12
  start-page: 467
  year: 2010
  ident: D4FO02114B/cit4/1
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2010.09.010
  contributor:
    fullname: Seimon
– volume: 168
  start-page: 5811
  year: 2002
  ident: D4FO02114B/cit68/1
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.168.11.5811
  contributor:
    fullname: Uematsu
– volume: 60
  start-page: 2602
  year: 2016
  ident: D4FO02114B/cit56/1
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201600315
  contributor:
    fullname: Aschoff
– volume: 33
  start-page: 166
  year: 2020
  ident: D4FO02114B/cit39/1
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2020.8022
  contributor:
    fullname: Dias
– volume: 9
  start-page: 10
  year: 2003
  ident: D4FO02114B/cit8/1
  publication-title: Mol. Med.
  doi: 10.1007/BF03402102
  contributor:
    fullname: Caligiuri
– volume: 2013
  start-page: 12
  year: 2013
  ident: D4FO02114B/cit1/1
  publication-title: Mediators Inflammation
  doi: 10.1155/2013/152786
  contributor:
    fullname: Pirillo
– volume: 283
  start-page: 9424
  year: 2008
  ident: D4FO02114B/cit51/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706571200
  contributor:
    fullname: Kawai
– volume: 15
  start-page: e0230427
  year: 2020
  ident: D4FO02114B/cit71/1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0230427
  contributor:
    fullname: Samiea
– volume: 8
  start-page: 1333
  year: 2017
  ident: D4FO02114B/cit33/1
  publication-title: Food Funct.
  doi: 10.1039/C6FO01404F
  contributor:
    fullname: Baeza
– volume: 56
  start-page: 1658
  year: 2015
  ident: D4FO02114B/cit41/1
  publication-title: Invest. Ophthalmol. Visual Sci.
  doi: 10.1167/iovs.14-14557
  contributor:
    fullname: Shi
– volume: 79
  start-page: 727
  year: 2004
  ident: D4FO02114B/cit65/1
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/79.5.727
  contributor:
    fullname: Manach
– volume: 4
  start-page: 86
  year: 2014
  ident: D4FO02114B/cit67/1
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2014.09.002
  contributor:
    fullname: Kumar
– volume: 83
  start-page: 23
  year: 2010
  ident: D4FO02114B/cit70/1
  publication-title: Prostaglandins, Leukotrienes Essent. Fatty Acids
  doi: 10.1016/j.plefa.2010.02.032
  contributor:
    fullname: Kakutani
– volume: 54
  start-page: 760
  year: 2010
  ident: D4FO02114B/cit28/1
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.200900056
  contributor:
    fullname: Renouf
– volume: 51
  start-page: 4942
  year: 2010
  ident: D4FO02114B/cit38/1
  publication-title: Invest. Ophthalmol. Visual Sci.
  doi: 10.1167/iovs.09-4854
  contributor:
    fullname: Larrayoz
– volume: 58
  start-page: 301
  year: 2014
  ident: D4FO02114B/cit29/1
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201300349
  contributor:
    fullname: Renouf
– volume: 74
  start-page: 113
  year: 2004
  ident: D4FO02114B/cit69/1
  publication-title: Prostaglandins Other Lipid Mediators
  doi: 10.1016/j.prostaglandins.2004.07.005
  contributor:
    fullname: Treffkorn
– volume: 160
  start-page: 604
  year: 2020
  ident: D4FO02114B/cit34/1
  publication-title: Free Radicals Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.07.020
  contributor:
    fullname: Lara-Guzmán
– volume: 88
  start-page: 877
  year: 2001
  ident: D4FO02114B/cit6/1
  publication-title: Circ. Res.
  doi: 10.1161/hh0901.090440
  contributor:
    fullname: Tedgui
– volume: 9
  start-page: e100985
  year: 2014
  ident: D4FO02114B/cit20/1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0100985
  contributor:
    fullname: Huang
– volume: 62
  start-page: e1800147
  year: 2018
  ident: D4FO02114B/cit26/1
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201800147
  contributor:
    fullname: Yi
– volume: 34
  start-page: 341
  year: 2014
  ident: D4FO02114B/cit23/1
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2014.1755
  contributor:
    fullname: Xie
– volume: 6
  start-page: 24705470221076390
  year: 2022
  ident: D4FO02114B/cit45/1
  publication-title: Chronic Stress
  doi: 10.1177/24705470221076390
  contributor:
    fullname: Page
– volume: 10
  start-page: 128
  year: 2019
  ident: D4FO02114B/cit22/1
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1413-8
  contributor:
    fullname: Yang
– volume: 18
  start-page: 509
  year: 2022
  ident: D4FO02114B/cit25/1
  publication-title: Mol. Cell. Toxicol.
  doi: 10.1007/s13273-021-00219-5
  contributor:
    fullname: Liu
– volume: 40
  start-page: 475
  year: 2020
  ident: D4FO02114B/cit31/1
  publication-title: Food Sci. Technol.
  doi: 10.1590/fst.33719
  contributor:
    fullname: Le
– volume: 47
  start-page: 2259
  year: 2006
  ident: D4FO02114B/cit37/1
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M600181-JLR200
  contributor:
    fullname: Groeneweg
– volume: 9
  start-page: e87552
  year: 2014
  ident: D4FO02114B/cit42/1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0087552
  contributor:
    fullname: Li
– volume: 32
  start-page: 23
  year: 2012
  ident: D4FO02114B/cit59/1
  publication-title: Crit. Rev. Immunol.
  doi: 10.1615/CritRevImmunol.v32.i1.30
  contributor:
    fullname: Iyer
– volume: 11
  start-page: 613780
  year: 2020
  ident: D4FO02114B/cit2/1
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.613780
  contributor:
    fullname: Poznyak
– volume: 19
  start-page: 2847
  year: 1999
  ident: D4FO02114B/cit7/1
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.19.12.2847
  contributor:
    fullname: Pinderski Oslund
– volume: 13
  start-page: 3152
  year: 2021
  ident: D4FO02114B/cit30/1
  publication-title: Nutrients
  doi: 10.3390/nu13093152
  contributor:
    fullname: Serreli
– volume: 24
  start-page: 17
  year: 2022
  ident: D4FO02114B/cit44/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24010017
  contributor:
    fullname: González
– volume: 265
  start-page: 110298
  year: 2024
  ident: D4FO02114B/cit11/1
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2024.110298
  contributor:
    fullname: Luo
– volume: 98
  start-page: 1619S
  year: 2013
  ident: D4FO02114B/cit53/1
  publication-title: Am. J. Clin. Nutr.
  doi: 10.3945/ajcn.113.058958
  contributor:
    fullname: Clifford
– volume: 16
  start-page: 188
  year: 2017
  ident: D4FO02114B/cit18/1
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-017-0579-2
  contributor:
    fullname: Zmysłowski
– volume: 16
  start-page: 480
  year: 2009
  ident: D4FO02114B/cit13/1
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.No430
  contributor:
    fullname: Takai
– volume: 2
  start-page: 820
  year: 2010
  ident: D4FO02114B/cit52/1
  publication-title: Nutrients
  doi: 10.3390/nu2080820
  contributor:
    fullname: Del Rio
– volume: 174
  start-page: 1209
  year: 1991
  ident: D4FO02114B/cit58/1
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.174.5.1209
  contributor:
    fullname: de Waal Malefyt
– volume: 1864
  start-page: 183951
  year: 2022
  ident: D4FO02114B/cit47/1
  publication-title: Biochim. Biophys. Acta, Biomembr.
  doi: 10.1016/j.bbamem.2022.183951
  contributor:
    fullname: Rezende
– volume: 8
  start-page: 597423
  year: 2020
  ident: D4FO02114B/cit43/1
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.597423
  contributor:
    fullname: Yuan
– volume: 24
  start-page: 1440
  year: 2023
  ident: D4FO02114B/cit32/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24021440
  contributor:
    fullname: Sánchez-Medina
– volume: 97
  start-page: 963
  year: 2007
  ident: D4FO02114B/cit63/1
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114507617218
  contributor:
    fullname: Azzini
– volume: 301
  start-page: 85
  year: 1989
  ident: D4FO02114B/cit12/1
  publication-title: Prog. Clin. Biol. Res.
  contributor:
    fullname: Sinzinger
– volume: 104
  start-page: S48
  issue: Suppl
  year: 2010
  ident: D4FO02114B/cit55/1
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114510003946
  contributor:
    fullname: Williamson
– volume: 107
  start-page: 152
  year: 2002
  ident: D4FO02114B/cit16/1
  publication-title: Immunology
  doi: 10.1046/j.1365-2567.2002.01474.x
  contributor:
    fullname: Dooper
– volume: 25
  start-page: 645
  year: 1986
  ident: D4FO02114B/cit14/1
  publication-title: Prog. Lipid Res.
  doi: 10.1016/0163-7827(86)90132-3
  contributor:
    fullname: Willis
– volume: 103
  start-page: 1626
  year: 1991
  ident: D4FO02114B/cit15/1
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.1991.tb09838.x
  contributor:
    fullname: Sinzinger
– volume: 29
  start-page: 88
  year: 2023
  ident: D4FO02114B/cit64/1
  publication-title: Molecules
  doi: 10.3390/molecules29010088
  contributor:
    fullname: Goya
– volume: 10
  start-page: 1615
  year: 2018
  ident: D4FO02114B/cit66/1
  publication-title: Nutrients
  doi: 10.3390/nu10111615
  contributor:
    fullname: Călinoiu
SSID ssj0000399898
Score 2.407223
Snippet Macrophage activation plays a central role in the development of atherosclerotic plaques. Interaction with oxidized low-density lipoprotein (oxLDL) leads to...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 10399
SubjectTerms Anti-inflammatory agents
Arteriosclerosis
Atherosclerosis
Catabolites
CD36 antigen
Cell activation
Cell differentiation
Chlorogenic acid
Cholesterol
Coffee
Inflammasomes
Inflammation
Interleukin 10
Intestinal microflora
Lipopolysaccharides
Low density lipoprotein
Macrophages
Oxidative stress
Phenolic acids
Phenols
Phenotypes
Reactive oxygen species
Tumor necrosis factor-α
Title The colonic polyphenol catabolite dihydroferulic acid (DHFA) regulates macrophages activated by oxidized LDL, 7-ketocholesterol, and LPS switching from pro- to anti-inflammatory mediators
URI https://www.ncbi.nlm.nih.gov/pubmed/39320081
https://www.proquest.com/docview/3116246374
https://www.proquest.com/docview/3109430874
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB51uXBB7A0U9BAIgdIBL-PtmJKmFaQtglTkZo231iKNq8QGmr_Gn-O98VoVEHCxnMlonOh9fvvC2HM70czQCF2uOUbERWTYPDBkwvEGGSaaJI6aonB4ZB-ciHdTa7q2vtXJWiry4HW4-mVdyf9QFdeQrlQl-w-UbQ7FBbxH-uIVKYzXv6YxdZ2mITYX2eyS8rWyWZ9cMgHltcX9KD27jKj7xqKgbtYyTJXTYHgwGpA_YFFOoo-X_XNJs7zOJLV8oFqHrzIvddPsexqlK7wfD8dED4d_ifOMmKbqsVAO6CLv-_jDp_7yW5pXyZlUtoLcmZNyi9RLOf5hRN95GdVXBSs06KerHI-owzJBkYRtN0FgLBeS7xercxXW1xWjPF6GctEGtQYoc08zvp_NV-WmWekapw-uTpm7jfz5SKkoZZgrjU-z1pt7WNDuXT1b8WGhzqvyTeSsGjJe-0cMQYJFb_2jpRemToFVKS7VIL2W0xpUo2QLr-rJ3VmztOkVUWF1XglD6zB-iqh7HS0CrdyyxvaaiMKNiKtIJBmqV7oIWkFcJx8cHfujk_HYn-xNJ-ts03A8y9pgm4P3u_ufG_8hPc9Vo56bX1933zW9N-3xV_Wt3xhRSpma3GI3KysIBiWkb7O1eH6H9ZAcObyAqlXtDI7qSRF32Q-EOlRQhxbq0EIdrkIdCOrwkoD-ChqYQwfm0MAcgkuoYQ4I8x24BvIdQIgDQhwaiANBHAjikGdwDeLQQPweOxntTd4e8GruCA9Rv815YKOabksh0ZS3vVDYYSIpYh4HSuW1hCdiLXADPRForehh6JhoVukG8jwRam5s3mcb82webzGwXVcmqBabptCEtGxkfp6InCgxQzzCNnrsWU0d_6JsL-OrtBDT84didKxouNtj2zXh_Ir9LH1T121D2KYjeuxp8zVCmyJ-ch5nBe2hxGHNpT0PSoI3jzHRciOD4OGfD3_EbrRv1TbbyBdF_Bj18Dx4UkHyJ_2E4Cs
link.rule.ids 315,786,790,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+colonic+polyphenol+catabolite+dihydroferulic+acid+%28DHFA%29+regulates+macrophages+activated+by+oxidized+LDL%2C+7-ketocholesterol%2C+and+LPS+switching+from+pro-+to+anti-inflammatory+mediators&rft.jtitle=Food+%26+function&rft.au=Lara-Guzm%C3%A1n%2C+Oscar+J&rft.au=Arango-Gonz%C3%A1lez%2C+%C3%81ngela&rft.au=Rivera%2C+Diego+A&rft.au=Mu%C3%B1oz-Durango%2C+Katalina&rft.date=2024-10-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=2042-6496&rft.eissn=2042-650X&rft.volume=15&rft.issue=20&rft.spage=10399&rft.epage=10413&rft_id=info:doi/10.1039%2Fd4fo02114b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2042-6496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2042-6496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2042-6496&client=summon