Ultrafast H2 gas nanosensor for ppb-level H2 gas detection based on GaN honeycomb nanonetwork
[Display omitted] •Employment of GaN honeycomb nanonetwork for the FET type H2 gas sensor.•Demonstration of a H2 sensor with small LOD ∼34 ppb and fast response ∼3 s.•Employment of Pt nanonetwork as the catalyst for H2 gas dissociation.•First discovery of electron tunneling effect during H2 gas dete...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 329; p. 129079 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.02.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Employment of GaN honeycomb nanonetwork for the FET type H2 gas sensor.•Demonstration of a H2 sensor with small LOD ∼34 ppb and fast response ∼3 s.•Employment of Pt nanonetwork as the catalyst for H2 gas dissociation.•First discovery of electron tunneling effect during H2 gas detection.
Material architecture design plays a crucial role in developing gas sensors. GaN has been proposed as a promising material for H2 gas sensor. However, it is subject to long response time and large low limit of detection (LOD).via spherical metal pattern technology, honeycomb can be created in GaN nanostructure but has yet to be explored. Herein, the GaN honeycomb nanonetwork was utilized to fabricate a field effect transistor (FET) type hydrogen (H2) gas nanosensor and its H2 gas sensing performances were systematically investigated. Through the combination of the novel honeycomb nanonetwork with the field effect modulation, we demonstrate high performance H2 gas sensor with wide detection concentration range, fast response, and small LOD. It is worth noting that the response time for H2 gas is very fast, as short as ≤3 s. Most importantly, the LOD for this FET type sensor is as small as ∼ 34 ppb. Density functional theory (DFT) calculation was utilized to study the H2 gas sensing mechanism. Significant reduction of Schottky barrier and improvement of the tunneling probability of the Pt-GaN metal-semiconductor interface were observed. Finally, a model is proposed to explain the H2 gas sensing mechanism. |
---|---|
AbstractList | [Display omitted]
•Employment of GaN honeycomb nanonetwork for the FET type H2 gas sensor.•Demonstration of a H2 sensor with small LOD ∼34 ppb and fast response ∼3 s.•Employment of Pt nanonetwork as the catalyst for H2 gas dissociation.•First discovery of electron tunneling effect during H2 gas detection.
Material architecture design plays a crucial role in developing gas sensors. GaN has been proposed as a promising material for H2 gas sensor. However, it is subject to long response time and large low limit of detection (LOD).via spherical metal pattern technology, honeycomb can be created in GaN nanostructure but has yet to be explored. Herein, the GaN honeycomb nanonetwork was utilized to fabricate a field effect transistor (FET) type hydrogen (H2) gas nanosensor and its H2 gas sensing performances were systematically investigated. Through the combination of the novel honeycomb nanonetwork with the field effect modulation, we demonstrate high performance H2 gas sensor with wide detection concentration range, fast response, and small LOD. It is worth noting that the response time for H2 gas is very fast, as short as ≤3 s. Most importantly, the LOD for this FET type sensor is as small as ∼ 34 ppb. Density functional theory (DFT) calculation was utilized to study the H2 gas sensing mechanism. Significant reduction of Schottky barrier and improvement of the tunneling probability of the Pt-GaN metal-semiconductor interface were observed. Finally, a model is proposed to explain the H2 gas sensing mechanism. Material architecture design plays a crucial role in developing gas sensors. GaN has been proposed as a promising material for H2 gas sensor. However, it is subject to long response time and large low limit of detection (LOD). via spherical metal pattern technology, honeycomb can be created in GaN nanostructure but has yet to be explored. Herein, the GaN honeycomb nanonetwork was utilized to fabricate a field effect transistor (FET) type hydrogen (H2) gas nanosensor and its H2 gas sensing performances were systematically investigated. Through the combination of the novel honeycomb nanonetwork with the field effect modulation, we demonstrate high performance H2 gas sensor with wide detection concentration range, fast response, and small LOD. It is worth noting that the response time for H2 gas is very fast, as short as ≤3 s. Most importantly, the LOD for this FET type sensor is as small as ∼ 34 ppb. Density functional theory (DFT) calculation was utilized to study the H2 gas sensing mechanism. Significant reduction of Schottky barrier and improvement of the tunneling probability of the Pt-GaN metal-semiconductor interface were observed. Finally, a model is proposed to explain the H2 gas sensing mechanism. |
ArticleNumber | 129079 |
Author | Li, Huayao Xie, Yizhu Jin, Hao Zhong, Aihua Liu, Huan Zhang, Dongping Luo, Jingting Fan, Ping Wang, Tao Shen, Bowei |
Author_xml | – sequence: 1 givenname: Aihua orcidid: 0000-0002-8838-260X surname: Zhong fullname: Zhong, Aihua organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China – sequence: 2 givenname: Bowei surname: Shen fullname: Shen, Bowei organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China – sequence: 3 givenname: Tao surname: Wang fullname: Wang, Tao organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China – sequence: 4 givenname: Hao surname: Jin fullname: Jin, Hao email: jh@szu.edu.cn organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China – sequence: 5 givenname: Yizhu surname: Xie fullname: Xie, Yizhu organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China – sequence: 6 givenname: Dongping surname: Zhang fullname: Zhang, Dongping organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China – sequence: 7 givenname: Huayao surname: Li fullname: Li, Huayao organization: School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China – sequence: 8 givenname: Huan surname: Liu fullname: Liu, Huan organization: School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China – sequence: 9 givenname: Jingting surname: Luo fullname: Luo, Jingting email: luojt@szu.edu.cn organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China – sequence: 10 givenname: Ping surname: Fan fullname: Fan, Ping email: fanping@szu.edu.cn organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China |
BookMark | eNp9kMtOAyEUhonRxLb6AO4mcT2Vy1xKXJlGW5NGN3ZpCDAHnXEKI0xr-vZSRzcuuiBAON_h_N8YnVpnAaErgqcEk-KmmQarphTTeKccl_wEjcisZCnDZXmKRpjTPM0wzs_ROIQGY5yxAo_Q67rtvTQy9MmSJm8yJFZaF8AG5xMTV9eptIUdtH_vFfSg-9rZRMkAVRIPC_mUvMd59tpt1E8DC_2X8x8X6MzINsDl7z5B64f7l_kyXT0vHud3q1TTDPcprwgv40Q6KxQFooHKMlc55sC1YpoolRVGU6alLHKmKjMzPGcZGFZVhnHDJuh66Nt597mF0IvGbb2NXwqacR6z05zHKjJUae9C8GBE5-uN9HtBsDhYFI2IFsXBohgsRqb8x-i6l4f4UVvdHiVvBxJi8F0NXgRdg9VQ1T4KFJWrj9Df96mOqQ |
CitedBy_id | crossref_primary_10_1016_j_snb_2024_136623 crossref_primary_10_1007_s12598_024_02976_3 crossref_primary_10_1021_acssensors_3c01659 crossref_primary_10_1002_advs_202205725 crossref_primary_10_1021_acssensors_4c00431 crossref_primary_10_1039_D2TC02103J crossref_primary_10_1021_acsaelm_4c00324 crossref_primary_10_1109_JSEN_2023_3304855 crossref_primary_10_1016_j_snb_2024_136172 crossref_primary_10_1021_acsami_1c04469 crossref_primary_10_1088_2632_959X_ac3636 crossref_primary_10_1016_j_cej_2022_141258 crossref_primary_10_1016_j_snb_2022_131981 crossref_primary_10_1016_j_snb_2024_135569 crossref_primary_10_1016_j_snb_2021_130488 crossref_primary_10_1016_j_snb_2022_131971 |
Cites_doi | 10.1039/b9nr00015a 10.1016/j.snb.2007.07.122 10.1016/j.snb.2017.09.107 10.1016/j.ijhydene.2012.03.124 10.1016/j.snb.2006.11.008 10.1039/c2nr11765g 10.1016/j.snb.2017.10.109 10.1186/s11671-018-2461-1 10.1016/j.cardfail.2018.10.004 10.1039/c1jm12701b 10.1016/j.snb.2005.11.020 10.1136/gut.2005.075127 10.1103/PhysRevApplied.9.024006 10.1063/1.5004496 10.1126/sciadv.1602557 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.54.11169 10.1016/j.snb.2013.03.091 10.1016/j.ijhydene.2014.03.120 10.1016/j.sna.2014.01.014 10.1021/nn101475c 10.1103/PhysRevApplied.1.024001 10.1103/PhysRevApplied.11.054021 10.1016/j.snb.2016.11.156 10.1021/acs.chemmater.5b04899 10.1103/PhysRevB.59.1758 10.1016/j.snb.2009.01.029 10.1103/PhysRevB.13.5188 10.1016/j.snb.2011.12.044 10.1021/acsnano.8b00580 10.1016/j.snb.2012.09.012 10.1016/j.matlet.2018.09.129 10.1186/1556-276X-7-686 10.1007/s00216-013-7606-6 10.1016/j.snb.2006.11.032 10.1016/j.materresbull.2018.06.027 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier Science Ltd. Feb 15, 2021 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier Science Ltd. Feb 15, 2021 |
DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1016/j.snb.2020.129079 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
ExternalDocumentID | 10_1016_j_snb_2020_129079 S0925400520314222 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SCH SEW SSH WUQ 7SP 7SR 7TB 7U5 8BQ 8FD EFKBS FR3 JG9 L7M |
ID | FETCH-LOGICAL-c240t-9d197004c46b2e1ce2a75b509e9cb3c1bb46fc23caa653bdf8f9534ef3ddf39f3 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Fri Jul 25 04:25:39 EDT 2025 Tue Jul 01 01:27:46 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Fri Feb 23 02:48:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Field effect transistor Response time Hydrogen gas sensor GaN |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c240t-9d197004c46b2e1ce2a75b509e9cb3c1bb46fc23caa653bdf8f9534ef3ddf39f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8838-260X |
PQID | 2499925259 |
PQPubID | 2047454 |
ParticipantIDs | proquest_journals_2499925259 crossref_primary_10_1016_j_snb_2020_129079 crossref_citationtrail_10_1016_j_snb_2020_129079 elsevier_sciencedirect_doi_10_1016_j_snb_2020_129079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-15 |
PublicationDateYYYYMMDD | 2021-02-15 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Huang, Hsu, Chen, Liu (bib0080) 2007; 123 Helwig, Muller, Sberveglieri, Faglia (bib0170) 2007; 126 Korotcenkov, Brinzari, Golovanov, Blinov (bib0035) 2004; 98 Wang, Yin, Khan, Muhtadi, Asif, Choi, Datta (bib0115) 2018; 9 Huang, Hsu, Chen, Wang, Lin, Chen, Liu (bib0190) 2006; 117 Zhong, Hane (bib0120) 2012; 7 Fahad, Gupta, Han, Desai, Javey (bib0070) 2018; 12 Nishibori, Shin, Izu, Itoh, Matsubara (bib0195) 2009; 137 Kaniyoor, Imran Jafri, Arockiadoss, Ramaprabhu (bib0055) 2009; 1 Chen, Chen, Boussaid, Zhang, Pan, Zhao, Bermak, Tsui, Wang, Fan (bib0100) 2018; 12 Bizhou, Jia, Lv, Qin, Liu, Chen (bib0105) 2018; 106 [1] Nasir, Dickson, Wurtz, Wardley, Zayats (bib0005) 2014; 26 Korotcenkov, Brinzari, Cho (bib0040) 2017; 243 Yang, Kamienchick, Youn, Rothschild, Kim (bib0095) 2010; 20 Perdew, Burke, Ernzerhof (bib0150) 1996; 77 Yang, Kung, Cheng, Hemminger, Penner (bib0160) 2010; 4 Zhong, Sasaki, Hane (bib0185) 2014; 39 Finot, Fabre, Passian, Thundat (bib0060) 2014; 1 Fahad, Shiraki, Amani, Zhang, Hebbar, Gao, Ota, Hettick, Kiriya, Chen, Chueh, Javey (bib0075) 2017; 3 Zhong, Sasaki, Hane (bib0135) 2014; 209 Kresse, Furthmüller (bib0140) 1996; 54 Pan, Wang, Ye, Quhe, Zhong, Song, Peng, Yu, Yang, Shi, Lu (bib0205) 2016; 28 Baek, Jang, Kim, Kim, Kim, Rim, Shin, Lee, Cho, Lee (bib0065) 2018; 256 Mao, Cui, Yu, Wen, Lu, Chen (bib0050) 2012; 4 Wisitsoorat, Ahmad, Yaacob, Horpratum, Phakaratkul, Lomas, Tuantranont, Wlodarski (bib0045) 2013; 182 Simren (bib0030) 2006; 55 Zhong, Fan, Zhong, Zhang, Li, Luo, Xie, Hane (bib0125) 2018; 13 Kresse, Joubert (bib0145) 1999; 59 Guo, Wang, Hao, Luo (bib0085) 2013; 176 Hung, Chang, Hsu, Chu, Lo, Hsu, Pearton, Holzworth, Whiting, Rudawski, Jones, Dabiran, Chow, Ren (bib0090) 2012; 37 Helwig, Muller, Sberveglieri, Faglia (bib0165) 2008; 130 Monkhorst, Pack (bib0155) 1976; 13 Noh, Kim, Kim, Lee, Cho, Lee (bib0175) 2011; 21 Nayak, Kumar, Shivaprasad (bib0130) 2018; 123 Shin (bib0020) 2014; 406 Zhong, Sasaki, Fan, Zhang, Luo, Hane (bib0015) 2018; 255 Lin, Huang (bib0010) 2012; 162 Wang, Tong, Xu, Zhang, Zheng, Chen, Tan (bib0110) 2019; 11 Park (bib0180) 2019; 234 Mollar, Villanueva, NÚÑez, CarratalÁ, Mora, BayÉs-GenÍs, MÍnguez, Marrachelli, Monleon, Navarro, Sanchis, NÚÑez (bib0025) 2019; 25 Kang, Liu, Sarkar, Jena, Banerjee (bib0200) 2014; 4 Helwig (10.1016/j.snb.2020.129079_bib0170) 2007; 126 Fahad (10.1016/j.snb.2020.129079_bib0070) 2018; 12 Zhong (10.1016/j.snb.2020.129079_bib0185) 2014; 39 Zhong (10.1016/j.snb.2020.129079_bib0015) 2018; 255 Zhong (10.1016/j.snb.2020.129079_bib0135) 2014; 209 Nayak (10.1016/j.snb.2020.129079_bib0130) 2018; 123 Hung (10.1016/j.snb.2020.129079_bib0090) 2012; 37 Korotcenkov (10.1016/j.snb.2020.129079_bib0040) 2017; 243 Huang (10.1016/j.snb.2020.129079_bib0190) 2006; 117 Wisitsoorat (10.1016/j.snb.2020.129079_bib0045) 2013; 182 Nishibori (10.1016/j.snb.2020.129079_bib0195) 2009; 137 Zhong (10.1016/j.snb.2020.129079_bib0125) 2018; 13 Kresse (10.1016/j.snb.2020.129079_bib0145) 1999; 59 Korotcenkov (10.1016/j.snb.2020.129079_bib0035) 2004; 98 Park (10.1016/j.snb.2020.129079_bib0180) 2019; 234 Simren (10.1016/j.snb.2020.129079_bib0030) 2006; 55 Mao (10.1016/j.snb.2020.129079_bib0050) 2012; 4 Wang (10.1016/j.snb.2020.129079_bib0110) 2019; 11 Lin (10.1016/j.snb.2020.129079_bib0010) 2012; 162 Guo (10.1016/j.snb.2020.129079_bib0085) 2013; 176 Zhong (10.1016/j.snb.2020.129079_bib0120) 2012; 7 Noh (10.1016/j.snb.2020.129079_bib0175) 2011; 21 Kresse (10.1016/j.snb.2020.129079_bib0140) 1996; 54 Helwig (10.1016/j.snb.2020.129079_bib0165) 2008; 130 Shin (10.1016/j.snb.2020.129079_bib0020) 2014; 406 Kang (10.1016/j.snb.2020.129079_bib0200) 2014; 4 Kaniyoor (10.1016/j.snb.2020.129079_bib0055) 2009; 1 Fahad (10.1016/j.snb.2020.129079_bib0075) 2017; 3 Chen (10.1016/j.snb.2020.129079_bib0100) 2018; 12 Bizhou (10.1016/j.snb.2020.129079_bib0105) 2018; 106 Perdew (10.1016/j.snb.2020.129079_bib0150) 1996; 77 [1] Nasir (10.1016/j.snb.2020.129079_bib0005) 2014; 26 Yang (10.1016/j.snb.2020.129079_bib0160) 2010; 4 Wang (10.1016/j.snb.2020.129079_bib0115) 2018; 9 Pan (10.1016/j.snb.2020.129079_bib0205) 2016; 28 Huang (10.1016/j.snb.2020.129079_bib0080) 2007; 123 Mollar (10.1016/j.snb.2020.129079_bib0025) 2019; 25 Yang (10.1016/j.snb.2020.129079_bib0095) 2010; 20 Finot (10.1016/j.snb.2020.129079_bib0060) 2014; 1 Baek (10.1016/j.snb.2020.129079_bib0065) 2018; 256 Monkhorst (10.1016/j.snb.2020.129079_bib0155) 1976; 13 |
References_xml | – volume: 11 year: 2019 ident: bib0110 article-title: Assessing the role of fluorine in the performance of Al publication-title: Phys. Rev. Appl. – volume: 13 year: 2018 ident: bib0125 article-title: Structure Shift of GaN among nanowall network, nanocolumn, and compact film grown on Si (111) by MBE publication-title: Nanoscale Res. Lett. – volume: 39 year: 2014 ident: bib0185 article-title: Comparative study of Schottky diode type hydrogen sensors based on a honeycomb GaN nanonetwork and on a planar GaN film publication-title: Int. J. Hydrogen Energy – volume: 12 year: 2018 ident: bib0100 article-title: Ultra-low-power smart electronic nose system based on three-dimensional tin oxide nanotube arrays publication-title: ACS Nano – volume: 176 year: 2013 ident: bib0085 article-title: Modeling and experimental study on sensing response of an AlGaN/GaN HEMT-based hydrogen sensor publication-title: Sens. Actuators B Chem. – volume: 37 year: 2012 ident: bib0090 article-title: SnO publication-title: Int. J. Hydrogen Energy – volume: 20 year: 2010 ident: bib0095 article-title: Ultrasensitive and highly selective gas sensors based on electrospun SnO publication-title: Adv. Funct. Mater. – volume: 106 year: 2018 ident: bib0105 article-title: Facile synthesis and remarkable hydrogen sensing performance of Pt-loaded SnO publication-title: Mater. Res. Bull. – volume: 406 year: 2014 ident: bib0020 article-title: Medical applications of breath hydrogen measurements publication-title: Anal. Bioanal. Chem. – volume: 55 year: 2006 ident: bib0030 article-title: Use and abuse of hydrogen breath tests publication-title: Gut – volume: 26 year: 2014 ident: bib0005 article-title: Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials publication-title: Adv. Mater. – volume: 3 year: 2017 ident: bib0075 article-title: Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors publication-title: Sci. Adv. – volume: 4 year: 2010 ident: bib0160 article-title: Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires publication-title: ACS Nano – volume: 256 year: 2018 ident: bib0065 article-title: High-performance hydrogen sensing properties and sensing mechanism in Pd-coated p-type Si nanowire arrays publication-title: Sens. Actuators B Chem. – volume: 255 year: 2018 ident: bib0015 article-title: Integrated H publication-title: Sens. Actuators B Chem. – volume: 25 year: 2019 ident: bib0025 article-title: Hydrogen- and methane-based breath testing and outcomes in patients with heart failure publication-title: J. Card. Fail. – volume: 123 year: 2018 ident: bib0130 article-title: Edge enhanced growth induced shape transition in the formation of GaN nanowall network publication-title: J. Appl. Phys. – volume: 4 year: 2012 ident: bib0050 article-title: Ultrafast hydrogen sensing through hybrids of semiconducting single-walled carbon nanotubes and tin oxide nanocrystals publication-title: Nanoscale – volume: 12 year: 2018 ident: bib0070 article-title: Highly sensitive bulk silicon chemical sensors with sub-5 nm thin charge inversion layers publication-title: ACS Nano – volume: 162 year: 2012 ident: bib0010 article-title: Palladium nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing publication-title: Sens. Actuators B Chem. – volume: 54 year: 1996 ident: bib0140 article-title: Efficient iterative schemes for publication-title: Phys. Rev. B – volume: 21 year: 2011 ident: bib0175 article-title: High-performance vertical hydrogen sensors using Pd-coated rough Si nanowires publication-title: J. Mater. Chem. – volume: 98 year: 2004 ident: bib0035 article-title: Kinetics of gas response to reducing gases of SnO publication-title: Sens. Actuators B Chem. – volume: 28 year: 2016 ident: bib0205 article-title: Monolayer phosphorene–metal contacts publication-title: Chem. Mater. – volume: 4 year: 2014 ident: bib0200 article-title: Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors publication-title: Phys. Rev. X – volume: 13 year: 1976 ident: bib0155 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B – volume: 243 year: 2017 ident: bib0040 article-title: Interference effects between hydrogen and ozone in the response of SnO publication-title: Sens. Actuators B Chem. – volume: 59 year: 1999 ident: bib0145 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B – volume: 130 year: 2008 ident: bib0165 article-title: Catalytic enhancement of SnO publication-title: Sens. Actuators B Chem. – volume: 77 year: 1996 ident: bib0150 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 1 year: 2009 ident: bib0055 article-title: Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor publication-title: Nanoscale – volume: 137 year: 2009 ident: bib0195 article-title: Sensing performance of thermoelectric hydrogen sensor for breath hydrogen analysis publication-title: Sens. Actuators B Chem. – volume: 117 year: 2006 ident: bib0190 article-title: Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al publication-title: Sens. Actuators B Chem. – volume: 7 year: 2012 ident: bib0120 article-title: Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy publication-title: Nanoscale Res. Lett. – volume: 9 year: 2018 ident: bib0115 article-title: Scatterings and quantum effects in (Al, In) N/GaN heterostructures for high-power and high-frequency electronics publication-title: Phys. Rev. Appl. – volume: 234 year: 2019 ident: bib0180 article-title: Enhancement of hydrogen sensing response of ZnO nanowires for the decoration of WO publication-title: Mater. Lett. – volume: 123 year: 2007 ident: bib0080 article-title: Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N publication-title: Sens. Actuators B Chem. – volume: 209 year: 2014 ident: bib0135 article-title: Platinum/porous GaN nanonetwork metal-semiconductor Schottky diode for room temperature hydrogen sensor publication-title: Sens. Actuators Phys. – volume: 182 year: 2013 ident: bib0045 article-title: Optical H publication-title: Sens. Actuators B Chem. – volume: 126 year: 2007 ident: bib0170 article-title: Gas response times of nano-scale SnO publication-title: Sens. Actuators B Chem. – volume: 1 year: 2014 ident: bib0060 article-title: Dynamic and static manifestation of molecular absorption in thin films probed by a microcantilever publication-title: Phys. Rev. Appl. – volume: 1 year: 2009 ident: 10.1016/j.snb.2020.129079_bib0055 article-title: Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor publication-title: Nanoscale doi: 10.1039/b9nr00015a – volume: 12 year: 2018 ident: 10.1016/j.snb.2020.129079_bib0100 article-title: Ultra-low-power smart electronic nose system based on three-dimensional tin oxide nanotube arrays publication-title: ACS Nano – volume: 130 year: 2008 ident: 10.1016/j.snb.2020.129079_bib0165 article-title: Catalytic enhancement of SnO2 gas sensors as seen by the moving gas outlet method publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2007.07.122 – volume: 255 year: 2018 ident: 10.1016/j.snb.2020.129079_bib0015 article-title: Integrated H2 nano-sensor array on GaN honeycomb nanonetwork fabricated by MEMS-based technology publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.09.107 – volume: 37 year: 2012 ident: 10.1016/j.snb.2020.129079_bib0090 article-title: SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.03.124 – volume: 123 year: 2007 ident: 10.1016/j.snb.2020.129079_bib0080 article-title: Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2006.11.008 – volume: 4 year: 2012 ident: 10.1016/j.snb.2020.129079_bib0050 article-title: Ultrafast hydrogen sensing through hybrids of semiconducting single-walled carbon nanotubes and tin oxide nanocrystals publication-title: Nanoscale doi: 10.1039/c2nr11765g – volume: 256 year: 2018 ident: 10.1016/j.snb.2020.129079_bib0065 article-title: High-performance hydrogen sensing properties and sensing mechanism in Pd-coated p-type Si nanowire arrays publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.10.109 – volume: 13 year: 2018 ident: 10.1016/j.snb.2020.129079_bib0125 article-title: Structure Shift of GaN among nanowall network, nanocolumn, and compact film grown on Si (111) by MBE publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2461-1 – volume: 25 year: 2019 ident: 10.1016/j.snb.2020.129079_bib0025 article-title: Hydrogen- and methane-based breath testing and outcomes in patients with heart failure publication-title: J. Card. Fail. doi: 10.1016/j.cardfail.2018.10.004 – volume: 21 year: 2011 ident: 10.1016/j.snb.2020.129079_bib0175 article-title: High-performance vertical hydrogen sensors using Pd-coated rough Si nanowires publication-title: J. Mater. Chem. doi: 10.1039/c1jm12701b – volume: 117 year: 2006 ident: 10.1016/j.snb.2020.129079_bib0190 article-title: Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7 As Schottky diodes publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2005.11.020 – volume: 55 year: 2006 ident: 10.1016/j.snb.2020.129079_bib0030 article-title: Use and abuse of hydrogen breath tests publication-title: Gut doi: 10.1136/gut.2005.075127 – volume: 9 year: 2018 ident: 10.1016/j.snb.2020.129079_bib0115 article-title: Scatterings and quantum effects in (Al, In) N/GaN heterostructures for high-power and high-frequency electronics publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.024006 – volume: 123 year: 2018 ident: 10.1016/j.snb.2020.129079_bib0130 article-title: Edge enhanced growth induced shape transition in the formation of GaN nanowall network publication-title: J. Appl. Phys. doi: 10.1063/1.5004496 – volume: 3 year: 2017 ident: 10.1016/j.snb.2020.129079_bib0075 article-title: Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors publication-title: Sci. Adv. doi: 10.1126/sciadv.1602557 – volume: 77 year: 1996 ident: 10.1016/j.snb.2020.129079_bib0150 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 54 year: 1996 ident: 10.1016/j.snb.2020.129079_bib0140 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 182 year: 2013 ident: 10.1016/j.snb.2020.129079_bib0045 article-title: Optical H2 sensing properties of vertically aligned Pd/WO3 nanorods thin films deposited via glancing angle rf magnetron sputtering publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.03.091 – volume: 39 year: 2014 ident: 10.1016/j.snb.2020.129079_bib0185 article-title: Comparative study of Schottky diode type hydrogen sensors based on a honeycomb GaN nanonetwork and on a planar GaN film publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.03.120 – volume: 26 year: 2014 ident: 10.1016/j.snb.2020.129079_bib0005 article-title: Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials publication-title: Adv. Mater. – volume: 209 year: 2014 ident: 10.1016/j.snb.2020.129079_bib0135 article-title: Platinum/porous GaN nanonetwork metal-semiconductor Schottky diode for room temperature hydrogen sensor publication-title: Sens. Actuators Phys. doi: 10.1016/j.sna.2014.01.014 – volume: 4 year: 2010 ident: 10.1016/j.snb.2020.129079_bib0160 article-title: Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires publication-title: ACS Nano doi: 10.1021/nn101475c – volume: 1 year: 2014 ident: 10.1016/j.snb.2020.129079_bib0060 article-title: Dynamic and static manifestation of molecular absorption in thin films probed by a microcantilever publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.1.024001 – volume: 11 year: 2019 ident: 10.1016/j.snb.2020.129079_bib0110 article-title: Assessing the role of fluorine in the performance of AlxGa1−xN/GaN high-electron-mobility transistors from first-principles calculations publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.054021 – volume: 243 year: 2017 ident: 10.1016/j.snb.2020.129079_bib0040 article-title: Interference effects between hydrogen and ozone in the response of SnO2-based gas sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2016.11.156 – volume: 28 year: 2016 ident: 10.1016/j.snb.2020.129079_bib0205 article-title: Monolayer phosphorene–metal contacts publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04899 – volume: 59 year: 1999 ident: 10.1016/j.snb.2020.129079_bib0145 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 137 year: 2009 ident: 10.1016/j.snb.2020.129079_bib0195 article-title: Sensing performance of thermoelectric hydrogen sensor for breath hydrogen analysis publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2009.01.029 – volume: 13 year: 1976 ident: 10.1016/j.snb.2020.129079_bib0155 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 4 year: 2014 ident: 10.1016/j.snb.2020.129079_bib0200 article-title: Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors publication-title: Phys. Rev. X – volume: 162 year: 2012 ident: 10.1016/j.snb.2020.129079_bib0010 article-title: Palladium nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2011.12.044 – volume: 12 year: 2018 ident: 10.1016/j.snb.2020.129079_bib0070 article-title: Highly sensitive bulk silicon chemical sensors with sub-5 nm thin charge inversion layers publication-title: ACS Nano doi: 10.1021/acsnano.8b00580 – volume: 98 year: 2004 ident: 10.1016/j.snb.2020.129079_bib0035 article-title: Kinetics of gas response to reducing gases of SnO2 films, deposited by spray pyrolysis publication-title: Sens. Actuators B Chem. – volume: 176 year: 2013 ident: 10.1016/j.snb.2020.129079_bib0085 article-title: Modeling and experimental study on sensing response of an AlGaN/GaN HEMT-based hydrogen sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.09.012 – volume: 20 year: 2010 ident: 10.1016/j.snb.2020.129079_bib0095 article-title: Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading publication-title: Adv. Funct. Mater. – volume: 234 year: 2019 ident: 10.1016/j.snb.2020.129079_bib0180 article-title: Enhancement of hydrogen sensing response of ZnO nanowires for the decoration of WO3 nanoparticles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.09.129 – volume: 7 year: 2012 ident: 10.1016/j.snb.2020.129079_bib0120 article-title: Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-7-686 – volume: 406 year: 2014 ident: 10.1016/j.snb.2020.129079_bib0020 article-title: Medical applications of breath hydrogen measurements publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-013-7606-6 – volume: 126 year: 2007 ident: 10.1016/j.snb.2020.129079_bib0170 article-title: Gas response times of nano-scale SnO2 gas sensors as determined by the moving gas outlet technique publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2006.11.032 – volume: 106 year: 2018 ident: 10.1016/j.snb.2020.129079_bib0105 article-title: Facile synthesis and remarkable hydrogen sensing performance of Pt-loaded SnO2 hollow microspheres publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2018.06.027 |
SSID | ssj0004360 |
Score | 2.4239304 |
Snippet | [Display omitted]
•Employment of GaN honeycomb nanonetwork for the FET type H2 gas sensor.•Demonstration of a H2 sensor with small LOD ∼34 ppb and fast... Material architecture design plays a crucial role in developing gas sensors. GaN has been proposed as a promising material for H2 gas sensor. However, it is... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 129079 |
SubjectTerms | Density functional theory Field effect transistor Field effect transistors Gallium nitrides GaN Gas sensors Hydrogen gas sensor Nanosensors Platinum Response time Semiconductor devices Sensors |
Title | Ultrafast H2 gas nanosensor for ppb-level H2 gas detection based on GaN honeycomb nanonetwork |
URI | https://dx.doi.org/10.1016/j.snb.2020.129079 https://www.proquest.com/docview/2499925259 |
Volume | 329 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnqJQkAcmJNPEdpJmRAgIILpAJRZk2Y4NRVUaNWFg4bdzdhJeEgxsVnJ2rLNzd1_y3Rmhw1ApFsuEEyk1JzwMLbQCRoaRoTkH_Kwjlzt8M4qzMb-6j-4X0GmXC-Nola3tb2y6t9btlUGrzUE5mQxugxTAjedxMP8hw2Ww88Tt8uO3T5oHZz5T2AkTJ9392fQcr6pQABGpq7EAIDH9zTf9sNLe9ZyvodU2ZsQnzbTW0YIpNtDKl0qCm-hhPK3n0sqqxhnFj7LChSxmFWDU2RxDXIrLUpGpIwh193NTexZWgZ0jyzE0LuQIP80K8wrKUH6AoiGJb6Hx-dndaUbakxOIBg9dkzQPU1e3XvNYURO6Q7-SSEFsYFKtmIYF4rHVlGkp44ip3A5tGjFuLMtzy1LLttGie8YOwnpIYfY2SECKcxNDBKG4Vgk0IS5XUQ8Fnc6EbsuKu9MtpqLjjz0LULNwahaNmnvo6KNL2dTU-EuYdwshvm0MATb_r279btFE-1ZWgjp4RyNAfLv_G3UPLVPHaQkpCeM-WqznL2YfgpJaHfhdd4CWTi6vs9E7v2rgiw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BewAOiFUsBXzghBS18ZI2R4SAsPUClbggy3ZsFlVp1YQDf884C5sEB25WYjvW2JmZl7yZATgMtWaR6vNAKcMDHoYOWz0WDISlKUf8bISPHb4ZRsmIX96L-zk4aWJhPK2y1v2VTi-1dX2lW0uzO31-7t72YgQ3JY-DlR8y5qHts1OJFrSPL66S4Wd4JCuDhX3_wA9ofm6WNK8804gSqU-zgDgx_s08_VDUpfU5W4Hl2m0kx9XKVmHOZmuw9CWZ4Do8jMbFTDmVFySh5FHlJFPZJEeYOpkRdE3JdKqDsecINfdTW5RErIx4W5YSbJyrIXmaZPYN5aHLCbKKJ74Bo7PTu5MkqIsnBAaNdBHEaRj71PWGR5ra0Nf96guN7oGNjWYG94hHzlBmlIoE06kbuFgwbh1LU8dixzah5Z-xBcQMKK7e9frYi3MboROhudF9bKJrrsU29BqZSVNnFvcFLsayoZC9SBSz9GKWlZi34ehjyLRKq_FXZ95shPx2NiSq_b-GdZpNk_WLmUvqER4VCPp2_jfrASwkdzfX8vpieLULi9RTXHx9GNGBVjF7tXvooxR6vz6D73vM4zo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+H2+gas+nanosensor+for+ppb-level+H2+gas+detection+based+on+GaN+honeycomb+nanonetwork&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Zhong%2C+Aihua&rft.au=Shen%2C+Bowei&rft.au=Wang%2C+Tao&rft.au=Jin%2C+Hao&rft.date=2021-02-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=B329&rft.spage=1&rft_id=info:doi/10.1016%2Fj.snb.2020.129079&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |