Ultrafast H2 gas nanosensor for ppb-level H2 gas detection based on GaN honeycomb nanonetwork

[Display omitted] •Employment of GaN honeycomb nanonetwork for the FET type H2 gas sensor.•Demonstration of a H2 sensor with small LOD ∼34 ppb and fast response ∼3 s.•Employment of Pt nanonetwork as the catalyst for H2 gas dissociation.•First discovery of electron tunneling effect during H2 gas dete...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 329; p. 129079
Main Authors Zhong, Aihua, Shen, Bowei, Wang, Tao, Jin, Hao, Xie, Yizhu, Zhang, Dongping, Li, Huayao, Liu, Huan, Luo, Jingting, Fan, Ping
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.02.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Employment of GaN honeycomb nanonetwork for the FET type H2 gas sensor.•Demonstration of a H2 sensor with small LOD ∼34 ppb and fast response ∼3 s.•Employment of Pt nanonetwork as the catalyst for H2 gas dissociation.•First discovery of electron tunneling effect during H2 gas detection. Material architecture design plays a crucial role in developing gas sensors. GaN has been proposed as a promising material for H2 gas sensor. However, it is subject to long response time and large low limit of detection (LOD).via spherical metal pattern technology, honeycomb can be created in GaN nanostructure but has yet to be explored. Herein, the GaN honeycomb nanonetwork was utilized to fabricate a field effect transistor (FET) type hydrogen (H2) gas nanosensor and its H2 gas sensing performances were systematically investigated. Through the combination of the novel honeycomb nanonetwork with the field effect modulation, we demonstrate high performance H2 gas sensor with wide detection concentration range, fast response, and small LOD. It is worth noting that the response time for H2 gas is very fast, as short as ≤3 s. Most importantly, the LOD for this FET type sensor is as small as ∼ 34 ppb. Density functional theory (DFT) calculation was utilized to study the H2 gas sensing mechanism. Significant reduction of Schottky barrier and improvement of the tunneling probability of the Pt-GaN metal-semiconductor interface were observed. Finally, a model is proposed to explain the H2 gas sensing mechanism.
AbstractList [Display omitted] •Employment of GaN honeycomb nanonetwork for the FET type H2 gas sensor.•Demonstration of a H2 sensor with small LOD ∼34 ppb and fast response ∼3 s.•Employment of Pt nanonetwork as the catalyst for H2 gas dissociation.•First discovery of electron tunneling effect during H2 gas detection. Material architecture design plays a crucial role in developing gas sensors. GaN has been proposed as a promising material for H2 gas sensor. However, it is subject to long response time and large low limit of detection (LOD).via spherical metal pattern technology, honeycomb can be created in GaN nanostructure but has yet to be explored. Herein, the GaN honeycomb nanonetwork was utilized to fabricate a field effect transistor (FET) type hydrogen (H2) gas nanosensor and its H2 gas sensing performances were systematically investigated. Through the combination of the novel honeycomb nanonetwork with the field effect modulation, we demonstrate high performance H2 gas sensor with wide detection concentration range, fast response, and small LOD. It is worth noting that the response time for H2 gas is very fast, as short as ≤3 s. Most importantly, the LOD for this FET type sensor is as small as ∼ 34 ppb. Density functional theory (DFT) calculation was utilized to study the H2 gas sensing mechanism. Significant reduction of Schottky barrier and improvement of the tunneling probability of the Pt-GaN metal-semiconductor interface were observed. Finally, a model is proposed to explain the H2 gas sensing mechanism.
Material architecture design plays a crucial role in developing gas sensors. GaN has been proposed as a promising material for H2 gas sensor. However, it is subject to long response time and large low limit of detection (LOD). via spherical metal pattern technology, honeycomb can be created in GaN nanostructure but has yet to be explored. Herein, the GaN honeycomb nanonetwork was utilized to fabricate a field effect transistor (FET) type hydrogen (H2) gas nanosensor and its H2 gas sensing performances were systematically investigated. Through the combination of the novel honeycomb nanonetwork with the field effect modulation, we demonstrate high performance H2 gas sensor with wide detection concentration range, fast response, and small LOD. It is worth noting that the response time for H2 gas is very fast, as short as ≤3 s. Most importantly, the LOD for this FET type sensor is as small as ∼ 34 ppb. Density functional theory (DFT) calculation was utilized to study the H2 gas sensing mechanism. Significant reduction of Schottky barrier and improvement of the tunneling probability of the Pt-GaN metal-semiconductor interface were observed. Finally, a model is proposed to explain the H2 gas sensing mechanism.
ArticleNumber 129079
Author Li, Huayao
Xie, Yizhu
Jin, Hao
Zhong, Aihua
Liu, Huan
Zhang, Dongping
Luo, Jingting
Fan, Ping
Wang, Tao
Shen, Bowei
Author_xml – sequence: 1
  givenname: Aihua
  orcidid: 0000-0002-8838-260X
  surname: Zhong
  fullname: Zhong, Aihua
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China
– sequence: 2
  givenname: Bowei
  surname: Shen
  fullname: Shen, Bowei
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China
– sequence: 3
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China
– sequence: 4
  givenname: Hao
  surname: Jin
  fullname: Jin, Hao
  email: jh@szu.edu.cn
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China
– sequence: 5
  givenname: Yizhu
  surname: Xie
  fullname: Xie, Yizhu
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China
– sequence: 6
  givenname: Dongping
  surname: Zhang
  fullname: Zhang, Dongping
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China
– sequence: 7
  givenname: Huayao
  surname: Li
  fullname: Li, Huayao
  organization: School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
– sequence: 8
  givenname: Huan
  surname: Liu
  fullname: Liu, Huan
  organization: School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, PR China
– sequence: 9
  givenname: Jingting
  surname: Luo
  fullname: Luo, Jingting
  email: luojt@szu.edu.cn
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China
– sequence: 10
  givenname: Ping
  surname: Fan
  fullname: Fan, Ping
  email: fanping@szu.edu.cn
  organization: College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, PR China
BookMark eNp9kMtOAyEUhonRxLb6AO4mcT2Vy1xKXJlGW5NGN3ZpCDAHnXEKI0xr-vZSRzcuuiBAON_h_N8YnVpnAaErgqcEk-KmmQarphTTeKccl_wEjcisZCnDZXmKRpjTPM0wzs_ROIQGY5yxAo_Q67rtvTQy9MmSJm8yJFZaF8AG5xMTV9eptIUdtH_vFfSg-9rZRMkAVRIPC_mUvMd59tpt1E8DC_2X8x8X6MzINsDl7z5B64f7l_kyXT0vHud3q1TTDPcprwgv40Q6KxQFooHKMlc55sC1YpoolRVGU6alLHKmKjMzPGcZGFZVhnHDJuh66Nt597mF0IvGbb2NXwqacR6z05zHKjJUae9C8GBE5-uN9HtBsDhYFI2IFsXBohgsRqb8x-i6l4f4UVvdHiVvBxJi8F0NXgRdg9VQ1T4KFJWrj9Df96mOqQ
CitedBy_id crossref_primary_10_1016_j_snb_2024_136623
crossref_primary_10_1007_s12598_024_02976_3
crossref_primary_10_1021_acssensors_3c01659
crossref_primary_10_1002_advs_202205725
crossref_primary_10_1021_acssensors_4c00431
crossref_primary_10_1039_D2TC02103J
crossref_primary_10_1021_acsaelm_4c00324
crossref_primary_10_1109_JSEN_2023_3304855
crossref_primary_10_1016_j_snb_2024_136172
crossref_primary_10_1021_acsami_1c04469
crossref_primary_10_1088_2632_959X_ac3636
crossref_primary_10_1016_j_cej_2022_141258
crossref_primary_10_1016_j_snb_2022_131981
crossref_primary_10_1016_j_snb_2024_135569
crossref_primary_10_1016_j_snb_2021_130488
crossref_primary_10_1016_j_snb_2022_131971
Cites_doi 10.1039/b9nr00015a
10.1016/j.snb.2007.07.122
10.1016/j.snb.2017.09.107
10.1016/j.ijhydene.2012.03.124
10.1016/j.snb.2006.11.008
10.1039/c2nr11765g
10.1016/j.snb.2017.10.109
10.1186/s11671-018-2461-1
10.1016/j.cardfail.2018.10.004
10.1039/c1jm12701b
10.1016/j.snb.2005.11.020
10.1136/gut.2005.075127
10.1103/PhysRevApplied.9.024006
10.1063/1.5004496
10.1126/sciadv.1602557
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.54.11169
10.1016/j.snb.2013.03.091
10.1016/j.ijhydene.2014.03.120
10.1016/j.sna.2014.01.014
10.1021/nn101475c
10.1103/PhysRevApplied.1.024001
10.1103/PhysRevApplied.11.054021
10.1016/j.snb.2016.11.156
10.1021/acs.chemmater.5b04899
10.1103/PhysRevB.59.1758
10.1016/j.snb.2009.01.029
10.1103/PhysRevB.13.5188
10.1016/j.snb.2011.12.044
10.1021/acsnano.8b00580
10.1016/j.snb.2012.09.012
10.1016/j.matlet.2018.09.129
10.1186/1556-276X-7-686
10.1007/s00216-013-7606-6
10.1016/j.snb.2006.11.032
10.1016/j.materresbull.2018.06.027
ContentType Journal Article
Copyright 2020
Copyright Elsevier Science Ltd. Feb 15, 2021
Copyright_xml – notice: 2020
– notice: Copyright Elsevier Science Ltd. Feb 15, 2021
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2020.129079
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
ExternalDocumentID 10_1016_j_snb_2020_129079
S0925400520314222
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SCH
SEW
SSH
WUQ
7SP
7SR
7TB
7U5
8BQ
8FD
EFKBS
FR3
JG9
L7M
ID FETCH-LOGICAL-c240t-9d197004c46b2e1ce2a75b509e9cb3c1bb46fc23caa653bdf8f9534ef3ddf39f3
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Fri Jul 25 04:25:39 EDT 2025
Tue Jul 01 01:27:46 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Fri Feb 23 02:48:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Field effect transistor
Response time
Hydrogen gas sensor
GaN
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c240t-9d197004c46b2e1ce2a75b509e9cb3c1bb46fc23caa653bdf8f9534ef3ddf39f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8838-260X
PQID 2499925259
PQPubID 2047454
ParticipantIDs proquest_journals_2499925259
crossref_primary_10_1016_j_snb_2020_129079
crossref_citationtrail_10_1016_j_snb_2020_129079
elsevier_sciencedirect_doi_10_1016_j_snb_2020_129079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Huang, Hsu, Chen, Liu (bib0080) 2007; 123
Helwig, Muller, Sberveglieri, Faglia (bib0170) 2007; 126
Korotcenkov, Brinzari, Golovanov, Blinov (bib0035) 2004; 98
Wang, Yin, Khan, Muhtadi, Asif, Choi, Datta (bib0115) 2018; 9
Huang, Hsu, Chen, Wang, Lin, Chen, Liu (bib0190) 2006; 117
Zhong, Hane (bib0120) 2012; 7
Fahad, Gupta, Han, Desai, Javey (bib0070) 2018; 12
Nishibori, Shin, Izu, Itoh, Matsubara (bib0195) 2009; 137
Kaniyoor, Imran Jafri, Arockiadoss, Ramaprabhu (bib0055) 2009; 1
Chen, Chen, Boussaid, Zhang, Pan, Zhao, Bermak, Tsui, Wang, Fan (bib0100) 2018; 12
Bizhou, Jia, Lv, Qin, Liu, Chen (bib0105) 2018; 106
[1] Nasir, Dickson, Wurtz, Wardley, Zayats (bib0005) 2014; 26
Korotcenkov, Brinzari, Cho (bib0040) 2017; 243
Yang, Kamienchick, Youn, Rothschild, Kim (bib0095) 2010; 20
Perdew, Burke, Ernzerhof (bib0150) 1996; 77
Yang, Kung, Cheng, Hemminger, Penner (bib0160) 2010; 4
Zhong, Sasaki, Hane (bib0185) 2014; 39
Finot, Fabre, Passian, Thundat (bib0060) 2014; 1
Fahad, Shiraki, Amani, Zhang, Hebbar, Gao, Ota, Hettick, Kiriya, Chen, Chueh, Javey (bib0075) 2017; 3
Zhong, Sasaki, Hane (bib0135) 2014; 209
Kresse, Furthmüller (bib0140) 1996; 54
Pan, Wang, Ye, Quhe, Zhong, Song, Peng, Yu, Yang, Shi, Lu (bib0205) 2016; 28
Baek, Jang, Kim, Kim, Kim, Rim, Shin, Lee, Cho, Lee (bib0065) 2018; 256
Mao, Cui, Yu, Wen, Lu, Chen (bib0050) 2012; 4
Wisitsoorat, Ahmad, Yaacob, Horpratum, Phakaratkul, Lomas, Tuantranont, Wlodarski (bib0045) 2013; 182
Simren (bib0030) 2006; 55
Zhong, Fan, Zhong, Zhang, Li, Luo, Xie, Hane (bib0125) 2018; 13
Kresse, Joubert (bib0145) 1999; 59
Guo, Wang, Hao, Luo (bib0085) 2013; 176
Hung, Chang, Hsu, Chu, Lo, Hsu, Pearton, Holzworth, Whiting, Rudawski, Jones, Dabiran, Chow, Ren (bib0090) 2012; 37
Helwig, Muller, Sberveglieri, Faglia (bib0165) 2008; 130
Monkhorst, Pack (bib0155) 1976; 13
Noh, Kim, Kim, Lee, Cho, Lee (bib0175) 2011; 21
Nayak, Kumar, Shivaprasad (bib0130) 2018; 123
Shin (bib0020) 2014; 406
Zhong, Sasaki, Fan, Zhang, Luo, Hane (bib0015) 2018; 255
Lin, Huang (bib0010) 2012; 162
Wang, Tong, Xu, Zhang, Zheng, Chen, Tan (bib0110) 2019; 11
Park (bib0180) 2019; 234
Mollar, Villanueva, NÚÑez, CarratalÁ, Mora, BayÉs-GenÍs, MÍnguez, Marrachelli, Monleon, Navarro, Sanchis, NÚÑez (bib0025) 2019; 25
Kang, Liu, Sarkar, Jena, Banerjee (bib0200) 2014; 4
Helwig (10.1016/j.snb.2020.129079_bib0170) 2007; 126
Fahad (10.1016/j.snb.2020.129079_bib0070) 2018; 12
Zhong (10.1016/j.snb.2020.129079_bib0185) 2014; 39
Zhong (10.1016/j.snb.2020.129079_bib0015) 2018; 255
Zhong (10.1016/j.snb.2020.129079_bib0135) 2014; 209
Nayak (10.1016/j.snb.2020.129079_bib0130) 2018; 123
Hung (10.1016/j.snb.2020.129079_bib0090) 2012; 37
Korotcenkov (10.1016/j.snb.2020.129079_bib0040) 2017; 243
Huang (10.1016/j.snb.2020.129079_bib0190) 2006; 117
Wisitsoorat (10.1016/j.snb.2020.129079_bib0045) 2013; 182
Nishibori (10.1016/j.snb.2020.129079_bib0195) 2009; 137
Zhong (10.1016/j.snb.2020.129079_bib0125) 2018; 13
Kresse (10.1016/j.snb.2020.129079_bib0145) 1999; 59
Korotcenkov (10.1016/j.snb.2020.129079_bib0035) 2004; 98
Park (10.1016/j.snb.2020.129079_bib0180) 2019; 234
Simren (10.1016/j.snb.2020.129079_bib0030) 2006; 55
Mao (10.1016/j.snb.2020.129079_bib0050) 2012; 4
Wang (10.1016/j.snb.2020.129079_bib0110) 2019; 11
Lin (10.1016/j.snb.2020.129079_bib0010) 2012; 162
Guo (10.1016/j.snb.2020.129079_bib0085) 2013; 176
Zhong (10.1016/j.snb.2020.129079_bib0120) 2012; 7
Noh (10.1016/j.snb.2020.129079_bib0175) 2011; 21
Kresse (10.1016/j.snb.2020.129079_bib0140) 1996; 54
Helwig (10.1016/j.snb.2020.129079_bib0165) 2008; 130
Shin (10.1016/j.snb.2020.129079_bib0020) 2014; 406
Kang (10.1016/j.snb.2020.129079_bib0200) 2014; 4
Kaniyoor (10.1016/j.snb.2020.129079_bib0055) 2009; 1
Fahad (10.1016/j.snb.2020.129079_bib0075) 2017; 3
Chen (10.1016/j.snb.2020.129079_bib0100) 2018; 12
Bizhou (10.1016/j.snb.2020.129079_bib0105) 2018; 106
Perdew (10.1016/j.snb.2020.129079_bib0150) 1996; 77
[1] Nasir (10.1016/j.snb.2020.129079_bib0005) 2014; 26
Yang (10.1016/j.snb.2020.129079_bib0160) 2010; 4
Wang (10.1016/j.snb.2020.129079_bib0115) 2018; 9
Pan (10.1016/j.snb.2020.129079_bib0205) 2016; 28
Huang (10.1016/j.snb.2020.129079_bib0080) 2007; 123
Mollar (10.1016/j.snb.2020.129079_bib0025) 2019; 25
Yang (10.1016/j.snb.2020.129079_bib0095) 2010; 20
Finot (10.1016/j.snb.2020.129079_bib0060) 2014; 1
Baek (10.1016/j.snb.2020.129079_bib0065) 2018; 256
Monkhorst (10.1016/j.snb.2020.129079_bib0155) 1976; 13
References_xml – volume: 11
  year: 2019
  ident: bib0110
  article-title: Assessing the role of fluorine in the performance of Al
  publication-title: Phys. Rev. Appl.
– volume: 13
  year: 2018
  ident: bib0125
  article-title: Structure Shift of GaN among nanowall network, nanocolumn, and compact film grown on Si (111) by MBE
  publication-title: Nanoscale Res. Lett.
– volume: 39
  year: 2014
  ident: bib0185
  article-title: Comparative study of Schottky diode type hydrogen sensors based on a honeycomb GaN nanonetwork and on a planar GaN film
  publication-title: Int. J. Hydrogen Energy
– volume: 12
  year: 2018
  ident: bib0100
  article-title: Ultra-low-power smart electronic nose system based on three-dimensional tin oxide nanotube arrays
  publication-title: ACS Nano
– volume: 176
  year: 2013
  ident: bib0085
  article-title: Modeling and experimental study on sensing response of an AlGaN/GaN HEMT-based hydrogen sensor
  publication-title: Sens. Actuators B Chem.
– volume: 37
  year: 2012
  ident: bib0090
  article-title: SnO
  publication-title: Int. J. Hydrogen Energy
– volume: 20
  year: 2010
  ident: bib0095
  article-title: Ultrasensitive and highly selective gas sensors based on electrospun SnO
  publication-title: Adv. Funct. Mater.
– volume: 106
  year: 2018
  ident: bib0105
  article-title: Facile synthesis and remarkable hydrogen sensing performance of Pt-loaded SnO
  publication-title: Mater. Res. Bull.
– volume: 406
  year: 2014
  ident: bib0020
  article-title: Medical applications of breath hydrogen measurements
  publication-title: Anal. Bioanal. Chem.
– volume: 55
  year: 2006
  ident: bib0030
  article-title: Use and abuse of hydrogen breath tests
  publication-title: Gut
– volume: 26
  year: 2014
  ident: bib0005
  article-title: Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials
  publication-title: Adv. Mater.
– volume: 3
  year: 2017
  ident: bib0075
  article-title: Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors
  publication-title: Sci. Adv.
– volume: 4
  year: 2010
  ident: bib0160
  article-title: Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires
  publication-title: ACS Nano
– volume: 256
  year: 2018
  ident: bib0065
  article-title: High-performance hydrogen sensing properties and sensing mechanism in Pd-coated p-type Si nanowire arrays
  publication-title: Sens. Actuators B Chem.
– volume: 255
  year: 2018
  ident: bib0015
  article-title: Integrated H
  publication-title: Sens. Actuators B Chem.
– volume: 25
  year: 2019
  ident: bib0025
  article-title: Hydrogen- and methane-based breath testing and outcomes in patients with heart failure
  publication-title: J. Card. Fail.
– volume: 123
  year: 2018
  ident: bib0130
  article-title: Edge enhanced growth induced shape transition in the formation of GaN nanowall network
  publication-title: J. Appl. Phys.
– volume: 4
  year: 2012
  ident: bib0050
  article-title: Ultrafast hydrogen sensing through hybrids of semiconducting single-walled carbon nanotubes and tin oxide nanocrystals
  publication-title: Nanoscale
– volume: 12
  year: 2018
  ident: bib0070
  article-title: Highly sensitive bulk silicon chemical sensors with sub-5 nm thin charge inversion layers
  publication-title: ACS Nano
– volume: 162
  year: 2012
  ident: bib0010
  article-title: Palladium nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing
  publication-title: Sens. Actuators B Chem.
– volume: 54
  year: 1996
  ident: bib0140
  article-title: Efficient iterative schemes for
  publication-title: Phys. Rev. B
– volume: 21
  year: 2011
  ident: bib0175
  article-title: High-performance vertical hydrogen sensors using Pd-coated rough Si nanowires
  publication-title: J. Mater. Chem.
– volume: 98
  year: 2004
  ident: bib0035
  article-title: Kinetics of gas response to reducing gases of SnO
  publication-title: Sens. Actuators B Chem.
– volume: 28
  year: 2016
  ident: bib0205
  article-title: Monolayer phosphorene–metal contacts
  publication-title: Chem. Mater.
– volume: 4
  year: 2014
  ident: bib0200
  article-title: Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors
  publication-title: Phys. Rev. X
– volume: 13
  year: 1976
  ident: bib0155
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 243
  year: 2017
  ident: bib0040
  article-title: Interference effects between hydrogen and ozone in the response of SnO
  publication-title: Sens. Actuators B Chem.
– volume: 59
  year: 1999
  ident: bib0145
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
– volume: 130
  year: 2008
  ident: bib0165
  article-title: Catalytic enhancement of SnO
  publication-title: Sens. Actuators B Chem.
– volume: 77
  year: 1996
  ident: bib0150
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 1
  year: 2009
  ident: bib0055
  article-title: Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor
  publication-title: Nanoscale
– volume: 137
  year: 2009
  ident: bib0195
  article-title: Sensing performance of thermoelectric hydrogen sensor for breath hydrogen analysis
  publication-title: Sens. Actuators B Chem.
– volume: 117
  year: 2006
  ident: bib0190
  article-title: Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al
  publication-title: Sens. Actuators B Chem.
– volume: 7
  year: 2012
  ident: bib0120
  article-title: Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy
  publication-title: Nanoscale Res. Lett.
– volume: 9
  year: 2018
  ident: bib0115
  article-title: Scatterings and quantum effects in (Al, In) N/GaN heterostructures for high-power and high-frequency electronics
  publication-title: Phys. Rev. Appl.
– volume: 234
  year: 2019
  ident: bib0180
  article-title: Enhancement of hydrogen sensing response of ZnO nanowires for the decoration of WO
  publication-title: Mater. Lett.
– volume: 123
  year: 2007
  ident: bib0080
  article-title: Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N
  publication-title: Sens. Actuators B Chem.
– volume: 209
  year: 2014
  ident: bib0135
  article-title: Platinum/porous GaN nanonetwork metal-semiconductor Schottky diode for room temperature hydrogen sensor
  publication-title: Sens. Actuators Phys.
– volume: 182
  year: 2013
  ident: bib0045
  article-title: Optical H
  publication-title: Sens. Actuators B Chem.
– volume: 126
  year: 2007
  ident: bib0170
  article-title: Gas response times of nano-scale SnO
  publication-title: Sens. Actuators B Chem.
– volume: 1
  year: 2014
  ident: bib0060
  article-title: Dynamic and static manifestation of molecular absorption in thin films probed by a microcantilever
  publication-title: Phys. Rev. Appl.
– volume: 1
  year: 2009
  ident: 10.1016/j.snb.2020.129079_bib0055
  article-title: Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor
  publication-title: Nanoscale
  doi: 10.1039/b9nr00015a
– volume: 12
  year: 2018
  ident: 10.1016/j.snb.2020.129079_bib0100
  article-title: Ultra-low-power smart electronic nose system based on three-dimensional tin oxide nanotube arrays
  publication-title: ACS Nano
– volume: 130
  year: 2008
  ident: 10.1016/j.snb.2020.129079_bib0165
  article-title: Catalytic enhancement of SnO2 gas sensors as seen by the moving gas outlet method
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2007.07.122
– volume: 255
  year: 2018
  ident: 10.1016/j.snb.2020.129079_bib0015
  article-title: Integrated H2 nano-sensor array on GaN honeycomb nanonetwork fabricated by MEMS-based technology
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.09.107
– volume: 37
  year: 2012
  ident: 10.1016/j.snb.2020.129079_bib0090
  article-title: SnO2 functionalized AlGaN/GaN high electron mobility transistor for hydrogen sensing applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.03.124
– volume: 123
  year: 2007
  ident: 10.1016/j.snb.2020.129079_bib0080
  article-title: Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2006.11.008
– volume: 4
  year: 2012
  ident: 10.1016/j.snb.2020.129079_bib0050
  article-title: Ultrafast hydrogen sensing through hybrids of semiconducting single-walled carbon nanotubes and tin oxide nanocrystals
  publication-title: Nanoscale
  doi: 10.1039/c2nr11765g
– volume: 256
  year: 2018
  ident: 10.1016/j.snb.2020.129079_bib0065
  article-title: High-performance hydrogen sensing properties and sensing mechanism in Pd-coated p-type Si nanowire arrays
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.10.109
– volume: 13
  year: 2018
  ident: 10.1016/j.snb.2020.129079_bib0125
  article-title: Structure Shift of GaN among nanowall network, nanocolumn, and compact film grown on Si (111) by MBE
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-018-2461-1
– volume: 25
  year: 2019
  ident: 10.1016/j.snb.2020.129079_bib0025
  article-title: Hydrogen- and methane-based breath testing and outcomes in patients with heart failure
  publication-title: J. Card. Fail.
  doi: 10.1016/j.cardfail.2018.10.004
– volume: 21
  year: 2011
  ident: 10.1016/j.snb.2020.129079_bib0175
  article-title: High-performance vertical hydrogen sensors using Pd-coated rough Si nanowires
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12701b
– volume: 117
  year: 2006
  ident: 10.1016/j.snb.2020.129079_bib0190
  article-title: Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7 As Schottky diodes
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2005.11.020
– volume: 55
  year: 2006
  ident: 10.1016/j.snb.2020.129079_bib0030
  article-title: Use and abuse of hydrogen breath tests
  publication-title: Gut
  doi: 10.1136/gut.2005.075127
– volume: 9
  year: 2018
  ident: 10.1016/j.snb.2020.129079_bib0115
  article-title: Scatterings and quantum effects in (Al, In) N/GaN heterostructures for high-power and high-frequency electronics
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.024006
– volume: 123
  year: 2018
  ident: 10.1016/j.snb.2020.129079_bib0130
  article-title: Edge enhanced growth induced shape transition in the formation of GaN nanowall network
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5004496
– volume: 3
  year: 2017
  ident: 10.1016/j.snb.2020.129079_bib0075
  article-title: Room temperature multiplexed gas sensing using chemical-sensitive 3.5-nm-thin silicon transistors
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602557
– volume: 77
  year: 1996
  ident: 10.1016/j.snb.2020.129079_bib0150
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 54
  year: 1996
  ident: 10.1016/j.snb.2020.129079_bib0140
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 182
  year: 2013
  ident: 10.1016/j.snb.2020.129079_bib0045
  article-title: Optical H2 sensing properties of vertically aligned Pd/WO3 nanorods thin films deposited via glancing angle rf magnetron sputtering
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2013.03.091
– volume: 39
  year: 2014
  ident: 10.1016/j.snb.2020.129079_bib0185
  article-title: Comparative study of Schottky diode type hydrogen sensors based on a honeycomb GaN nanonetwork and on a planar GaN film
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.03.120
– volume: 26
  year: 2014
  ident: 10.1016/j.snb.2020.129079_bib0005
  article-title: Hydrogen detected by the naked eye: optical hydrogen gas sensors based on core/shell plasmonic nanorod metamaterials
  publication-title: Adv. Mater.
– volume: 209
  year: 2014
  ident: 10.1016/j.snb.2020.129079_bib0135
  article-title: Platinum/porous GaN nanonetwork metal-semiconductor Schottky diode for room temperature hydrogen sensor
  publication-title: Sens. Actuators Phys.
  doi: 10.1016/j.sna.2014.01.014
– volume: 4
  year: 2010
  ident: 10.1016/j.snb.2020.129079_bib0160
  article-title: Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires
  publication-title: ACS Nano
  doi: 10.1021/nn101475c
– volume: 1
  year: 2014
  ident: 10.1016/j.snb.2020.129079_bib0060
  article-title: Dynamic and static manifestation of molecular absorption in thin films probed by a microcantilever
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.1.024001
– volume: 11
  year: 2019
  ident: 10.1016/j.snb.2020.129079_bib0110
  article-title: Assessing the role of fluorine in the performance of AlxGa1−xN/GaN high-electron-mobility transistors from first-principles calculations
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.054021
– volume: 243
  year: 2017
  ident: 10.1016/j.snb.2020.129079_bib0040
  article-title: Interference effects between hydrogen and ozone in the response of SnO2-based gas sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2016.11.156
– volume: 28
  year: 2016
  ident: 10.1016/j.snb.2020.129079_bib0205
  article-title: Monolayer phosphorene–metal contacts
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04899
– volume: 59
  year: 1999
  ident: 10.1016/j.snb.2020.129079_bib0145
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 137
  year: 2009
  ident: 10.1016/j.snb.2020.129079_bib0195
  article-title: Sensing performance of thermoelectric hydrogen sensor for breath hydrogen analysis
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2009.01.029
– volume: 13
  year: 1976
  ident: 10.1016/j.snb.2020.129079_bib0155
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 4
  year: 2014
  ident: 10.1016/j.snb.2020.129079_bib0200
  article-title: Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors
  publication-title: Phys. Rev. X
– volume: 162
  year: 2012
  ident: 10.1016/j.snb.2020.129079_bib0010
  article-title: Palladium nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2011.12.044
– volume: 12
  year: 2018
  ident: 10.1016/j.snb.2020.129079_bib0070
  article-title: Highly sensitive bulk silicon chemical sensors with sub-5 nm thin charge inversion layers
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00580
– volume: 98
  year: 2004
  ident: 10.1016/j.snb.2020.129079_bib0035
  article-title: Kinetics of gas response to reducing gases of SnO2 films, deposited by spray pyrolysis
  publication-title: Sens. Actuators B Chem.
– volume: 176
  year: 2013
  ident: 10.1016/j.snb.2020.129079_bib0085
  article-title: Modeling and experimental study on sensing response of an AlGaN/GaN HEMT-based hydrogen sensor
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2012.09.012
– volume: 20
  year: 2010
  ident: 10.1016/j.snb.2020.129079_bib0095
  article-title: Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading
  publication-title: Adv. Funct. Mater.
– volume: 234
  year: 2019
  ident: 10.1016/j.snb.2020.129079_bib0180
  article-title: Enhancement of hydrogen sensing response of ZnO nanowires for the decoration of WO3 nanoparticles
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.09.129
– volume: 7
  year: 2012
  ident: 10.1016/j.snb.2020.129079_bib0120
  article-title: Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-7-686
– volume: 406
  year: 2014
  ident: 10.1016/j.snb.2020.129079_bib0020
  article-title: Medical applications of breath hydrogen measurements
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-013-7606-6
– volume: 126
  year: 2007
  ident: 10.1016/j.snb.2020.129079_bib0170
  article-title: Gas response times of nano-scale SnO2 gas sensors as determined by the moving gas outlet technique
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2006.11.032
– volume: 106
  year: 2018
  ident: 10.1016/j.snb.2020.129079_bib0105
  article-title: Facile synthesis and remarkable hydrogen sensing performance of Pt-loaded SnO2 hollow microspheres
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2018.06.027
SSID ssj0004360
Score 2.4239304
Snippet [Display omitted] •Employment of GaN honeycomb nanonetwork for the FET type H2 gas sensor.•Demonstration of a H2 sensor with small LOD ∼34 ppb and fast...
Material architecture design plays a crucial role in developing gas sensors. GaN has been proposed as a promising material for H2 gas sensor. However, it is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129079
SubjectTerms Density functional theory
Field effect transistor
Field effect transistors
Gallium nitrides
GaN
Gas sensors
Hydrogen gas sensor
Nanosensors
Platinum
Response time
Semiconductor devices
Sensors
Title Ultrafast H2 gas nanosensor for ppb-level H2 gas detection based on GaN honeycomb nanonetwork
URI https://dx.doi.org/10.1016/j.snb.2020.129079
https://www.proquest.com/docview/2499925259
Volume 329
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnqJQkAcmJNPEdpJmRAgIILpAJRZk2Y4NRVUaNWFg4bdzdhJeEgxsVnJ2rLNzd1_y3Rmhw1ApFsuEEyk1JzwMLbQCRoaRoTkH_Kwjlzt8M4qzMb-6j-4X0GmXC-Nola3tb2y6t9btlUGrzUE5mQxugxTAjedxMP8hw2Ww88Tt8uO3T5oHZz5T2AkTJ9392fQcr6pQABGpq7EAIDH9zTf9sNLe9ZyvodU2ZsQnzbTW0YIpNtDKl0qCm-hhPK3n0sqqxhnFj7LChSxmFWDU2RxDXIrLUpGpIwh193NTexZWgZ0jyzE0LuQIP80K8wrKUH6AoiGJb6Hx-dndaUbakxOIBg9dkzQPU1e3XvNYURO6Q7-SSEFsYFKtmIYF4rHVlGkp44ip3A5tGjFuLMtzy1LLttGie8YOwnpIYfY2SECKcxNDBKG4Vgk0IS5XUQ8Fnc6EbsuKu9MtpqLjjz0LULNwahaNmnvo6KNL2dTU-EuYdwshvm0MATb_r279btFE-1ZWgjp4RyNAfLv_G3UPLVPHaQkpCeM-WqznL2YfgpJaHfhdd4CWTi6vs9E7v2rgiw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BewAOiFUsBXzghBS18ZI2R4SAsPUClbggy3ZsFlVp1YQDf884C5sEB25WYjvW2JmZl7yZATgMtWaR6vNAKcMDHoYOWz0WDISlKUf8bISPHb4ZRsmIX96L-zk4aWJhPK2y1v2VTi-1dX2lW0uzO31-7t72YgQ3JY-DlR8y5qHts1OJFrSPL66S4Wd4JCuDhX3_wA9ofm6WNK8804gSqU-zgDgx_s08_VDUpfU5W4Hl2m0kx9XKVmHOZmuw9CWZ4Do8jMbFTDmVFySh5FHlJFPZJEeYOpkRdE3JdKqDsecINfdTW5RErIx4W5YSbJyrIXmaZPYN5aHLCbKKJ74Bo7PTu5MkqIsnBAaNdBHEaRj71PWGR5ra0Nf96guN7oGNjWYG94hHzlBmlIoE06kbuFgwbh1LU8dixzah5Z-xBcQMKK7e9frYi3MboROhudF9bKJrrsU29BqZSVNnFvcFLsayoZC9SBSz9GKWlZi34ehjyLRKq_FXZ95shPx2NiSq_b-GdZpNk_WLmUvqER4VCPp2_jfrASwkdzfX8vpieLULi9RTXHx9GNGBVjF7tXvooxR6vz6D73vM4zo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+H2+gas+nanosensor+for+ppb-level+H2+gas+detection+based+on+GaN+honeycomb+nanonetwork&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Zhong%2C+Aihua&rft.au=Shen%2C+Bowei&rft.au=Wang%2C+Tao&rft.au=Jin%2C+Hao&rft.date=2021-02-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=B329&rft.spage=1&rft_id=info:doi/10.1016%2Fj.snb.2020.129079&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon