Population Generation Methods for Metaheuristic Algorithms Used to Construct Compact Fuzzy Classifiers of Medical Data
Fuzzy classifiers differ from other machine learning algorithms in their ability to interpret the inference process, which is especially important in high responsibility subject areas such as medicine. The membership functions of fuzzy terms and the rule base are easy to visualize, so it is not diff...
Saved in:
Published in | Pattern recognition and image analysis Vol. 34; no. 3; pp. 396 - 411 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fuzzy classifiers differ from other machine learning algorithms in their ability to interpret the inference process, which is especially important in high responsibility subject areas such as medicine. The membership functions of fuzzy terms and the rule base are easy to visualize, so it is not difficult for the user to understand why a particular result was obtained. However, the interpretability of the model suffers if the resulting model is highly complex, when the classifier has more than a dozen of high-length rules. Balancing accuracy and complexity in fuzzy classifiers is a nontrivial task. This article, the first in a series about constructing compact classifiers for medical data, addresses the problem of maximizing accuracy with as few rules as possible using metaheuristic algorithms. Using metaheuristics to optimize fuzzy rules allows a more accurate representation of the subject domain, which has a positive effect on classification accuracy. To increase the efficiency of population metaheuristics, it is important to use an appropriate method for a particular algorithm to form optimization starting points. The paper investigates the effect of using different population identification methods for two metaheuristics – the swallow swarm algorithm and the hybrid of the gravitational search algorithm and the shuffled leaping frogs algorithm. |
---|---|
AbstractList | Fuzzy classifiers differ from other machine learning algorithms in their ability to interpret the inference process, which is especially important in high responsibility subject areas such as medicine. The membership functions of fuzzy terms and the rule base are easy to visualize, so it is not difficult for the user to understand why a particular result was obtained. However, the interpretability of the model suffers if the resulting model is highly complex, when the classifier has more than a dozen of high-length rules. Balancing accuracy and complexity in fuzzy classifiers is a nontrivial task. This article, the first in a series about constructing compact classifiers for medical data, addresses the problem of maximizing accuracy with as few rules as possible using metaheuristic algorithms. Using metaheuristics to optimize fuzzy rules allows a more accurate representation of the subject domain, which has a positive effect on classification accuracy. To increase the efficiency of population metaheuristics, it is important to use an appropriate method for a particular algorithm to form optimization starting points. The paper investigates the effect of using different population identification methods for two metaheuristics – the swallow swarm algorithm and the hybrid of the gravitational search algorithm and the shuffled leaping frogs algorithm. |
Author | Hodashinsky, I. Hodashinskaya, A. Bardamova, M. Shurygin, Y. Svetlakov, M. Sarin, K. |
Author_xml | – sequence: 1 givenname: M. surname: Bardamova fullname: Bardamova, M. email: 722bmb@gmail.com organization: Tomsk State University of Control Systems and Radioelectronics – sequence: 2 givenname: M. surname: Svetlakov fullname: Svetlakov, M. email: svetlakov.m4@gmail.com organization: Tomsk State University of Control Systems and Radioelectronics – sequence: 3 givenname: K. surname: Sarin fullname: Sarin, K. email: sarin.konstantin@mail.ru organization: Tomsk State University of Control Systems and Radioelectronics – sequence: 4 givenname: A. surname: Hodashinskaya fullname: Hodashinskaya, A. email: tonyhodas11@mail.ru organization: Tomsk State University of Control Systems and Radioelectronics – sequence: 5 givenname: Y. surname: Shurygin fullname: Shurygin, Y. email: yuri.shurygin@tusur.ru organization: Tomsk State University of Control Systems and Radioelectronics – sequence: 6 givenname: I. surname: Hodashinsky fullname: Hodashinsky, I. email: hodashn@rambler.ru organization: Tomsk State University of Control Systems and Radioelectronics |
BookMark | eNp9kN1KwzAYhoNMcJtegGe5gWqSJmlzOKqbwkRBd1zSJN0yumYkqbBdvRn1TPDoe-D94eOdgUnvegPAPUYPGOf08RMjRjnHJaEFQiUSV2CKGWMZJ5hMEic5u-g3YBbCHiUPFmQKvj_ccehktK6HK9MbP-KbiTunA2ydv7DcmcHbEK2Ci27rvI27Q4CbYDSMDlauD9EPKiY6HGW6y-F8PsGqkyHY1hofoGtTj7ZKdvBJRnkLrlvZBXP3e-dgs3z-ql6y9fvqtVqsM0UoipmgWpQcKVwWjSCNVGUjMNOCy5K3khWEKcQIzUmjlOKKMsR1jmWh8pZTrnk-B3jsVd6F4E1bH709SH-qMaovw9V_hksZMmZC8vZb4-u9G3yf3vwn9ANNwnMR |
Cites_doi | 10.1016/j.ins.2009.03.004 10.3390/sym11121458 10.1016/0022-314X 10.1109/mci.2018.2881645 10.3103/s8756699021040026 10.1109/tsmc.1973.5408575 10.3390/sym10110609 10.1023/a:1008202821328 10.7763/ijcee.2012.v4.461 10.1038/s41467-020-17431-x 10.1134/s0005117921060011 10.1007/s10836-020-05854-9 10.3103/s0147688219060030 10.1061/(asce)0733-9496(2003)129:3(210) 10.1080/03052150500384759 10.1177/003754970107600201 10.1016/j.fss.2007.12.023 10.1016/j.eij.2015.07.003 10.18287/0134-2452-2015-39-3-406-412 10.1016/s0019-9958(65)90241-x 10.5923/j.ijee.20120203.03 10.3103/S1063454117040070 10.1007/s00500-014-1441-3 10.1016/j.asoc.2012.11.026 10.1049/piee.1974.0328 10.1080/15732470500254535 10.1007/s11269-016-1280-3 10.1109/tsmc.1985.6313399 10.30534/ijeter/2020/848102020 10.1007/s00500-014-1459-6 10.1007/s00521-012-0939-9 10.1609/aimag.v38i3.2741 10.1109/tfuzz.2004.841738 10.1109/4235.585893 10.1109/icsengt.2013.6650144 10.1109/sibcon.2016.7491688 10.1155/2015/923698 10.1109/cec.2015.7257028 10.1109/icnn.1995.488968 10.1088/1742-6596/803/1/012053 10.1007/978-3-540-37372-8_2 10.7463/1215.0829099 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2024. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2024, Vol. 34, No. 3, pp. 396–411. © Pleiades Publishing, Ltd., 2024. |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2024. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2024, Vol. 34, No. 3, pp. 396–411. © Pleiades Publishing, Ltd., 2024. |
DBID | AAYXX CITATION |
DOI | 10.1134/S1054661824700809 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Computer Science |
EISSN | 1555-6212 |
EndPage | 411 |
ExternalDocumentID | 10_1134_S1054661824700809 |
GroupedDBID | -59 -5G -BR -DT -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 29O 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 408 40D 40E 5VS 642 6NX 7WY 88I 8FE 8FG 8FL 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHFT ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KOV KZ1 L6V LLZTM LMP M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c240t-94d9860c187b92bac8b915d96a86fa5725c052432bccc6c4506d31a7c3f646d63 |
IEDL.DBID | AGYKE |
ISSN | 1054-6618 |
IngestDate | Tue Jul 01 03:01:30 EDT 2025 Fri Feb 21 02:37:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | metaheuristic population initialization model parameter tuning data classification fuzzy classifier machine learning fuzzy systems metaheuristic algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c240t-94d9860c187b92bac8b915d96a86fa5725c052432bccc6c4506d31a7c3f646d63 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1134_S1054661824700809 springer_journals_10_1134_S1054661824700809 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240900 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow |
PublicationTitle | Pattern recognition and image analysis |
PublicationTitleAbbrev | Pattern Recognit. Image Anal |
PublicationYear | 2024 |
Publisher | Pleiades Publishing |
Publisher_xml | – name: Pleiades Publishing |
References | Bardamova, Hodashinsky, Konev, Shelupanov (CR7) 2019; 11 Bardamova, Hodashinsky (CR8) 2021; 57 Alonso, Castiello, Magdalena, Mencar (CR2) 2021; 970 Goodman, Flaxman (CR21) 2017; 38 Afzalan, Taghikhani, Sedighizadeh (CR1) 2012; 2 Wolpert, Macready (CR49) 1997; 1 Bardamova, Konev, Hodashinsky, Shelupanov (CR6) 2018; 10 Hodashinsky, Bardamova, Kovalev (CR25) 2019; 46 CR32 Lisin, Faizullin (CR34) 2015; 39 CR31 CR30 Yao, Zhu, Zhang, Wang (CR50) 2020; 36 Rashedi, Nezamabadi-Pour, Saryazdi (CR40) 2009; 179 CR4 Hodashinsky (CR22) 2021; 82 CR3 CR5 Mamdani (CR36) 1974; 121 CR9 Eusuff, Lansey (CR14) 2003; 129 CR45 CR44 CR42 CR41 Jadidoleslam, Bijami, Amiri, Ebrahimi, Askari (CR29) 2012; 4 Fernandez, Herrera, Cordon, Jose Del Jesus, Marcelloni (CR19) 2019; 14 Feng, Zou, Yu (CR17) 2015; 19 Zadeh (CR52) 1973; SMC-3 Geem, Kim, Loganathan (CR20) 2021; 76 Nithya, Kavitha (CR39) 2020; 8 CR11 CR10 CR53 Takagi, Sugeno (CR47) 1985; SMC-15 Storn, Price (CR46) 1997; 11 Eusuff, Lansey, Pasha (CR15) 2006; 38 Sadollah, Bahreininejad, Eskandar, Hamdi (CR43) 2013; 13 Neshat, Sepidname (CR37) 2015; 16 Lauritsen, Kristensen, Olsen, Larsen, Lauritsen, Jørgensen, Lange, Thiesson (CR33) 2020; 11 Elbeltagi, Hegazy, Grierson (CR12) 2007; 3 Zadeh (CR51) 1965; 8 CR27 CR26 CR24 CR23 Neshat, Sepidnam, Sargolzaei (CR38) 2013; 23 Ermakov (CR13) 2017; 50 Fernández, García, Del Jesus, Herrera (CR18) 2008; 159 Faure (CR16) 1992; 42 Tian, Yuan, Huang, Wu (CR48) 2015; 19 Ishibuchi, Yamamoto (CR28) 2005; 13 Mahmoudi, Orouji, Fallah-Mehdipour (CR35) 2016; 30 8565_CR31 8565_CR32 M. Eusuff (8565_CR15) 2006; 38 H. Ishibuchi (8565_CR28) 2005; 13 M. Jadidoleslam (8565_CR29) 2012; 4 R. Storn (8565_CR46) 1997; 11 B. Goodman (8565_CR21) 2017; 38 A. Nithya (8565_CR39) 2020; 8 Z. W. Geem (8565_CR20) 2021; 76 8565_CR30 8565_CR23 S. M. Ermakov (8565_CR13) 2017; 50 M. B. Bardamova (8565_CR8) 2021; 57 I. A. Hodashinsky (8565_CR22) 2021; 82 8565_CR26 8565_CR27 8565_CR24 Zh. Yao (8565_CR50) 2020; 36 X. Feng (8565_CR17) 2015; 19 L. A. Zadeh (8565_CR52) 1973; SMC-3 T. Takagi (8565_CR47) 1985; SMC-15 M. Bardamova (8565_CR7) 2019; 11 L. A. Zadeh (8565_CR51) 1965; 8 E. Rashedi (8565_CR40) 2009; 179 A. Sadollah (8565_CR43) 2013; 13 M. Neshat (8565_CR37) 2015; 16 8565_CR11 M. Bardamova (8565_CR6) 2018; 10 8565_CR53 8565_CR10 E. Afzalan (8565_CR1) 2012; 2 8565_CR3 8565_CR4 E. Elbeltagi (8565_CR12) 2007; 3 8565_CR5 N. Mahmoudi (8565_CR35) 2016; 30 J. M. Alonso (8565_CR2) 2021; 970 8565_CR9 A. Fernandez (8565_CR19) 2019; 14 M. Neshat (8565_CR38) 2013; 23 A. Fernández (8565_CR18) 2008; 159 A. V. Lisin (8565_CR34) 2015; 39 8565_CR44 8565_CR45 8565_CR42 I. A. Hodashinsky (8565_CR25) 2019; 46 E. H. Mamdani (8565_CR36) 1974; 121 H. Tian (8565_CR48) 2015; 19 S. M. Lauritsen (8565_CR33) 2020; 11 H. Faure (8565_CR16) 1992; 42 D. H. Wolpert (8565_CR49) 1997; 1 8565_CR41 M. M. Eusuff (8565_CR14) 2003; 129 |
References_xml | – ident: CR45 – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: CR40 article-title: GSA: A gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 11 start-page: 1458 year: 2019 ident: CR7 article-title: Application of the gravitational search algorithm for constructing fuzzy classifiers of imbalanced data publication-title: Symmetry doi: 10.3390/sym11121458 – ident: CR4 – volume: 42 start-page: 47 year: 1992 end-page: 56 ident: CR16 article-title: Good permutations for extreme discrepancy publication-title: J. Number Theory doi: 10.1016/0022-314X – volume: 14 start-page: 69 year: 2019 end-page: 81 ident: CR19 article-title: Evolutionary fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to? publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/mci.2018.2881645 – volume: 57 start-page: 378 year: 2021 end-page: 387 ident: CR8 article-title: Formation of fuzzy classifier structure by a combination of the class extremum algorithm and the shuffled frog leaping algorithm for imbalanced data with two classes publication-title: Optoelectron., Instrum. Data Process. doi: 10.3103/s8756699021040026 – volume: SMC-3 start-page: 28 year: 1973 end-page: 44 ident: CR52 article-title: Outline of a new approach to the analysis of complex systems and decision processes publication-title: IEEE Trans. Syst., Man, Cybern. doi: 10.1109/tsmc.1973.5408575 – volume: 10 start-page: 609 year: 2018 ident: CR6 article-title: A fuzzy classifier with feature selection based on the gravitational search algorithm publication-title: Symmetry doi: 10.3390/sym10110609 – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: CR46 article-title: Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/a:1008202821328 – volume: 4 start-page: 115 year: 2012 end-page: 120 ident: CR29 article-title: Application of shuffled frog leaping algorithm to long term generation expansion planning publication-title: Int. J. Comput. Electr. Eng. doi: 10.7763/ijcee.2012.v4.461 – ident: CR42 – volume: 11 start-page: 3852 year: 2020 ident: CR33 article-title: Explainable artificial intelligence model to predict acute critical illness from electronic health records publication-title: Nat. Commun. doi: 10.1038/s41467-020-17431-x – volume: 82 start-page: 935 year: 2021 end-page: 967 ident: CR22 article-title: Methods for improving the efficiency of swarm optimization algorithms. A survey publication-title: Autom. Remote Control doi: 10.1134/s0005117921060011 – volume: 36 start-page: 75 year: 2020 end-page: 86 ident: CR50 article-title: Optimal selection of tests for fault diagnosis in multi-path system with time-delay publication-title: J. Electron. Test. doi: 10.1007/s10836-020-05854-9 – volume: 46 start-page: 381 year: 2019 end-page: 387 ident: CR25 article-title: Using shuffled frog-leaping algorithm for feature selection and fuzzy classifier design publication-title: Sci. Tech. Inf. Process. doi: 10.3103/s0147688219060030 – volume: 129 start-page: 210 year: 2003 end-page: 225 ident: CR14 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: J. Water Resour. Planning Manage. doi: 10.1061/(asce)0733-9496(2003)129:3(210) – volume: 38 start-page: 129 year: 2006 end-page: 154 ident: CR15 article-title: Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization publication-title: Eng. Optim. doi: 10.1080/03052150500384759 – volume: 76 start-page: 60 year: 2021 end-page: 68 ident: CR20 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – ident: CR11 – ident: CR9 – ident: CR32 – volume: 159 start-page: 2378 year: 2008 end-page: 2398 ident: CR18 article-title: A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2007.12.023 – volume: 16 start-page: 339 year: 2015 end-page: 350 ident: CR37 article-title: A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO) publication-title: Egyptian Inf. J. doi: 10.1016/j.eij.2015.07.003 – ident: CR5 – ident: CR26 – volume: 39 start-page: 406 year: 2015 end-page: 412 ident: CR34 article-title: Application of metaheuristics to -means clustering publication-title: Komp’yuternaya Opt. doi: 10.18287/0134-2452-2015-39-3-406-412 – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: CR51 article-title: Fuzzy sets publication-title: Inf. Control doi: 10.1016/s0019-9958(65)90241-x – volume: 2 start-page: 73 year: 2012 end-page: 77 ident: CR1 article-title: Optimal placement and sizing of DG in radial distribution networks using sfla publication-title: Int. J. Energy Eng. doi: 10.5923/j.ijee.20120203.03 – ident: CR53 – ident: CR30 – ident: CR10 – volume: 50 start-page: 337 year: 2017 end-page: 341 ident: CR13 article-title: “On randomization of Halton quasi-random sequences,” Vestn. St. Petersburg Univ publication-title: Math. doi: 10.3103/S1063454117040070 – volume: 19 start-page: 2783 year: 2015 end-page: 2797 ident: CR48 article-title: An improved gravitational search algorithm for solving short-term economic/environmental hydrothermal scheduling publication-title: Soft Comput. doi: 10.1007/s00500-014-1441-3 – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: CR43 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.026 – volume: 121 start-page: 1585 year: 1974 end-page: 1588 ident: CR36 article-title: Application of fuzzy algorithms for control of simple dynamic plant publication-title: Proc. Inst. Electr. Eng. doi: 10.1049/piee.1974.0328 – volume: 3 start-page: 53 year: 2007 end-page: 60 ident: CR12 article-title: A modified shuffled frog-leaping optimization algorithm: Applications to project management publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732470500254535 – volume: 30 start-page: 2195 year: 2016 end-page: 2211 ident: CR35 article-title: Integration of shuffled frog leaping algorithm and support vector regression for prediction of water quality parameters publication-title: Water Resour. Manage. doi: 10.1007/s11269-016-1280-3 – ident: CR27 – ident: CR23 – ident: CR44 – volume: SMC-15 start-page: 116 year: 1985 end-page: 132 ident: CR47 article-title: Fuzzy identification of systems and its applications to modeling and control publication-title: IEEE Trans. Syst., Man, Cybern. doi: 10.1109/tsmc.1985.6313399 – volume: 8 start-page: 7156 year: 2020 end-page: 7160 ident: CR39 article-title: Swarm intelligence based sparrow search optimization algorithm for node localization in wireless sensor networks publication-title: Int. J. Emerging Trends Eng. Res. doi: 10.30534/ijeter/2020/848102020 – ident: CR3 – volume: 19 start-page: 2955 year: 2015 end-page: 2972 ident: CR17 article-title: A novel optimization algorithm inspired by the creative thinking process publication-title: Soft Comput. doi: 10.1007/s00500-014-1459-6 – ident: CR31 – volume: 23 start-page: 429 year: 2013 end-page: 454 ident: CR38 article-title: Swallow swarm optimization algorithm: A new method to optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0939-9 – volume: 970 start-page: 253 year: 2021 ident: CR2 article-title: Explainable fuzzy systems: Paving the way from interpretable fuzzy systems to explainable AI systems publication-title: Stud. Comput. Intell. – volume: 38 start-page: 50 year: 2017 end-page: 57 ident: CR21 article-title: European Union regulations on algorithmic decision making and a ‘right to explanation,’ publication-title: AI Mag. doi: 10.1609/aimag.v38i3.2741 – volume: 13 start-page: 428 year: 2005 end-page: 435 ident: CR28 article-title: Rule weight specification in fuzzy rule-based classification systems publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/tfuzz.2004.841738 – ident: CR41 – ident: CR24 – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: CR49 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 10 start-page: 609 year: 2018 ident: 8565_CR6 publication-title: Symmetry doi: 10.3390/sym10110609 – ident: 8565_CR42 doi: 10.1109/icsengt.2013.6650144 – volume: 23 start-page: 429 year: 2013 ident: 8565_CR38 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0939-9 – volume: 11 start-page: 3852 year: 2020 ident: 8565_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17431-x – volume: 129 start-page: 210 year: 2003 ident: 8565_CR14 publication-title: J. Water Resour. Planning Manage. doi: 10.1061/(asce)0733-9496(2003)129:3(210) – volume: 970 start-page: 253 year: 2021 ident: 8565_CR2 publication-title: Stud. Comput. Intell. – ident: 8565_CR9 – volume: 1 start-page: 67 year: 1997 ident: 8565_CR49 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – ident: 8565_CR26 doi: 10.1109/sibcon.2016.7491688 – ident: 8565_CR10 doi: 10.1155/2015/923698 – volume: 3 start-page: 53 year: 2007 ident: 8565_CR12 publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732470500254535 – volume: 16 start-page: 339 year: 2015 ident: 8565_CR37 publication-title: Egyptian Inf. J. doi: 10.1016/j.eij.2015.07.003 – volume: SMC-15 start-page: 116 year: 1985 ident: 8565_CR47 publication-title: IEEE Trans. Syst., Man, Cybern. doi: 10.1109/tsmc.1985.6313399 – ident: 8565_CR5 – volume: 14 start-page: 69 year: 2019 ident: 8565_CR19 publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/mci.2018.2881645 – ident: 8565_CR30 – volume: 76 start-page: 60 year: 2021 ident: 8565_CR20 publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 19 start-page: 2783 year: 2015 ident: 8565_CR48 publication-title: Soft Comput. doi: 10.1007/s00500-014-1441-3 – ident: 8565_CR45 doi: 10.1109/cec.2015.7257028 – volume: 38 start-page: 129 year: 2006 ident: 8565_CR15 publication-title: Eng. Optim. doi: 10.1080/03052150500384759 – volume: 4 start-page: 115 year: 2012 ident: 8565_CR29 publication-title: Int. J. Comput. Electr. Eng. doi: 10.7763/ijcee.2012.v4.461 – volume: 30 start-page: 2195 year: 2016 ident: 8565_CR35 publication-title: Water Resour. Manage. doi: 10.1007/s11269-016-1280-3 – volume: 38 start-page: 50 year: 2017 ident: 8565_CR21 publication-title: AI Mag. doi: 10.1609/aimag.v38i3.2741 – volume: 82 start-page: 935 year: 2021 ident: 8565_CR22 publication-title: Autom. Remote Control doi: 10.1134/s0005117921060011 – volume: 2 start-page: 73 year: 2012 ident: 8565_CR1 publication-title: Int. J. Energy Eng. doi: 10.5923/j.ijee.20120203.03 – ident: 8565_CR23 – volume: 36 start-page: 75 year: 2020 ident: 8565_CR50 publication-title: J. Electron. Test. doi: 10.1007/s10836-020-05854-9 – volume: 13 start-page: 428 year: 2005 ident: 8565_CR28 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/tfuzz.2004.841738 – volume: 57 start-page: 378 year: 2021 ident: 8565_CR8 publication-title: Optoelectron., Instrum. Data Process. doi: 10.3103/s8756699021040026 – volume: 179 start-page: 2232 year: 2009 ident: 8565_CR40 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: SMC-3 start-page: 28 year: 1973 ident: 8565_CR52 publication-title: IEEE Trans. Syst., Man, Cybern. doi: 10.1109/tsmc.1973.5408575 – ident: 8565_CR31 doi: 10.1109/icnn.1995.488968 – ident: 8565_CR24 doi: 10.1088/1742-6596/803/1/012053 – ident: 8565_CR27 – volume: 46 start-page: 381 year: 2019 ident: 8565_CR25 publication-title: Sci. Tech. Inf. Process. doi: 10.3103/s0147688219060030 – volume: 50 start-page: 337 year: 2017 ident: 8565_CR13 publication-title: Math. doi: 10.3103/S1063454117040070 – ident: 8565_CR41 doi: 10.1007/978-3-540-37372-8_2 – ident: 8565_CR3 – volume: 19 start-page: 2955 year: 2015 ident: 8565_CR17 publication-title: Soft Comput. doi: 10.1007/s00500-014-1459-6 – volume: 39 start-page: 406 year: 2015 ident: 8565_CR34 publication-title: Komp’yuternaya Opt. doi: 10.18287/0134-2452-2015-39-3-406-412 – ident: 8565_CR53 – volume: 42 start-page: 47 year: 1992 ident: 8565_CR16 publication-title: J. Number Theory doi: 10.1016/0022-314X – ident: 8565_CR32 – volume: 13 start-page: 2592 year: 2013 ident: 8565_CR43 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.11.026 – volume: 8 start-page: 338 year: 1965 ident: 8565_CR51 publication-title: Inf. Control doi: 10.1016/s0019-9958(65)90241-x – ident: 8565_CR11 – ident: 8565_CR44 doi: 10.7463/1215.0829099 – volume: 11 start-page: 1458 year: 2019 ident: 8565_CR7 publication-title: Symmetry doi: 10.3390/sym11121458 – volume: 8 start-page: 7156 year: 2020 ident: 8565_CR39 publication-title: Int. J. Emerging Trends Eng. Res. doi: 10.30534/ijeter/2020/848102020 – volume: 11 start-page: 341 year: 1997 ident: 8565_CR46 publication-title: J. Global Optim. doi: 10.1023/a:1008202821328 – volume: 159 start-page: 2378 year: 2008 ident: 8565_CR18 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2007.12.023 – volume: 121 start-page: 1585 year: 1974 ident: 8565_CR36 publication-title: Proc. Inst. Electr. Eng. doi: 10.1049/piee.1974.0328 – ident: 8565_CR4 |
SSID | ssj0008192 |
Score | 2.3171988 |
Snippet | Fuzzy classifiers differ from other machine learning algorithms in their ability to interpret the inference process, which is especially important in high... |
SourceID | crossref springer |
SourceType | Index Database Publisher |
StartPage | 396 |
SubjectTerms | Computer Science Image Processing and Computer Vision Pattern Recognition Regular Papers Contributed to Pria Journal/Application Problems |
Title | Population Generation Methods for Metaheuristic Algorithms Used to Construct Compact Fuzzy Classifiers of Medical Data |
URI | https://link.springer.com/article/10.1134/S1054661824700809 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOhBFDXiD9KDJ81wbG23HkFBooGYCAmeyNpuQlQwbpjIX2_XdST448BpTdNtL-1r-zXv9fsAzqUtZQps0-tntoUdiS0mMbE8LqLI80MutYpCt0c7A3w3JENzjzvOs93zkKReqTPdEXz1qJAAVruJ72AvxTlsE4oKftikAMXG7dN9a7kApxxfOshJlAnqBRPM_PMjq9vRaixUbzHtEvRz47LMkpfaPOE1sfjB27im9buwYyAnamQ-sgcb4bQMJQM_kZncsarKFR7yujJsd5esrvE-fD4s1b5QRleti10tQh0jBX_TcjAO5xn9M2q8Ps8-Jsn4LUaDWP0rmaFUIFRT1iK9Eqlne75YfCEtzjmJUmFuNIuQiR-hmyAJDmDQbvWvO5bRbbCEwgeJxbBkPrVF3fc4c3ggfM7qRDIa-DQKiOcQYRMHuw4XQlCBiU2lWw884UYUU0ndQyhMZ9PwCJAnCMPEw2HoK6gjAia4rFNHCq6OpYL5FbjIh2_0ntFzjPSxxsWjX11egct8bEZmpsb_tz5eq_UJbDkK7mTZZ6dQUD0Znim4kvCqcs92s9mrGjf9Bkwo4W4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ROFAOUGgRv60P9NIqkHVsJz70sAK2C8uiSmUlegqxnQACdhHJUrGvw6v0wTpxnJUocOCA1FMsy0qcsT3zjWY8H8CG8Y0pgW15_cz3GDXMk4ZxL1Q6y8IoVcayKHQPRbvH9o_58QTc13dhbLZ7HZK0mrriHWFbPxEJMLQmEWVhiXOky6TspHe_0U_Lv-3t4KJ-prS1e7Td9hyVgKfRZBWeZEZGwteNKFSSqkRHSja4kSKJRJbwkHLtc8oCqrTWQjPuCxM0klAHmWDCiADf-wamGLr86OFNNb__6uyOFX5ZU8wGVTn-Mk7QBU-fnPRD8_cw9mpNWmsO_tTCqDJZLjaHhdrUo3_qRP7n0noHsw5Sk2Z1BuZhIu0vwJyD18Qprxy7agaLum8BZrrjqrX5e7j9MWYzI1U5btvsWpLtnCC8L9vJWTqsyluT5uXp4Oa8OLvKSS_HbxUDUhKg2pK8xGpafLaGo9EdseSj51lJPE4GGXHxMbKTFMkH6L2KeBZhsj_op0tAQs0l4yFL0wihnE6kVqYhqNEK3W4to2X4Um-X-LoqPxJbty1g8aMlXoav9V6InSbKnx-98qLRn2C6fdQ9iA_2Djur8JYitKsy7dZgEqWariM0K9RHdzQInLz2_voLeR47vQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VrYTgQEsBUaDFB7iA0mYdfx44rLrdtixbVYKVyinEdkIrYLciWVD3T_Wv9Cd14jgrlY8Dhx44xbKsxBnb42fN-D2AFy52rga29fWzOGLUsUg7xiNpbFFIlRvnVRRGh2J_zN4e8-MluGjvwvhs9zYk2dxpqFmaJtX2mSuCBgnbfo-ogOHOoiiTNebRIatymJ__xDNb-eagjwP8ktLB7oed_SjICkQWt68q0sxpJWLbVdJoajKrjO5yp0WmRJFxSbmNOWUJNdZaYRmPhUu6mbRJIZhwIsH33oJlFiupOrDc2_s43F04_5pfzAdYOf4-djAEUv_Y6etb4fU4rN_eBitw2RqmyWr5sjWrzJad_8IZ-R9ZbhXuBahNes3auA9L-WQNVgLsJsGplVjVKlu0dWtwd7Rgsy0fwI-jhcoZaWi6fXHkxbdLgrC_Lmcn-ayhvSa9r5-n30-rk28lGZf4rWpKamFUT9VLvAfG52A2n58TL0p6WtSC5GRakBA3I_2syh7C-EbM8wg6k-kkfwxEWq4ZlyzPFUI8m2lrXFdQZw0ex61W6_CqnTrpWUNLkvrjXMLS34Z4HV638yINHqr8e-sn_9T6Odw-6g_SdweHw6dwhyLiaxLwnkEHjZpvIGKrzGZYJQQ-3fT0ugLcqkSh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+Generation+Methods+for+Metaheuristic+Algorithms+Used+to+Construct+Compact+Fuzzy+Classifiers+of+Medical+Data&rft.jtitle=Pattern+recognition+and+image+analysis&rft.au=Bardamova%2C+M.&rft.au=Svetlakov%2C+M.&rft.au=Sarin%2C+K.&rft.au=Hodashinskaya%2C+A.&rft.date=2024-09-01&rft.pub=Pleiades+Publishing&rft.issn=1054-6618&rft.eissn=1555-6212&rft.volume=34&rft.issue=3&rft.spage=396&rft.epage=411&rft_id=info:doi/10.1134%2FS1054661824700809&rft.externalDocID=10_1134_S1054661824700809 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-6618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-6618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-6618&client=summon |