Population Generation Methods for Metaheuristic Algorithms Used to Construct Compact Fuzzy Classifiers of Medical Data

Fuzzy classifiers differ from other machine learning algorithms in their ability to interpret the inference process, which is especially important in high responsibility subject areas such as medicine. The membership functions of fuzzy terms and the rule base are easy to visualize, so it is not diff...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition and image analysis Vol. 34; no. 3; pp. 396 - 411
Main Authors Bardamova, M., Svetlakov, M., Sarin, K., Hodashinskaya, A., Shurygin, Y., Hodashinsky, I.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fuzzy classifiers differ from other machine learning algorithms in their ability to interpret the inference process, which is especially important in high responsibility subject areas such as medicine. The membership functions of fuzzy terms and the rule base are easy to visualize, so it is not difficult for the user to understand why a particular result was obtained. However, the interpretability of the model suffers if the resulting model is highly complex, when the classifier has more than a dozen of high-length rules. Balancing accuracy and complexity in fuzzy classifiers is a nontrivial task. This article, the first in a series about constructing compact classifiers for medical data, addresses the problem of maximizing accuracy with as few rules as possible using metaheuristic algorithms. Using metaheuristics to optimize fuzzy rules allows a more accurate representation of the subject domain, which has a positive effect on classification accuracy. To increase the efficiency of population metaheuristics, it is important to use an appropriate method for a particular algorithm to form optimization starting points. The paper investigates the effect of using different population identification methods for two metaheuristics – the swallow swarm algorithm and the hybrid of the gravitational search algorithm and the shuffled leaping frogs algorithm.
AbstractList Fuzzy classifiers differ from other machine learning algorithms in their ability to interpret the inference process, which is especially important in high responsibility subject areas such as medicine. The membership functions of fuzzy terms and the rule base are easy to visualize, so it is not difficult for the user to understand why a particular result was obtained. However, the interpretability of the model suffers if the resulting model is highly complex, when the classifier has more than a dozen of high-length rules. Balancing accuracy and complexity in fuzzy classifiers is a nontrivial task. This article, the first in a series about constructing compact classifiers for medical data, addresses the problem of maximizing accuracy with as few rules as possible using metaheuristic algorithms. Using metaheuristics to optimize fuzzy rules allows a more accurate representation of the subject domain, which has a positive effect on classification accuracy. To increase the efficiency of population metaheuristics, it is important to use an appropriate method for a particular algorithm to form optimization starting points. The paper investigates the effect of using different population identification methods for two metaheuristics – the swallow swarm algorithm and the hybrid of the gravitational search algorithm and the shuffled leaping frogs algorithm.
Author Hodashinsky, I.
Hodashinskaya, A.
Bardamova, M.
Shurygin, Y.
Svetlakov, M.
Sarin, K.
Author_xml – sequence: 1
  givenname: M.
  surname: Bardamova
  fullname: Bardamova, M.
  email: 722bmb@gmail.com
  organization: Tomsk State University of Control Systems and Radioelectronics
– sequence: 2
  givenname: M.
  surname: Svetlakov
  fullname: Svetlakov, M.
  email: svetlakov.m4@gmail.com
  organization: Tomsk State University of Control Systems and Radioelectronics
– sequence: 3
  givenname: K.
  surname: Sarin
  fullname: Sarin, K.
  email: sarin.konstantin@mail.ru
  organization: Tomsk State University of Control Systems and Radioelectronics
– sequence: 4
  givenname: A.
  surname: Hodashinskaya
  fullname: Hodashinskaya, A.
  email: tonyhodas11@mail.ru
  organization: Tomsk State University of Control Systems and Radioelectronics
– sequence: 5
  givenname: Y.
  surname: Shurygin
  fullname: Shurygin, Y.
  email: yuri.shurygin@tusur.ru
  organization: Tomsk State University of Control Systems and Radioelectronics
– sequence: 6
  givenname: I.
  surname: Hodashinsky
  fullname: Hodashinsky, I.
  email: hodashn@rambler.ru
  organization: Tomsk State University of Control Systems and Radioelectronics
BookMark eNp9kN1KwzAYhoNMcJtegGe5gWqSJmlzOKqbwkRBd1zSJN0yumYkqbBdvRn1TPDoe-D94eOdgUnvegPAPUYPGOf08RMjRjnHJaEFQiUSV2CKGWMZJ5hMEic5u-g3YBbCHiUPFmQKvj_ccehktK6HK9MbP-KbiTunA2ydv7DcmcHbEK2Ci27rvI27Q4CbYDSMDlauD9EPKiY6HGW6y-F8PsGqkyHY1hofoGtTj7ZKdvBJRnkLrlvZBXP3e-dgs3z-ql6y9fvqtVqsM0UoipmgWpQcKVwWjSCNVGUjMNOCy5K3khWEKcQIzUmjlOKKMsR1jmWh8pZTrnk-B3jsVd6F4E1bH709SH-qMaovw9V_hksZMmZC8vZb4-u9G3yf3vwn9ANNwnMR
Cites_doi 10.1016/j.ins.2009.03.004
10.3390/sym11121458
10.1016/0022-314X
10.1109/mci.2018.2881645
10.3103/s8756699021040026
10.1109/tsmc.1973.5408575
10.3390/sym10110609
10.1023/a:1008202821328
10.7763/ijcee.2012.v4.461
10.1038/s41467-020-17431-x
10.1134/s0005117921060011
10.1007/s10836-020-05854-9
10.3103/s0147688219060030
10.1061/(asce)0733-9496(2003)129:3(210)
10.1080/03052150500384759
10.1177/003754970107600201
10.1016/j.fss.2007.12.023
10.1016/j.eij.2015.07.003
10.18287/0134-2452-2015-39-3-406-412
10.1016/s0019-9958(65)90241-x
10.5923/j.ijee.20120203.03
10.3103/S1063454117040070
10.1007/s00500-014-1441-3
10.1016/j.asoc.2012.11.026
10.1049/piee.1974.0328
10.1080/15732470500254535
10.1007/s11269-016-1280-3
10.1109/tsmc.1985.6313399
10.30534/ijeter/2020/848102020
10.1007/s00500-014-1459-6
10.1007/s00521-012-0939-9
10.1609/aimag.v38i3.2741
10.1109/tfuzz.2004.841738
10.1109/4235.585893
10.1109/icsengt.2013.6650144
10.1109/sibcon.2016.7491688
10.1155/2015/923698
10.1109/cec.2015.7257028
10.1109/icnn.1995.488968
10.1088/1742-6596/803/1/012053
10.1007/978-3-540-37372-8_2
10.7463/1215.0829099
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2024. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2024, Vol. 34, No. 3, pp. 396–411. © Pleiades Publishing, Ltd., 2024.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2024. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2024, Vol. 34, No. 3, pp. 396–411. © Pleiades Publishing, Ltd., 2024.
DBID AAYXX
CITATION
DOI 10.1134/S1054661824700809
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1555-6212
EndPage 411
ExternalDocumentID 10_1134_S1054661824700809
GroupedDBID -59
-5G
-BR
-DT
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
29O
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
40E
5VS
642
6NX
7WY
88I
8FE
8FG
8FL
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHFT
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
KZ1
L6V
LLZTM
LMP
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c240t-94d9860c187b92bac8b915d96a86fa5725c052432bccc6c4506d31a7c3f646d63
IEDL.DBID AGYKE
ISSN 1054-6618
IngestDate Tue Jul 01 03:01:30 EDT 2025
Fri Feb 21 02:37:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords metaheuristic population initialization
model parameter tuning
data classification
fuzzy classifier
machine learning
fuzzy systems
metaheuristic algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c240t-94d9860c187b92bac8b915d96a86fa5725c052432bccc6c4506d31a7c3f646d63
PageCount 16
ParticipantIDs crossref_primary_10_1134_S1054661824700809
springer_journals_10_1134_S1054661824700809
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Pattern recognition and image analysis
PublicationTitleAbbrev Pattern Recognit. Image Anal
PublicationYear 2024
Publisher Pleiades Publishing
Publisher_xml – name: Pleiades Publishing
References Bardamova, Hodashinsky, Konev, Shelupanov (CR7) 2019; 11
Bardamova, Hodashinsky (CR8) 2021; 57
Alonso, Castiello, Magdalena, Mencar (CR2) 2021; 970
Goodman, Flaxman (CR21) 2017; 38
Afzalan, Taghikhani, Sedighizadeh (CR1) 2012; 2
Wolpert, Macready (CR49) 1997; 1
Bardamova, Konev, Hodashinsky, Shelupanov (CR6) 2018; 10
Hodashinsky, Bardamova, Kovalev (CR25) 2019; 46
CR32
Lisin, Faizullin (CR34) 2015; 39
CR31
CR30
Yao, Zhu, Zhang, Wang (CR50) 2020; 36
Rashedi, Nezamabadi-Pour, Saryazdi (CR40) 2009; 179
CR4
Hodashinsky (CR22) 2021; 82
CR3
CR5
Mamdani (CR36) 1974; 121
CR9
Eusuff, Lansey (CR14) 2003; 129
CR45
CR44
CR42
CR41
Jadidoleslam, Bijami, Amiri, Ebrahimi, Askari (CR29) 2012; 4
Fernandez, Herrera, Cordon, Jose Del Jesus, Marcelloni (CR19) 2019; 14
Feng, Zou, Yu (CR17) 2015; 19
Zadeh (CR52) 1973; SMC-3
Geem, Kim, Loganathan (CR20) 2021; 76
Nithya, Kavitha (CR39) 2020; 8
CR11
CR10
CR53
Takagi, Sugeno (CR47) 1985; SMC-15
Storn, Price (CR46) 1997; 11
Eusuff, Lansey, Pasha (CR15) 2006; 38
Sadollah, Bahreininejad, Eskandar, Hamdi (CR43) 2013; 13
Neshat, Sepidname (CR37) 2015; 16
Lauritsen, Kristensen, Olsen, Larsen, Lauritsen, Jørgensen, Lange, Thiesson (CR33) 2020; 11
Elbeltagi, Hegazy, Grierson (CR12) 2007; 3
Zadeh (CR51) 1965; 8
CR27
CR26
CR24
CR23
Neshat, Sepidnam, Sargolzaei (CR38) 2013; 23
Ermakov (CR13) 2017; 50
Fernández, García, Del Jesus, Herrera (CR18) 2008; 159
Faure (CR16) 1992; 42
Tian, Yuan, Huang, Wu (CR48) 2015; 19
Ishibuchi, Yamamoto (CR28) 2005; 13
Mahmoudi, Orouji, Fallah-Mehdipour (CR35) 2016; 30
8565_CR31
8565_CR32
M. Eusuff (8565_CR15) 2006; 38
H. Ishibuchi (8565_CR28) 2005; 13
M. Jadidoleslam (8565_CR29) 2012; 4
R. Storn (8565_CR46) 1997; 11
B. Goodman (8565_CR21) 2017; 38
A. Nithya (8565_CR39) 2020; 8
Z. W. Geem (8565_CR20) 2021; 76
8565_CR30
8565_CR23
S. M. Ermakov (8565_CR13) 2017; 50
M. B. Bardamova (8565_CR8) 2021; 57
I. A. Hodashinsky (8565_CR22) 2021; 82
8565_CR26
8565_CR27
8565_CR24
Zh. Yao (8565_CR50) 2020; 36
X. Feng (8565_CR17) 2015; 19
L. A. Zadeh (8565_CR52) 1973; SMC-3
T. Takagi (8565_CR47) 1985; SMC-15
M. Bardamova (8565_CR7) 2019; 11
L. A. Zadeh (8565_CR51) 1965; 8
E. Rashedi (8565_CR40) 2009; 179
A. Sadollah (8565_CR43) 2013; 13
M. Neshat (8565_CR37) 2015; 16
8565_CR11
M. Bardamova (8565_CR6) 2018; 10
8565_CR53
8565_CR10
E. Afzalan (8565_CR1) 2012; 2
8565_CR3
8565_CR4
E. Elbeltagi (8565_CR12) 2007; 3
8565_CR5
N. Mahmoudi (8565_CR35) 2016; 30
J. M. Alonso (8565_CR2) 2021; 970
8565_CR9
A. Fernandez (8565_CR19) 2019; 14
M. Neshat (8565_CR38) 2013; 23
A. Fernández (8565_CR18) 2008; 159
A. V. Lisin (8565_CR34) 2015; 39
8565_CR44
8565_CR45
8565_CR42
I. A. Hodashinsky (8565_CR25) 2019; 46
E. H. Mamdani (8565_CR36) 1974; 121
H. Tian (8565_CR48) 2015; 19
S. M. Lauritsen (8565_CR33) 2020; 11
H. Faure (8565_CR16) 1992; 42
D. H. Wolpert (8565_CR49) 1997; 1
8565_CR41
M. M. Eusuff (8565_CR14) 2003; 129
References_xml – ident: CR45
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: CR40
  article-title: GSA: A gravitational search algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 11
  start-page: 1458
  year: 2019
  ident: CR7
  article-title: Application of the gravitational search algorithm for constructing fuzzy classifiers of imbalanced data
  publication-title: Symmetry
  doi: 10.3390/sym11121458
– ident: CR4
– volume: 42
  start-page: 47
  year: 1992
  end-page: 56
  ident: CR16
  article-title: Good permutations for extreme discrepancy
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X
– volume: 14
  start-page: 69
  year: 2019
  end-page: 81
  ident: CR19
  article-title: Evolutionary fuzzy systems for explainable artificial intelligence: Why, when, what for, and where to?
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/mci.2018.2881645
– volume: 57
  start-page: 378
  year: 2021
  end-page: 387
  ident: CR8
  article-title: Formation of fuzzy classifier structure by a combination of the class extremum algorithm and the shuffled frog leaping algorithm for imbalanced data with two classes
  publication-title: Optoelectron., Instrum. Data Process.
  doi: 10.3103/s8756699021040026
– volume: SMC-3
  start-page: 28
  year: 1973
  end-page: 44
  ident: CR52
  article-title: Outline of a new approach to the analysis of complex systems and decision processes
  publication-title: IEEE Trans. Syst., Man, Cybern.
  doi: 10.1109/tsmc.1973.5408575
– volume: 10
  start-page: 609
  year: 2018
  ident: CR6
  article-title: A fuzzy classifier with feature selection based on the gravitational search algorithm
  publication-title: Symmetry
  doi: 10.3390/sym10110609
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: CR46
  article-title: Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/a:1008202821328
– volume: 4
  start-page: 115
  year: 2012
  end-page: 120
  ident: CR29
  article-title: Application of shuffled frog leaping algorithm to long term generation expansion planning
  publication-title: Int. J. Comput. Electr. Eng.
  doi: 10.7763/ijcee.2012.v4.461
– ident: CR42
– volume: 11
  start-page: 3852
  year: 2020
  ident: CR33
  article-title: Explainable artificial intelligence model to predict acute critical illness from electronic health records
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17431-x
– volume: 82
  start-page: 935
  year: 2021
  end-page: 967
  ident: CR22
  article-title: Methods for improving the efficiency of swarm optimization algorithms. A survey
  publication-title: Autom. Remote Control
  doi: 10.1134/s0005117921060011
– volume: 36
  start-page: 75
  year: 2020
  end-page: 86
  ident: CR50
  article-title: Optimal selection of tests for fault diagnosis in multi-path system with time-delay
  publication-title: J. Electron. Test.
  doi: 10.1007/s10836-020-05854-9
– volume: 46
  start-page: 381
  year: 2019
  end-page: 387
  ident: CR25
  article-title: Using shuffled frog-leaping algorithm for feature selection and fuzzy classifier design
  publication-title: Sci. Tech. Inf. Process.
  doi: 10.3103/s0147688219060030
– volume: 129
  start-page: 210
  year: 2003
  end-page: 225
  ident: CR14
  article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm
  publication-title: J. Water Resour. Planning Manage.
  doi: 10.1061/(asce)0733-9496(2003)129:3(210)
– volume: 38
  start-page: 129
  year: 2006
  end-page: 154
  ident: CR15
  article-title: Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization
  publication-title: Eng. Optim.
  doi: 10.1080/03052150500384759
– volume: 76
  start-page: 60
  year: 2021
  end-page: 68
  ident: CR20
  article-title: A new heuristic optimization algorithm: harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– ident: CR11
– ident: CR9
– ident: CR32
– volume: 159
  start-page: 2378
  year: 2008
  end-page: 2398
  ident: CR18
  article-title: A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2007.12.023
– volume: 16
  start-page: 339
  year: 2015
  end-page: 350
  ident: CR37
  article-title: A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm (FASSO)
  publication-title: Egyptian Inf. J.
  doi: 10.1016/j.eij.2015.07.003
– ident: CR5
– ident: CR26
– volume: 39
  start-page: 406
  year: 2015
  end-page: 412
  ident: CR34
  article-title: Application of metaheuristics to -means clustering
  publication-title: Komp’yuternaya Opt.
  doi: 10.18287/0134-2452-2015-39-3-406-412
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: CR51
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/s0019-9958(65)90241-x
– volume: 2
  start-page: 73
  year: 2012
  end-page: 77
  ident: CR1
  article-title: Optimal placement and sizing of DG in radial distribution networks using sfla
  publication-title: Int. J. Energy Eng.
  doi: 10.5923/j.ijee.20120203.03
– ident: CR53
– ident: CR30
– ident: CR10
– volume: 50
  start-page: 337
  year: 2017
  end-page: 341
  ident: CR13
  article-title: “On randomization of Halton quasi-random sequences,” Vestn. St. Petersburg Univ
  publication-title: Math.
  doi: 10.3103/S1063454117040070
– volume: 19
  start-page: 2783
  year: 2015
  end-page: 2797
  ident: CR48
  article-title: An improved gravitational search algorithm for solving short-term economic/environmental hydrothermal scheduling
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1441-3
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: CR43
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.026
– volume: 121
  start-page: 1585
  year: 1974
  end-page: 1588
  ident: CR36
  article-title: Application of fuzzy algorithms for control of simple dynamic plant
  publication-title: Proc. Inst. Electr. Eng.
  doi: 10.1049/piee.1974.0328
– volume: 3
  start-page: 53
  year: 2007
  end-page: 60
  ident: CR12
  article-title: A modified shuffled frog-leaping optimization algorithm: Applications to project management
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732470500254535
– volume: 30
  start-page: 2195
  year: 2016
  end-page: 2211
  ident: CR35
  article-title: Integration of shuffled frog leaping algorithm and support vector regression for prediction of water quality parameters
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-016-1280-3
– ident: CR27
– ident: CR23
– ident: CR44
– volume: SMC-15
  start-page: 116
  year: 1985
  end-page: 132
  ident: CR47
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Trans. Syst., Man, Cybern.
  doi: 10.1109/tsmc.1985.6313399
– volume: 8
  start-page: 7156
  year: 2020
  end-page: 7160
  ident: CR39
  article-title: Swarm intelligence based sparrow search optimization algorithm for node localization in wireless sensor networks
  publication-title: Int. J. Emerging Trends Eng. Res.
  doi: 10.30534/ijeter/2020/848102020
– ident: CR3
– volume: 19
  start-page: 2955
  year: 2015
  end-page: 2972
  ident: CR17
  article-title: A novel optimization algorithm inspired by the creative thinking process
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1459-6
– ident: CR31
– volume: 23
  start-page: 429
  year: 2013
  end-page: 454
  ident: CR38
  article-title: Swallow swarm optimization algorithm: A new method to optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0939-9
– volume: 970
  start-page: 253
  year: 2021
  ident: CR2
  article-title: Explainable fuzzy systems: Paving the way from interpretable fuzzy systems to explainable AI systems
  publication-title: Stud. Comput. Intell.
– volume: 38
  start-page: 50
  year: 2017
  end-page: 57
  ident: CR21
  article-title: European Union regulations on algorithmic decision making and a ‘right to explanation,’
  publication-title: AI Mag.
  doi: 10.1609/aimag.v38i3.2741
– volume: 13
  start-page: 428
  year: 2005
  end-page: 435
  ident: CR28
  article-title: Rule weight specification in fuzzy rule-based classification systems
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/tfuzz.2004.841738
– ident: CR41
– ident: CR24
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: CR49
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 10
  start-page: 609
  year: 2018
  ident: 8565_CR6
  publication-title: Symmetry
  doi: 10.3390/sym10110609
– ident: 8565_CR42
  doi: 10.1109/icsengt.2013.6650144
– volume: 23
  start-page: 429
  year: 2013
  ident: 8565_CR38
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0939-9
– volume: 11
  start-page: 3852
  year: 2020
  ident: 8565_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17431-x
– volume: 129
  start-page: 210
  year: 2003
  ident: 8565_CR14
  publication-title: J. Water Resour. Planning Manage.
  doi: 10.1061/(asce)0733-9496(2003)129:3(210)
– volume: 970
  start-page: 253
  year: 2021
  ident: 8565_CR2
  publication-title: Stud. Comput. Intell.
– ident: 8565_CR9
– volume: 1
  start-page: 67
  year: 1997
  ident: 8565_CR49
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– ident: 8565_CR26
  doi: 10.1109/sibcon.2016.7491688
– ident: 8565_CR10
  doi: 10.1155/2015/923698
– volume: 3
  start-page: 53
  year: 2007
  ident: 8565_CR12
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732470500254535
– volume: 16
  start-page: 339
  year: 2015
  ident: 8565_CR37
  publication-title: Egyptian Inf. J.
  doi: 10.1016/j.eij.2015.07.003
– volume: SMC-15
  start-page: 116
  year: 1985
  ident: 8565_CR47
  publication-title: IEEE Trans. Syst., Man, Cybern.
  doi: 10.1109/tsmc.1985.6313399
– ident: 8565_CR5
– volume: 14
  start-page: 69
  year: 2019
  ident: 8565_CR19
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/mci.2018.2881645
– ident: 8565_CR30
– volume: 76
  start-page: 60
  year: 2021
  ident: 8565_CR20
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 19
  start-page: 2783
  year: 2015
  ident: 8565_CR48
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1441-3
– ident: 8565_CR45
  doi: 10.1109/cec.2015.7257028
– volume: 38
  start-page: 129
  year: 2006
  ident: 8565_CR15
  publication-title: Eng. Optim.
  doi: 10.1080/03052150500384759
– volume: 4
  start-page: 115
  year: 2012
  ident: 8565_CR29
  publication-title: Int. J. Comput. Electr. Eng.
  doi: 10.7763/ijcee.2012.v4.461
– volume: 30
  start-page: 2195
  year: 2016
  ident: 8565_CR35
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-016-1280-3
– volume: 38
  start-page: 50
  year: 2017
  ident: 8565_CR21
  publication-title: AI Mag.
  doi: 10.1609/aimag.v38i3.2741
– volume: 82
  start-page: 935
  year: 2021
  ident: 8565_CR22
  publication-title: Autom. Remote Control
  doi: 10.1134/s0005117921060011
– volume: 2
  start-page: 73
  year: 2012
  ident: 8565_CR1
  publication-title: Int. J. Energy Eng.
  doi: 10.5923/j.ijee.20120203.03
– ident: 8565_CR23
– volume: 36
  start-page: 75
  year: 2020
  ident: 8565_CR50
  publication-title: J. Electron. Test.
  doi: 10.1007/s10836-020-05854-9
– volume: 13
  start-page: 428
  year: 2005
  ident: 8565_CR28
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/tfuzz.2004.841738
– volume: 57
  start-page: 378
  year: 2021
  ident: 8565_CR8
  publication-title: Optoelectron., Instrum. Data Process.
  doi: 10.3103/s8756699021040026
– volume: 179
  start-page: 2232
  year: 2009
  ident: 8565_CR40
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: SMC-3
  start-page: 28
  year: 1973
  ident: 8565_CR52
  publication-title: IEEE Trans. Syst., Man, Cybern.
  doi: 10.1109/tsmc.1973.5408575
– ident: 8565_CR31
  doi: 10.1109/icnn.1995.488968
– ident: 8565_CR24
  doi: 10.1088/1742-6596/803/1/012053
– ident: 8565_CR27
– volume: 46
  start-page: 381
  year: 2019
  ident: 8565_CR25
  publication-title: Sci. Tech. Inf. Process.
  doi: 10.3103/s0147688219060030
– volume: 50
  start-page: 337
  year: 2017
  ident: 8565_CR13
  publication-title: Math.
  doi: 10.3103/S1063454117040070
– ident: 8565_CR41
  doi: 10.1007/978-3-540-37372-8_2
– ident: 8565_CR3
– volume: 19
  start-page: 2955
  year: 2015
  ident: 8565_CR17
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1459-6
– volume: 39
  start-page: 406
  year: 2015
  ident: 8565_CR34
  publication-title: Komp’yuternaya Opt.
  doi: 10.18287/0134-2452-2015-39-3-406-412
– ident: 8565_CR53
– volume: 42
  start-page: 47
  year: 1992
  ident: 8565_CR16
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X
– ident: 8565_CR32
– volume: 13
  start-page: 2592
  year: 2013
  ident: 8565_CR43
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.11.026
– volume: 8
  start-page: 338
  year: 1965
  ident: 8565_CR51
  publication-title: Inf. Control
  doi: 10.1016/s0019-9958(65)90241-x
– ident: 8565_CR11
– ident: 8565_CR44
  doi: 10.7463/1215.0829099
– volume: 11
  start-page: 1458
  year: 2019
  ident: 8565_CR7
  publication-title: Symmetry
  doi: 10.3390/sym11121458
– volume: 8
  start-page: 7156
  year: 2020
  ident: 8565_CR39
  publication-title: Int. J. Emerging Trends Eng. Res.
  doi: 10.30534/ijeter/2020/848102020
– volume: 11
  start-page: 341
  year: 1997
  ident: 8565_CR46
  publication-title: J. Global Optim.
  doi: 10.1023/a:1008202821328
– volume: 159
  start-page: 2378
  year: 2008
  ident: 8565_CR18
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2007.12.023
– volume: 121
  start-page: 1585
  year: 1974
  ident: 8565_CR36
  publication-title: Proc. Inst. Electr. Eng.
  doi: 10.1049/piee.1974.0328
– ident: 8565_CR4
SSID ssj0008192
Score 2.3171988
Snippet Fuzzy classifiers differ from other machine learning algorithms in their ability to interpret the inference process, which is especially important in high...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 396
SubjectTerms Computer Science
Image Processing and Computer Vision
Pattern Recognition
Regular Papers Contributed to Pria Journal/Application Problems
Title Population Generation Methods for Metaheuristic Algorithms Used to Construct Compact Fuzzy Classifiers of Medical Data
URI https://link.springer.com/article/10.1134/S1054661824700809
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5RuOhBFDXiD9KDJ81wbG23HkFBooGYCAmeyNpuQlQwbpjIX2_XdST448BpTdNtL-1r-zXv9fsAzqUtZQps0-tntoUdiS0mMbE8LqLI80MutYpCt0c7A3w3JENzjzvOs93zkKReqTPdEXz1qJAAVruJ72AvxTlsE4oKftikAMXG7dN9a7kApxxfOshJlAnqBRPM_PMjq9vRaixUbzHtEvRz47LMkpfaPOE1sfjB27im9buwYyAnamQ-sgcb4bQMJQM_kZncsarKFR7yujJsd5esrvE-fD4s1b5QRleti10tQh0jBX_TcjAO5xn9M2q8Ps8-Jsn4LUaDWP0rmaFUIFRT1iK9Eqlne75YfCEtzjmJUmFuNIuQiR-hmyAJDmDQbvWvO5bRbbCEwgeJxbBkPrVF3fc4c3ggfM7qRDIa-DQKiOcQYRMHuw4XQlCBiU2lWw884UYUU0ndQyhMZ9PwCJAnCMPEw2HoK6gjAia4rFNHCq6OpYL5FbjIh2_0ntFzjPSxxsWjX11egct8bEZmpsb_tz5eq_UJbDkK7mTZZ6dQUD0Znim4kvCqcs92s9mrGjf9Bkwo4W4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NTtwwEB5ROFAOUGgRv60P9NIqkHVsJz70sAK2C8uiSmUlegqxnQACdhHJUrGvw6v0wTpxnJUocOCA1FMsy0qcsT3zjWY8H8CG8Y0pgW15_cz3GDXMk4ZxL1Q6y8IoVcayKHQPRbvH9o_58QTc13dhbLZ7HZK0mrriHWFbPxEJMLQmEWVhiXOky6TspHe_0U_Lv-3t4KJ-prS1e7Td9hyVgKfRZBWeZEZGwteNKFSSqkRHSja4kSKJRJbwkHLtc8oCqrTWQjPuCxM0klAHmWDCiADf-wamGLr86OFNNb__6uyOFX5ZU8wGVTn-Mk7QBU-fnPRD8_cw9mpNWmsO_tTCqDJZLjaHhdrUo3_qRP7n0noHsw5Sk2Z1BuZhIu0vwJyD18Qprxy7agaLum8BZrrjqrX5e7j9MWYzI1U5btvsWpLtnCC8L9vJWTqsyluT5uXp4Oa8OLvKSS_HbxUDUhKg2pK8xGpafLaGo9EdseSj51lJPE4GGXHxMbKTFMkH6L2KeBZhsj_op0tAQs0l4yFL0wihnE6kVqYhqNEK3W4to2X4Um-X-LoqPxJbty1g8aMlXoav9V6InSbKnx-98qLRn2C6fdQ9iA_2Djur8JYitKsy7dZgEqWariM0K9RHdzQInLz2_voLeR47vQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VrYTgQEsBUaDFB7iA0mYdfx44rLrdtixbVYKVyinEdkIrYLciWVD3T_Wv9Cd14jgrlY8Dhx44xbKsxBnb42fN-D2AFy52rga29fWzOGLUsUg7xiNpbFFIlRvnVRRGh2J_zN4e8-MluGjvwvhs9zYk2dxpqFmaJtX2mSuCBgnbfo-ogOHOoiiTNebRIatymJ__xDNb-eagjwP8ktLB7oed_SjICkQWt68q0sxpJWLbVdJoajKrjO5yp0WmRJFxSbmNOWUJNdZaYRmPhUu6mbRJIZhwIsH33oJlFiupOrDc2_s43F04_5pfzAdYOf4-djAEUv_Y6etb4fU4rN_eBitw2RqmyWr5sjWrzJad_8IZ-R9ZbhXuBahNes3auA9L-WQNVgLsJsGplVjVKlu0dWtwd7Rgsy0fwI-jhcoZaWi6fXHkxbdLgrC_Lmcn-ayhvSa9r5-n30-rk28lGZf4rWpKamFUT9VLvAfG52A2n58TL0p6WtSC5GRakBA3I_2syh7C-EbM8wg6k-kkfwxEWq4ZlyzPFUI8m2lrXFdQZw0ex61W6_CqnTrpWUNLkvrjXMLS34Z4HV638yINHqr8e-sn_9T6Odw-6g_SdweHw6dwhyLiaxLwnkEHjZpvIGKrzGZYJQQ-3fT0ugLcqkSh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+Generation+Methods+for+Metaheuristic+Algorithms+Used+to+Construct+Compact+Fuzzy+Classifiers+of+Medical+Data&rft.jtitle=Pattern+recognition+and+image+analysis&rft.au=Bardamova%2C+M.&rft.au=Svetlakov%2C+M.&rft.au=Sarin%2C+K.&rft.au=Hodashinskaya%2C+A.&rft.date=2024-09-01&rft.pub=Pleiades+Publishing&rft.issn=1054-6618&rft.eissn=1555-6212&rft.volume=34&rft.issue=3&rft.spage=396&rft.epage=411&rft_id=info:doi/10.1134%2FS1054661824700809&rft.externalDocID=10_1134_S1054661824700809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1054-6618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1054-6618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1054-6618&client=summon