Salts of rucaparib with dicarboxylic acids: synthesis, crystal structures and solubility
Rucaparib (RUC) is a potent poly (ADP-ribose) polymerase inhibitor for the treatment of advanced ovarian cancer and recurrent epithelial ovarian cancer. It is marketed in the form of its camsylate salt with a solubility of 1.4 nmol L −1 and absolute oral bioavailability of 36-37%. To expand the soli...
Saved in:
Published in | CrystEngComm Vol. 24; no. 44; pp. 7813 - 782 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
14.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rucaparib (RUC) is a potent poly (ADP-ribose) polymerase inhibitor for the treatment of advanced ovarian cancer and recurrent epithelial ovarian cancer. It is marketed in the form of its camsylate salt with a solubility of 1.4 nmol L
−1
and absolute oral bioavailability of 36-37%. To expand the solid-state scope of RUC, three salts with fumaric acid (
RUC/FA
, 2 : 1), adipic acid (
RUC/AA
, 1 : 1) and pimelic acid (
RUC/PA
, 1 : 1) were synthesized and characterized. The crystal structure and infrared spectroscopy analyses demonstrate that proton transfer occurs between the RUC and FA/AA/PA molecules, confirming the formation of salts. In comparison with the commercial camsylate salt of RUC,
RUC/AA
and
RUC/PA
exhibit significantly enhanced solubility without sacrificing hygroscopicity and physical stability. Therefore,
RUC/AA
and
RUC/PA
may have the potential for developing improved formulations of RUC.
Three new salts of rucaparib with fumaric acid, adipic acid and pimelic acid were synthesized and characterized, and the latter two demonstrate significantly improved solubility without sacrificing hygroscopicity and physical stability. |
---|---|
AbstractList | Rucaparib (RUC) is a potent poly (ADP-ribose) polymerase inhibitor for the treatment of advanced ovarian cancer and recurrent epithelial ovarian cancer. It is marketed in the form of its camsylate salt with a solubility of 1.4 nmol L
−1
and absolute oral bioavailability of 36-37%. To expand the solid-state scope of RUC, three salts with fumaric acid (
RUC/FA
, 2 : 1), adipic acid (
RUC/AA
, 1 : 1) and pimelic acid (
RUC/PA
, 1 : 1) were synthesized and characterized. The crystal structure and infrared spectroscopy analyses demonstrate that proton transfer occurs between the RUC and FA/AA/PA molecules, confirming the formation of salts. In comparison with the commercial camsylate salt of RUC,
RUC/AA
and
RUC/PA
exhibit significantly enhanced solubility without sacrificing hygroscopicity and physical stability. Therefore,
RUC/AA
and
RUC/PA
may have the potential for developing improved formulations of RUC.
Three new salts of rucaparib with fumaric acid, adipic acid and pimelic acid were synthesized and characterized, and the latter two demonstrate significantly improved solubility without sacrificing hygroscopicity and physical stability. Rucaparib (RUC) is a potent poly (ADP-ribose) polymerase inhibitor for the treatment of advanced ovarian cancer and recurrent epithelial ovarian cancer. It is marketed in the form of its camsylate salt with a solubility of 1.4 nmol L−1 and absolute oral bioavailability of 36–37%. To expand the solid-state scope of RUC, three salts with fumaric acid (RUC/FA, 2 : 1), adipic acid (RUC/AA, 1 : 1) and pimelic acid (RUC/PA, 1 : 1) were synthesized and characterized. The crystal structure and infrared spectroscopy analyses demonstrate that proton transfer occurs between the RUC and FA/AA/PA molecules, confirming the formation of salts. In comparison with the commercial camsylate salt of RUC, RUC/AA and RUC/PA exhibit significantly enhanced solubility without sacrificing hygroscopicity and physical stability. Therefore, RUC/AA and RUC/PA may have the potential for developing improved formulations of RUC. Rucaparib (RUC) is a potent poly (ADP-ribose) polymerase inhibitor for the treatment of advanced ovarian cancer and recurrent epithelial ovarian cancer. It is marketed in the form of its camsylate salt with a solubility of 1.4 nmol L −1 and absolute oral bioavailability of 36–37%. To expand the solid-state scope of RUC, three salts with fumaric acid ( RUC/FA , 2 : 1), adipic acid ( RUC/AA , 1 : 1) and pimelic acid ( RUC/PA , 1 : 1) were synthesized and characterized. The crystal structure and infrared spectroscopy analyses demonstrate that proton transfer occurs between the RUC and FA/AA/PA molecules, confirming the formation of salts. In comparison with the commercial camsylate salt of RUC, RUC/AA and RUC/PA exhibit significantly enhanced solubility without sacrificing hygroscopicity and physical stability. Therefore, RUC/AA and RUC/PA may have the potential for developing improved formulations of RUC. |
Author | Wu, Chao Gao, Lu Xiong, Jing Gao, Wei Dai, Xia-Lin Chen, Jia-Mei Lu, Tong-Bu |
AuthorAffiliation | Tianjin Key Laboratory of Drug Targeting and Bioimaging Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering Tianjin University of Technology School of Pharmacy Guangdong Pharmaceutical University National Institutes for Food and Drug Control School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering – name: Institute for New Energy Materials and Low Carbon Technologies – name: Tianjin University of Technology – name: School of Materials Science and Engineering – name: School of Pharmacy – name: Guangdong Pharmaceutical University – name: National Institutes for Food and Drug Control – name: Tianjin Key Laboratory of Drug Targeting and Bioimaging |
Author_xml | – sequence: 1 givenname: Chao surname: Wu fullname: Wu, Chao – sequence: 2 givenname: Lu surname: Gao fullname: Gao, Lu – sequence: 3 givenname: Jing surname: Xiong fullname: Xiong, Jing – sequence: 4 givenname: Xia-Lin surname: Dai fullname: Dai, Xia-Lin – sequence: 5 givenname: Wei surname: Gao fullname: Gao, Wei – sequence: 6 givenname: Tong-Bu surname: Lu fullname: Lu, Tong-Bu – sequence: 7 givenname: Jia-Mei surname: Chen fullname: Chen, Jia-Mei |
BookMark | eNpNkEtLw0AUhQepYFvduBcG3InReeQx407S-oCCCxXchck86JSY1LkTNP_eaEVd3bP4zrnwzdCk7VqL0DElF5RweWmYtoSIlJk9NKVpnieCcD75lw_QDGBDCE0pJVP08qiaCLhzOPRabVXwNX73cY2N1yrU3cfQeI2V9gauMAxtXFvwcI51GCCqBkMce7EPFrBqDYau6Wvf-Dgcon2nGrBHP3eOnm-WT-Vdsnq4vS-vV4lmKYmJpK4wnImM58YYawrjmBZMap2xVAlWFyojVDqR2yyTuSXMOcllrQtrFaM1n6PT3e42dG-9hVhtuj6048uKFTwTIkvTfKTOdpQOHUCwrtoG_6rCUFFSfZmrFqxcfptbjPDJDg6gf7k_s_wTIwptoA |
Cites_doi | 10.1039/C5CC08216A 10.3390/molecules26092677 10.1007/s11167-005-0305-0 10.1021/ie400794r 10.1039/C6CC02943D 10.3390/cancers12041020 10.1158/1078-0432.CCR-17-1337 10.1016/j.bpobgyn.2020.02.010 10.1016/j.addr.2017.03.002 10.1021/acsomega.0c00692 10.1002/cam4.2560 10.1007/s00280-022-04413-7 10.1021/acs.cgd.8b00933 10.1021/mp0601345 10.1016/j.ygyno.2021.08.029 10.1007/s11523-019-00629-5 10.1016/j.addr.2017.07.001 10.1021/acs.cgd.8b01911 10.1021/acs.chemrev.1c00987 10.1002/ijgo.12620 10.1021/acs.cgd.6b00902 10.1134/S0036024412020148 10.1021/acs.molpharmaceut.0c00713 10.1039/D0CE00409J 10.1016/j.xphs.2016.10.021 10.1080/19440049.2014.888784 10.1039/C9CE00781D 10.1039/C4CE02044H |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/d2ce00842d |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 782 |
ExternalDocumentID | 10_1039_D2CE00842D d2ce00842d |
GroupedDBID | -JG 0-7 0R~ 1TJ 29F 5GY 6J9 705 70J 70~ 7~J AAEMU AAGNR AAIWI AANOJ AAPBV AAXPP ABASK ABDVN ABGFH ABPTK ABRYZ ACGFO ACGFS ACLDK ADMRA ADSRN AENEX AFOGI AFVBQ AGKEF AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CAG CS3 E3Z EBS ECGLT EE0 EF- GNO H13 HZ~ H~N IDZ J3I KC5 N9A O9- OK1 P2P R7B RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRZK AGEGJ AHGCF AKMSF APEMP CITATION GGIMP R56 RAOCF 7U5 8FD L7M |
ID | FETCH-LOGICAL-c240t-91f7d328536ddded7df2c829cc524a82b7a5019f86e5596e02ff939bc7eea21b3 |
ISSN | 1466-8033 |
IngestDate | Sun Jun 29 16:43:56 EDT 2025 Tue Jul 01 02:07:33 EDT 2025 Tue Nov 15 04:20:15 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c240t-91f7d328536ddded7df2c829cc524a82b7a5019f86e5596e02ff939bc7eea21b3 |
Notes | Electronic supplementary information (ESI) available. CCDC For ESI and crystallographic data in CIF or other electronic format see DOI https://doi.org/10.1039/d2ce00842d 2151639-2151641 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8605-6173 0000-0002-6087-4880 0000-0002-3959-901X |
PQID | 2735885446 |
PQPubID | 2047491 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2735885446 crossref_primary_10_1039_D2CE00842D rsc_primary_d2ce00842d |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-14 |
PublicationDateYYYYMMDD | 2022-11-14 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | (D2CE00842D/cit6/1) 2022 Li (D2CE00842D/cit18/1) 2019; 19 Wang (D2CE00842D/cit4/1) 2021; 163 Chauhan (D2CE00842D/cit27/1) 2014; 5 Montemurri (D2CE00842D/cit2/1) 2020; 12 Green (D2CE00842D/cit9/1) 2022; 89 Cavanagh (D2CE00842D/cit30/1) 2020; 17 Li (D2CE00842D/cit32/1) 2012; 86 (D2CE00842D/cit7/1) 2022 Zhang (D2CE00842D/cit15/1) 2021; 26 Dai (D2CE00842D/cit14/1) 2020; 21 Kale (D2CE00842D/cit21/1) 2017; 106 Chandra (D2CE00842D/cit1/1) 2019; 8 Healy (D2CE00842D/cit29/1) 2017; 117 Banik (D2CE00842D/cit19/1) 2016; 16 Balasubramaniam (D2CE00842D/cit10/1) 2017; 23 (D2CE00842D/cit35/1) 2022 Basu (D2CE00842D/cit5/1) 2018; 143 Duggirala (D2CE00842D/cit13/1) 2016; 52 Wang (D2CE00842D/cit16/1) 2019; 21 Wang (D2CE00842D/cit25/1) 2015; 17 Childs (D2CE00842D/cit26/1) 2007; 4 Bolla (D2CE00842D/cit11/1) 2022; 122 Yang (D2CE00842D/cit17/1) 2020; 5 Vioglio (D2CE00842D/cit28/1) 2017; 117 (D2CE00842D/cit31/1) 2022 Shirley (D2CE00842D/cit8/1) 2019; 14 Basford (D2CE00842D/cit23/1) 2015 Ginex (D2CE00842D/cit24/1) 2014; 31 Canan-Koch (D2CE00842D/cit22/1) 2004 Karimi-Jafari (D2CE00842D/cit20/1) 2018; 18 Gaivoronskii (D2CE00842D/cit34/1) 2005; 78 Nash (D2CE00842D/cit3/1) 2020; 65 Bolla (D2CE00842D/cit12/1) 2016; 52 Engel (D2CE00842D/cit33/1) 2013; 52 |
References_xml | – issn: 2022 – issn: 2015 publication-title: US Pat. doi: Basford Campeta Gillmore Kougoulos Luthra Walton – issn: 2004 publication-title: US Pat. doi: Canan-Koch Chu Gillmore Liu Matthews – volume: 52 start-page: 640 year: 2016 ident: D2CE00842D/cit13/1 publication-title: Chem. Commun. doi: 10.1039/C5CC08216A – volume: 26 start-page: 2677 year: 2021 ident: D2CE00842D/cit15/1 publication-title: Molecules doi: 10.3390/molecules26092677 – volume: 78 start-page: 404 year: 2005 ident: D2CE00842D/cit34/1 publication-title: Russ. J. Appl. Chem. doi: 10.1007/s11167-005-0305-0 – volume: 52 start-page: 9454 year: 2013 ident: D2CE00842D/cit33/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400794r – year: 2022 ident: D2CE00842D/cit35/1 – volume: 52 start-page: 8342 year: 2016 ident: D2CE00842D/cit12/1 publication-title: Chem. Commun. doi: 10.1039/C6CC02943D – volume: 12 start-page: 1020 year: 2020 ident: D2CE00842D/cit2/1 publication-title: Cancers doi: 10.3390/cancers12041020 – volume: 23 start-page: 7165 year: 2017 ident: D2CE00842D/cit10/1 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-1337 – year: 2022 ident: D2CE00842D/cit6/1 – volume: 65 start-page: 32 year: 2020 ident: D2CE00842D/cit3/1 publication-title: Best Pract. Res. Clin. Obstet. Gynaecol. doi: 10.1016/j.bpobgyn.2020.02.010 – volume: 117 start-page: 25 year: 2017 ident: D2CE00842D/cit29/1 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2017.03.002 – volume: 5 start-page: 8283 year: 2020 ident: D2CE00842D/cit17/1 publication-title: ACS Omega doi: 10.1021/acsomega.0c00692 – volume: 8 start-page: 7018 year: 2019 ident: D2CE00842D/cit1/1 publication-title: Cancer Med. doi: 10.1002/cam4.2560 – volume: 89 start-page: 671 year: 2022 ident: D2CE00842D/cit9/1 publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-022-04413-7 – volume: 18 start-page: 6370 year: 2018 ident: D2CE00842D/cit20/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00933 – volume: 5 start-page: 1 year: 2014 ident: D2CE00842D/cit27/1 publication-title: J. Anal. Bioanal. Tech. – year: 2022 ident: D2CE00842D/cit7/1 – volume: 4 start-page: 323 year: 2007 ident: D2CE00842D/cit26/1 publication-title: Mol. Pharmaceutics doi: 10.1021/mp0601345 – volume: 163 start-page: 358 year: 2021 ident: D2CE00842D/cit4/1 publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2021.08.029 – volume: 14 start-page: 237 year: 2019 ident: D2CE00842D/cit8/1 publication-title: Target. Oncol. doi: 10.1007/s11523-019-00629-5 – volume: 117 start-page: 86 year: 2017 ident: D2CE00842D/cit28/1 publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2017.07.001 – volume-title: US Pat. year: 2004 ident: D2CE00842D/cit22/1 – year: 2022 ident: D2CE00842D/cit31/1 – volume: 19 start-page: 1942 year: 2019 ident: D2CE00842D/cit18/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b01911 – volume: 122 start-page: 11514 year: 2022 ident: D2CE00842D/cit11/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00987 – volume: 143 start-page: 131 year: 2018 ident: D2CE00842D/cit5/1 publication-title: Int. J. Gynecol. Obstet. doi: 10.1002/ijgo.12620 – volume: 16 start-page: 5418 year: 2016 ident: D2CE00842D/cit19/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b00902 – volume-title: US Pat. year: 2015 ident: D2CE00842D/cit23/1 – volume: 86 start-page: 314 year: 2012 ident: D2CE00842D/cit32/1 publication-title: Russ. J. Phys. Chem. A doi: 10.1134/S0036024412020148 – volume: 17 start-page: 4286 year: 2020 ident: D2CE00842D/cit30/1 publication-title: Mol. Pharmaceutics doi: 10.1021/acs.molpharmaceut.0c00713 – volume: 21 start-page: 3670 year: 2020 ident: D2CE00842D/cit14/1 publication-title: CrystEngComm doi: 10.1039/D0CE00409J – volume: 106 start-page: 457 year: 2017 ident: D2CE00842D/cit21/1 publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2016.10.021 – volume: 31 start-page: 792 year: 2014 ident: D2CE00842D/cit24/1 publication-title: Food Addit. Contam., Part A doi: 10.1080/19440049.2014.888784 – volume: 21 start-page: 5284 year: 2019 ident: D2CE00842D/cit16/1 publication-title: CrystEngComm doi: 10.1039/C9CE00781D – volume: 17 start-page: 747 year: 2015 ident: D2CE00842D/cit25/1 publication-title: CrystEngComm doi: 10.1039/C4CE02044H |
SSID | ssj0014110 |
Score | 2.368784 |
Snippet | Rucaparib (RUC) is a potent poly (ADP-ribose) polymerase inhibitor for the treatment of advanced ovarian cancer and recurrent epithelial ovarian cancer. It is... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 7813 |
SubjectTerms | Bioavailability Cancer Crystal structure Dicarboxylic acids Fumaric acid Hygroscopicity Infrared analysis Ribose Solubility |
Title | Salts of rucaparib with dicarboxylic acids: synthesis, crystal structures and solubility |
URI | https://www.proquest.com/docview/2735885446 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7R9AKHilIqUkq1UnvEJd6XbW5VmqpUKRdSyTdrvbtGkZCD8pAIv57Zl50KkCgXK1o_FM1nz2tnvkHoYtTY4Sd1mhChIEAh0iS5SWliKNdGZkxwl8y5_yxuH9hdycs4sz10l6zrS_Xzj30l_4MqrAGutkv2Cch2D4UF-A34whEQhuM_YfxFfvOlGACQtOMEa59XtXsvy3rxY2sZrKWaa1f3ttq24O2tPKmAWm5Xa98rsnG7CJ6r2f5fVy77aLd3bC-etF9tN0mnxTdht37RlfBIl3adbuJCOY_1vtE-upS4qx8o5zKZBtbvkHSAeNUWvvnA33hFyYQlMvYkFlGT-m7o8MYwtqMXs9x3nAYbm_mBQ7-p7xG17KeaKGN5_onujVRXOtif3EP7BGIDMkD7V5PZp2m3ecTApYlMtLT40N_x2PfoA4q9ZZz24ryK2Ut0EMIBfOWxPUTPTPsKvdghiTxCpUMZLxrcoYwtyngXZexQ_og7jN_jgDDuEcaAMO4Rfo0ebiaz8W0S5mEkCvyuNdilJtOUgIMlNFglnemGqJwUSnHCZE7qTHLw2JtcGIgThRmRpiloUavMGEnSmh6jQbtozRuEKRXMJSTgEia5LDLblayLlOdGsrQZovMoqeq7pz2pXLkCLaprMp44eV4P0WkUYhU-i1UF_jDPc86YGKJjEGx3f4_Dyd9OvEXP-7ftFA1AQOYdOH3r-iyA_Av11Fse |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salts+of+rucaparib+with+dicarboxylic+acids%3A+synthesis%2C+crystal+structures+and+solubility&rft.jtitle=CrystEngComm&rft.au=Wu%2C+Chao&rft.au=Gao%2C+Lu&rft.au=Xiong%2C+Jing&rft.au=Dai%2C+Xia-Lin&rft.date=2022-11-14&rft.eissn=1466-8033&rft.volume=24&rft.issue=44&rft.spage=7813&rft.epage=782&rft_id=info:doi/10.1039%2Fd2ce00842d&rft.externalDocID=d2ce00842d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |