Green dipolar aprotic solvents for the dynamic polycondensation of high-performance polyimide membranes
The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues and the development and implementation of circular methodologies, together with growing environmental and health awareness, will promote the...
Saved in:
Published in | Green chemistry : an international journal and green chemistry resource : GC Vol. 26; no. 24; pp. 11984 - 127 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
09.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues and the development and implementation of circular methodologies, together with growing environmental and health awareness, will promote the replacement of traditional solvents by more sustainable alternatives. In general, high-performance polymers, such as polyimides, are synthesized under specific reaction conditions. This work defines and develops clear guidelines, integrating them into a decision map to evaluate the potential of an alternative solvent for application in the synthesis of polyimides. Since every industrial application demands explicit criteria, our study focused on the development of polyimides for the membrane industry. More than 130 solvents were evaluated, and 10 solvents were found to have the potential to be employed in the synthesis of polyimides. The outcome was verified with 7 of those solvents, namely, γ-valerolactone (GVL), cyrene (Cy), dimethyl carbonate (DMC), dimethyl isosorbide (DMI), dimethyl sulfoxide (DMSO), 3-methoxy-
N
,
N
-dimethylpropanamide (commercially known as KJCMPA®-100), and the reference
N
-methyl-2-pyrrolidone (NMP), and tested for the synthesis of 3 polyimides (6FDA-HAB, 6FDA-6FpDA and 6FDA-DAM), obtaining extremely consistent outcomes. This work found four solvents, GVL, DMI, DMSO, and KJCMPA, that could substitute NMP, and other harmful solvents, in the synthesis of high-performance polymers. GVL provided even better results in terms of the molecular weight of the polyimides than the reference NMP, showing a realistic potential for its direct substitution. This work also reports more than 40 alternative solvents derived from the identified solvents. Finally, the key action points that should be taken into account for imminent advances in the subject were recognized.
Guidelines for the evaluation of green solvents were revisited and integrated into a decision diagram. GVL, Cyrene™, DMC, NOP, DEC, DMI, GBL, NBP, Rhodiasolv® PolarClean, and DMSO showed the potential to substitute hazardous polar aprotic solvents. |
---|---|
AbstractList | The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues and the development and implementation of circular methodologies, together with growing environmental and health awareness, will promote the replacement of traditional solvents by more sustainable alternatives. In general, high-performance polymers, such as polyimides, are synthesized under specific reaction conditions. This work defines and develops clear guidelines, integrating them into a decision map to evaluate the potential of an alternative solvent for application in the synthesis of polyimides. Since every industrial application demands explicit criteria, our study focused on the development of polyimides for the membrane industry. More than 130 solvents were evaluated, and 10 solvents were found to have the potential to be employed in the synthesis of polyimides. The outcome was verified with 7 of those solvents, namely, γ-valerolactone (GVL), cyrene (Cy), dimethyl carbonate (DMC), dimethyl isosorbide (DMI), dimethyl sulfoxide (DMSO), 3-methoxy-
N
,
N
-dimethylpropanamide (commercially known as KJCMPA®-100), and the reference
N
-methyl-2-pyrrolidone (NMP), and tested for the synthesis of 3 polyimides (6FDA-HAB, 6FDA-6FpDA and 6FDA-DAM), obtaining extremely consistent outcomes. This work found four solvents, GVL, DMI, DMSO, and KJCMPA, that could substitute NMP, and other harmful solvents, in the synthesis of high-performance polymers. GVL provided even better results in terms of the molecular weight of the polyimides than the reference NMP, showing a realistic potential for its direct substitution. This work also reports more than 40 alternative solvents derived from the identified solvents. Finally, the key action points that should be taken into account for imminent advances in the subject were recognized. The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues and the development and implementation of circular methodologies, together with growing environmental and health awareness, will promote the replacement of traditional solvents by more sustainable alternatives. In general, high-performance polymers, such as polyimides, are synthesized under specific reaction conditions. This work defines and develops clear guidelines, integrating them into a decision map to evaluate the potential of an alternative solvent for application in the synthesis of polyimides. Since every industrial application demands explicit criteria, our study focused on the development of polyimides for the membrane industry. More than 130 solvents were evaluated, and 10 solvents were found to have the potential to be employed in the synthesis of polyimides. The outcome was verified with 7 of those solvents, namely, γ-valerolactone (GVL), cyrene (Cy), dimethyl carbonate (DMC), dimethyl isosorbide (DMI), dimethyl sulfoxide (DMSO), 3-methoxy- N , N -dimethylpropanamide (commercially known as KJCMPA®-100), and the reference N -methyl-2-pyrrolidone (NMP), and tested for the synthesis of 3 polyimides (6FDA-HAB, 6FDA-6FpDA and 6FDA-DAM), obtaining extremely consistent outcomes. This work found four solvents, GVL, DMI, DMSO, and KJCMPA, that could substitute NMP, and other harmful solvents, in the synthesis of high-performance polymers. GVL provided even better results in terms of the molecular weight of the polyimides than the reference NMP, showing a realistic potential for its direct substitution. This work also reports more than 40 alternative solvents derived from the identified solvents. Finally, the key action points that should be taken into account for imminent advances in the subject were recognized. Guidelines for the evaluation of green solvents were revisited and integrated into a decision diagram. GVL, Cyrene™, DMC, NOP, DEC, DMI, GBL, NBP, Rhodiasolv® PolarClean, and DMSO showed the potential to substitute hazardous polar aprotic solvents. The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues and the development and implementation of circular methodologies, together with growing environmental and health awareness, will promote the replacement of traditional solvents by more sustainable alternatives. In general, high-performance polymers, such as polyimides, are synthesized under specific reaction conditions. This work defines and develops clear guidelines, integrating them into a decision map to evaluate the potential of an alternative solvent for application in the synthesis of polyimides. Since every industrial application demands explicit criteria, our study focused on the development of polyimides for the membrane industry. More than 130 solvents were evaluated, and 10 solvents were found to have the potential to be employed in the synthesis of polyimides. The outcome was verified with 7 of those solvents, namely, γ-valerolactone (GVL), cyrene (Cy), dimethyl carbonate (DMC), dimethyl isosorbide (DMI), dimethyl sulfoxide (DMSO), 3-methoxy-N,N-dimethylpropanamide (commercially known as KJCMPA®-100), and the reference N-methyl-2-pyrrolidone (NMP), and tested for the synthesis of 3 polyimides (6FDA-HAB, 6FDA-6FpDA and 6FDA-DAM), obtaining extremely consistent outcomes. This work found four solvents, GVL, DMI, DMSO, and KJCMPA, that could substitute NMP, and other harmful solvents, in the synthesis of high-performance polymers. GVL provided even better results in terms of the molecular weight of the polyimides than the reference NMP, showing a realistic potential for its direct substitution. This work also reports more than 40 alternative solvents derived from the identified solvents. Finally, the key action points that should be taken into account for imminent advances in the subject were recognized. |
Author | Palacio, L Hernández, A Carmona, F. J Tena, A San José, E Soto, C de la Viuda, M. R Prádanos, P |
AuthorAffiliation | CSIC-Associated Research Unit Universidad de Valladolid Surfaces and Porous Materials (SMAP) Institute of Sustainable Processes (ISP) |
AuthorAffiliation_xml | – sequence: 0 name: Universidad de Valladolid – sequence: 0 name: Surfaces and Porous Materials (SMAP) – sequence: 0 name: Institute of Sustainable Processes (ISP) – sequence: 0 name: CSIC-Associated Research Unit |
Author_xml | – sequence: 1 givenname: E surname: San José fullname: San José, E – sequence: 2 givenname: M. R surname: de la Viuda fullname: de la Viuda, M. R – sequence: 3 givenname: F. J surname: Carmona fullname: Carmona, F. J – sequence: 4 givenname: C surname: Soto fullname: Soto, C – sequence: 5 givenname: L surname: Palacio fullname: Palacio, L – sequence: 6 givenname: P surname: Prádanos fullname: Prádanos, P – sequence: 7 givenname: A surname: Hernández fullname: Hernández, A – sequence: 8 givenname: A surname: Tena fullname: Tena, A |
BookMark | eNpF0E1LAzEQBuAgFWyrF-9CwJuwmq9udo_SahUKXvS8ZJNJm9JN1mQr9N8bW9FTBvLMDPNO0MgHDwhdU3JPCa8fjFhrIpiszRkaU1HyomaSjP7qkl2gSUpbQiiVpRij9TICeGxcH3YqYtXHMDiNU9h9gR8StiHiYQPYHLzq8kdmBx28AZ_U4ILHweKNW2-KHmK2nfIajsh1zgDuoGuj8pAu0blVuwRXv-8UfTw_vc9fitXb8nX-uCo0E2QoKl4aRkBKy5SRlVBcQVnNpBJU6BlpaztTqq01s7KGUjLGmaG8armygucuPkW3p7n5kM89pKHZhn30eWXDqWC0YqwiWd2dlI4hpQi26aPrVDw0lDQ_QTYLsZwfg1xkfHPCMek_9x80_wbrz3L_ |
Cites_doi | 10.1002/cssc.202000462 10.1021/acs.langmuir.8b01513 10.1021/acsapm.3c00940 10.1021/acs.macromol.2c02600 10.1016/j.eurpolymj.2017.05.035 10.1016/j.seppur.2023.125072 10.1021/acs.macromol.9b00985 10.1039/c0gc00918k 10.3390/ijms160817101 10.1016/j.memsci.2024.122519 10.1016/j.eurpolymj.2018.04.031 10.1021/ja01594a055 10.3390/catal12080909 10.1039/B918763B 10.1021/op300125p 10.1016/j.memsci.2008.12.068 10.1021/acs.iecr.2c02747 10.1002/1097-4628(20000919)77:12<2756::AID-APP240>3.0.CO;2-C 10.1002/app.48419 10.1016/j.cogsc.2017.03.012 10.1016/j.jcou.2023.102536 10.1021/acssuschemeng.0c07119 10.1063/1.1723621 10.1039/c0gc00797h 10.1016/j.seppur.2021.118492 10.1039/C7GC01764B 10.1021/sc500096j 10.1016/j.eurpolymj.2014.11.016 10.1016/j.mtnano.2023.100379 10.1002/cssc.202300748 10.3390/membranes8020023 10.1016/j.memsci.2010.02.012 10.1002/cssc.201000011 10.1039/D3GC01795H 10.1021/acssuschemeng.9b06496 10.1016/j.memsci.2015.07.003 10.1016/j.cej.2023.147451 10.1021/acssuschemeng.3c04231 10.1016/B978-0-12-819721-9.00010-8 10.1039/C6GC00932H 10.1039/B412722F 10.1016/j.polymer.2019.122071 10.1016/j.memsci.2021.119530 10.1039/C5PY00231A 10.1039/D1GC03318B 10.1016/j.fluid.2018.05.003 10.1201/9781420006834 10.1016/j.jclepro.2021.130098 10.1039/C8GC03652G 10.1021/acs.iecr.3c03310 10.1002/app.32913 10.1007/s41061-022-00411-8 10.3390/membranes11060418 10.1021/cr60257a001 10.1039/C4GC02169J 10.1002/cssc.201100580 10.1016/S0896-8446(02)00210-3 10.1039/C4GC01149J 10.1039/D3GC00776F 10.1021/i260067a021 10.1039/C9PY00353C 10.1039/B711717E 10.1039/C5RA03809J 10.1016/B0-12-226770-2/05271-6 10.1021/ja01462a023 10.1021/j100007a062 10.1007/s11356-018-3575-9 10.1007/s00289-008-0963-1 10.1016/0022-1902(71)80077-5 10.1016/j.tca.2005.02.011 10.3390/membranes13030266 10.1021/acs.macromol.7b01051 10.1007/s00289-019-02793-0 10.1021/ie9904955 10.1039/C5GC01008J 10.1016/j.scp.2022.100639 10.1021/ie101928r 10.1039/D2GC02342C 10.1063/5.0055522 10.1016/B978-0-323-95165-4.00022-7 10.1002/9783527805624.ch7 10.1002/pol.20210001 10.1016/j.memsci.2017.06.002 10.1016/j.fuel.2021.121333 10.1002/jctb.4668 10.1039/D2OB02222B 10.1016/S1872-5813(22)60075-6 10.1021/acs.chemrev.7b00571 10.1002/chem.201001743 10.1039/b304182d 10.1016/j.eurpolymj.2006.08.012 10.1016/j.cep.2016.01.007 10.1039/b922014c 10.1002/cssc.202101125 10.1016/j.seppur.2019.115903 10.1016/j.biortech.2022.127829 10.18356/f8fbb7cb-en 10.1021/jp980017s 10.1016/j.cogsc.2022.100634 10.3390/membranes10010004 10.1021/acssuschemeng.9b01507 10.1016/j.seppur.2023.125724 10.1080/17518253.2021.1965223 10.1080/17518253.2021.1965663 10.1295/kobunshi.57.894 10.1007/s11224-014-0443-1 10.1021/acs.jcim.9b00656 10.1002/cctc.201000302 10.1039/c2cs35177c 10.1002/adsc.201501007 10.1016/j.matdes.2015.11.065 10.1002/adsc.201901021 10.1039/c2gc16515e 10.1039/C9CC04846D 10.1016/j.eurpolymj.2006.11.019 10.1039/C9GC03784E 10.1021/acsami.7b02295 10.1016/S0376-7388(02)00251-X 10.1002/btpr.3210 10.1021/acssuschemeng.3c04944 10.1016/j.memsci.2023.121864 10.3390/polym16010013 10.1016/j.cattod.2022.08.034 10.1351/PAC-CON-08-12-02 10.1016/j.chempr.2018.08.035 10.1016/j.cogsc.2020.02.002 10.1016/j.tet.2021.132001 10.1186/s40508-016-0051-z 10.1021/ma202685j 10.1002/batt.202300527 10.3762/bjoc.12.218 10.3390/catal12030309 10.1016/j.memsci.2007.01.022 10.1002/cssc.201300864 10.1016/j.memsci.2023.122346 10.1016/j.seppur.2020.118015 10.1016/S0011-9164(00)82092-5 10.1021/acs.chemrev.1c00672 10.1002/app.50935 10.1021/acs.est.2c06753 10.1021/je980288w 10.1016/j.watres.2006.06.011 10.1016/j.molliq.2023.121676 10.1002/cssc.201600795 10.1002/cssc.201100483 10.1016/j.jece.2021.106414 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SR 7ST 7U6 8BQ 8FD C1K JG9 |
DOI | 10.1039/d4gc04279d |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Sustainability Science Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Sustainability Science Abstracts Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1463-9270 |
EndPage | 127 |
ExternalDocumentID | 10_1039_D4GC04279D d4gc04279d |
GroupedDBID | -JG 0-7 0R~ 29I 4.4 5GY 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AALRI AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN ADVLN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K COF CS3 D0L DU5 EBS ECGLT EE0 EF- F5P FDB GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF ALUYA CITATION M4U R56 7SR 7ST 7U6 8BQ 8FD C1K JG9 |
ID | FETCH-LOGICAL-c240t-836d20e77f2ad784a3ae6857a414c50b9f5aab9c2f79e672232d138b3af4377f3 |
ISSN | 1463-9262 |
IngestDate | Mon Jun 30 12:04:42 EDT 2025 Tue Jul 01 02:24:58 EDT 2025 Tue Dec 17 20:57:29 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c240t-836d20e77f2ad784a3ae6857a414c50b9f5aab9c2f79e672232d138b3af4377f3 |
Notes | https://doi.org/10.1039/d4gc04279d Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9465-0562 0000-0001-8939-8518 0000-0001-9078-3990 0009-0004-1249-6012 0000-0001-9886-9553 |
PQID | 3142182280 |
PQPubID | 2047490 |
PageCount | 24 |
ParticipantIDs | rsc_primary_d4gc04279d proquest_journals_3142182280 crossref_primary_10_1039_D4GC04279D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-09 |
PublicationDateYYYYMMDD | 2024-12-09 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Aoki (D4GC04279D/cit63/1) 2023; 56 Miller (D4GC04279D/cit43/1) 1961; 83 Epifanovsky (D4GC04279D/cit68/1) 2021; 155 Bozell (D4GC04279D/cit158/1) 2010; 12 Clarke (D4GC04279D/cit37/1) 2018; 118 Kita (D4GC04279D/cit56/1) 2008; 57 Said-Galiyev (D4GC04279D/cit154/1) 2003; 26 Tena (D4GC04279D/cit94/1) 2015; 62 Rasool (D4GC04279D/cit108/1) 2019; 7 Cabezas (D4GC04279D/cit13/1) 2022; 61 Trapasso (D4GC04279D/cit109/1) 2022; 26 Aricò (D4GC04279D/cit114/1) 2020; 21 Yin (D4GC04279D/cit122/1) 2011; 119 Cuadra-Rodríguez (D4GC04279D/cit5/1) 2023; 74 Paiva (D4GC04279D/cit16/1) 2014; 2 Xu (D4GC04279D/cit40/1) 2021; 59 Dalla Torre (D4GC04279D/cit111/1) 2023; 423 Uebele (D4GC04279D/cit55/1) 2021; 138 Hildebrand (D4GC04279D/cit59/1) 1964 Tundo (D4GC04279D/cit106/1) 2009; 81 Jordan (D4GC04279D/cit2/1) 2022; 122 Valentini (D4GC04279D/cit97/1) 2022; 36 Zou (D4GC04279D/cit45/1) 2021; 23 Ren (D4GC04279D/cit79/1) 2002; 207 Jessop (D4GC04279D/cit35/1) 2011; 13 Sawada (D4GC04279D/cit71/1) 2015; 493 Che (D4GC04279D/cit117/1) 2022; 24 Alhanish (D4GC04279D/cit121/1) 2021; 37 Yaacoubi (D4GC04279D/cit144/1) 2023 (D4GC04279D/cit27/1) 2008 Vandezande (D4GC04279D/cit48/1) 2009; 330 (D4GC04279D/cit30/1) 2006 Hansen (D4GC04279D/cit60/1) 1967 Kim (D4GC04279D/cit77/1) 2000; 77 del Monte (D4GC04279D/cit153/1) 2014; 7 Rose (D4GC04279D/cit113/1) 2012; 5 Pyo (D4GC04279D/cit103/1) 2017; 5 Kumar (D4GC04279D/cit136/1) 2021; 14 United-Nations (D4GC04279D/cit18/1) 2019 Anastas (D4GC04279D/cit19/1) 2010; 39 Ray (D4GC04279D/cit90/1) 2019; 10 Sroog (D4GC04279D/cit89/1) 1976; 11 Torres (D4GC04279D/cit88/1) 2024; 16 Chang (D4GC04279D/cit145/1) 2017; 539 Klamt (D4GC04279D/cit65/1) 1995; 99 Clark (D4GC04279D/cit3/1) 2015; 16 Phan (D4GC04279D/cit23/1) 2015; 17 Tena (D4GC04279D/cit57/1) 2017; 50 Fadhil (D4GC04279D/cit146/1) 2016; 102 Tundo (D4GC04279D/cit105/1) 2018; 20 Muñoz (D4GC04279D/cit34/1) 2006; 40 de la Torre (D4GC04279D/cit141/1) 2020; 22 Taublaender (D4GC04279D/cit156/1) 2019; 52 Escorial (D4GC04279D/cit86/1) 2018; 103 Russo (D4GC04279D/cit7/1) 2020; 8 (D4GC04279D/cit25/1) 2006 Chen (D4GC04279D/cit133/1) 2023; 57 Cvjetko Bubalo (D4GC04279D/cit152/1) 2015; 90 Yang (D4GC04279D/cit124/1) 2016; 91 Sherwood (D4GC04279D/cit140/1) 2016; 18 A. European Chemicals (D4GC04279D/cit4/1) 2019 Prat (D4GC04279D/cit20/1) 2016; 18 Prat (D4GC04279D/cit28/1) 2014; 16 Tena (D4GC04279D/cit87/1) 2015; 5 Alves Costa Pacheco (D4GC04279D/cit100/1) 2016; 9 Xiang (D4GC04279D/cit128/1) 2017 Henderson (D4GC04279D/cit21/1) 2011; 13 Hansen (D4GC04279D/cit61/1) 2007 Städtke (D4GC04279D/cit123/1) 2023; 25 Alqadhi (D4GC04279D/cit143/1) 2024; 328 Van de Vyver (D4GC04279D/cit112/1) 2011; 3 Flory (D4GC04279D/cit58/1) 1942; 10 Cope (D4GC04279D/cit118/1) 1956; 78 Gómez-de-Miranda-Jiménez-de-Aberasturi (D4GC04279D/cit120/1) 2021; 14 Li (D4GC04279D/cit80/1) 2023; 5 Staudt (D4GC04279D/cit66/1) 2018; 472 Chen (D4GC04279D/cit76/1) 2024; 331 Bonora (D4GC04279D/cit132/1) 2005; 433 Hunt (D4GC04279D/cit138/1) 2018 Durand (D4GC04279D/cit51/1) 2011; 17 Dong (D4GC04279D/cit83/1) 2010; 353 Sartori (D4GC04279D/cit99/1) 2021; 84 Jiang (D4GC04279D/cit142/1) 2021; 635 Salamanca (D4GC04279D/cit161/1) 2023; 13 Yang (D4GC04279D/cit69/1) 2023; 11 Tilstam (D4GC04279D/cit147/1) 2012; 16 Klamt (D4GC04279D/cit64/1) 1998; 102 Capriotti (D4GC04279D/cit125/1) 2012; 5 Rivera (D4GC04279D/cit160/1) 2022; 362 Raj (D4GC04279D/cit96/1) 2021; 303 Marino (D4GC04279D/cit130/1) 2019; 26 Liu (D4GC04279D/cit73/1) 2008; 61 Sing Soh (D4GC04279D/cit75/1) 2023; 478 Chen (D4GC04279D/cit102/1) 2023; 51 Teo (D4GC04279D/cit44/1) 2018; 34 Sliz (D4GC04279D/cit135/1) 2024; 7 Baumgartner (D4GC04279D/cit157/1) 2015; 6 Radmanesh (D4GC04279D/cit162/1) 2023; 24 Cakar (D4GC04279D/cit85/1) 2007; 43 Tundo (D4GC04279D/cit119/1) 2010; 3 Yazgan (D4GC04279D/cit93/1) 2020; 77 Worsawat (D4GC04279D/cit91/1) 2023; 21 Kahrs (D4GC04279D/cit53/1) 2020; 186 Tundo (D4GC04279D/cit92/1) 2004; 6 Prabhune (D4GC04279D/cit148/1) 2023; 379 Rasool (D4GC04279D/cit10/1) 2019; 21 McDowell (D4GC04279D/cit131/1) 1971; 33 Milescu (D4GC04279D/cit6/1) 2021; 14 Mulder (D4GC04279D/cit50/1) 2000 Thiermeyer (D4GC04279D/cit82/1) 2021; 265 Byrne (D4GC04279D/cit9/1) 2020; 13 Silva (D4GC04279D/cit67/1) 2023; 62 Abranches (D4GC04279D/cit149/1) 2019; 55 Du (D4GC04279D/cit95/1) 2011; 4 Truong (D4GC04279D/cit107/1) 2021 Ortiz-Albo (D4GC04279D/cit12/1) 2024; 693 Sherwood (D4GC04279D/cit139/1) 2018; 4 Hansen (D4GC04279D/cit84/1) 2001; 40 Victor (D4GC04279D/cit134/1) 2022; 12 (D4GC04279D/cit29/1) 2012 Niedermeyer (D4GC04279D/cit151/1) 2012; 41 Oishi (D4GC04279D/cit62/1) 1978; 17 Ronova (D4GC04279D/cit155/1) 2014; 25 Strathmann (D4GC04279D/cit46/1) 1975; 16 Venkatram (D4GC04279D/cit70/1) 2019; 59 Moity (D4GC04279D/cit52/1) 2012; 14 Fornefeld-Schwarz (D4GC04279D/cit98/1) 1999; 44 Freitas (D4GC04279D/cit150/1) 2023; 11 Taghizadeh (D4GC04279D/cit15/1) 2021; 258 Guillen (D4GC04279D/cit47/1) 2011; 50 Aricò (D4GC04279D/cit159/1) 2016; 12 Rasool (D4GC04279D/cit11/1) 2021; 11 Rasool (D4GC04279D/cit8/1) 2020; 232 Recio (D4GC04279D/cit26/1) 2007; 293 Tashrifi (D4GC04279D/cit127/1) 2020; 362 Xie (D4GC04279D/cit36/1) 2021; 9 Tundo (D4GC04279D/cit101/1) 2023; 16 Gronwald (D4GC04279D/cit54/1) 2020; 137 Cheng (D4GC04279D/cit33/1) 2017; 9 Lu (D4GC04279D/cit129/1) 2022; 380 Hong (D4GC04279D/cit17/1) 2023; 25 Etxeberria-Benavides (D4GC04279D/cit81/1) 2020; 10 Dong (D4GC04279D/cit137/1) 2018; 8 Alfonsi (D4GC04279D/cit22/1) 2008; 10 Vayer (D4GC04279D/cit74/1) 2017; 93 Milliman (D4GC04279D/cit72/1) 2012; 45 Huang (D4GC04279D/cit78/1) 2023; 683 Kotyrba (D4GC04279D/cit110/1) 2022; 12 Caouthar (D4GC04279D/cit115/1) 2007; 43 Wu (D4GC04279D/cit126/1) 2016; 358 Byrne (D4GC04279D/cit24/1) 2016; 4 Fink (D4GC04279D/cit41/1) 2008 Bhanage (D4GC04279D/cit104/1) 2003; 5 Castro-Muñoz (D4GC04279D/cit14/1) 2022; 10 Parker (D4GC04279D/cit42/1) 1969; 69 Ramirez-Kantun (D4GC04279D/cit49/1) 2024; 695 Bhojani (D4GC04279D/cit32/1) 2022; 334 Aricò (D4GC04279D/cit116/1) 2014 |
References_xml | – issn: 2018 publication-title: Economic valuation in 1-Methyl-2-pyrrolidone (NMP) regulation doi: Hunt Dale – issn: 2008 publication-title: High Performance Polymers doi: Fink – issn: 1964 publication-title: The solubility of nonelectrolytes doi: Hildebrand Scott – issn: 2019 publication-title: Globally Harmonized System of Classification and Labelling of Chemicals (GHS) doi: United-Nations – issn: 2008 volume-title: Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 publication-title: Classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 – issn: 2000 end-page: 3331-3346 publication-title: Encyclopedia of Separation Science doi: Mulder – issn: 1967 publication-title: The three dimensional solubility parameter and solvent diffusion coefficient doi: Hansen – issn: 2021 end-page: 253-275 publication-title: Green Sustainable Process for Chemical and Environmental Engineering and Science doi: Truong Mishra Mishra – issn: 2023 end-page: 515-554 publication-title: Green Membrane Technologies towards Environmental Sustainability doi: Yaacoubi Dumée – issn: 2012 volume-title: Décrete n° 2012-746 du 9 mai 2012 publication-title: fixant des valeurs limites d'exposition professionnelle contraignantes pour certains agents chimiques – issn: 2019 publication-title: How to comply with REACH Restriction 71, guideline for users of NMP (1-methyl-2-pyrrolidone) doi: A. European Chemicals – issn: 2006 volume-title: European-Parliament, Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 publication-title: Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) – issn: 2017 end-page: 315-353 publication-title: Solvents as Reagents in Organic Synthesis doi: Xiang Gao Wu – issn: 2006 volume-title: Federal Institute for Occupational Safety and Health publication-title: TRGS 900 Arbeitsplatzgrenzwerte – issn: 2007 publication-title: Hansen solubility parameters: a user's handbook doi: Hansen – volume: 13 start-page: 3212 year: 2020 ident: D4GC04279D/cit9/1 publication-title: ChemSusChem doi: 10.1002/cssc.202000462 – volume: 34 start-page: 8581 year: 2018 ident: D4GC04279D/cit44/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01513 – volume: 5 start-page: 5641 year: 2023 ident: D4GC04279D/cit80/1 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.3c00940 – volume: 56 start-page: 5446 year: 2023 ident: D4GC04279D/cit63/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.2c02600 – volume: 93 start-page: 132 year: 2017 ident: D4GC04279D/cit74/1 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2017.05.035 – volume: 328 start-page: 125072 year: 2024 ident: D4GC04279D/cit143/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.125072 – volume-title: How to comply with REACH Restriction 71, guideline for users of NMP (1-methyl-2-pyrrolidone) year: 2019 ident: D4GC04279D/cit4/1 – volume: 5 start-page: 24 year: 2012 ident: D4GC04279D/cit125/1 publication-title: J. Clin. Aesthet. Dermatol. – volume: 52 start-page: 6318 year: 2019 ident: D4GC04279D/cit156/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.9b00985 – volume: 13 start-page: 854 year: 2011 ident: D4GC04279D/cit21/1 publication-title: Green Chem. doi: 10.1039/c0gc00918k – volume: 16 start-page: 17101 year: 2015 ident: D4GC04279D/cit3/1 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms160817101 – volume: 695 start-page: 122519 year: 2024 ident: D4GC04279D/cit49/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2024.122519 – volume-title: The solubility of nonelectrolytes year: 1964 ident: D4GC04279D/cit59/1 – volume: 103 start-page: 390 year: 2018 ident: D4GC04279D/cit86/1 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.04.031 – volume: 78 start-page: 3177 year: 1956 ident: D4GC04279D/cit118/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01594a055 – volume: 12 start-page: 909 year: 2022 ident: D4GC04279D/cit134/1 publication-title: Catalysts doi: 10.3390/catal12080909 – volume: 39 start-page: 301 year: 2010 ident: D4GC04279D/cit19/1 publication-title: Chem. Soc. Rev. doi: 10.1039/B918763B – volume-title: High Performance Polymers year: 2008 ident: D4GC04279D/cit41/1 – volume: 16 start-page: 1449 year: 2012 ident: D4GC04279D/cit147/1 publication-title: Org. Process Res. Dev. doi: 10.1021/op300125p – volume: 330 start-page: 307 year: 2009 ident: D4GC04279D/cit48/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.12.068 – volume: 61 start-page: 17397 year: 2022 ident: D4GC04279D/cit13/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c02747 – volume: 77 start-page: 2756 year: 2000 ident: D4GC04279D/cit77/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/1097-4628(20000919)77:12<2756::AID-APP240>3.0.CO;2-C – volume: 137 start-page: 48419 year: 2020 ident: D4GC04279D/cit54/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.48419 – volume-title: TRGS 900 Arbeitsplatzgrenzwerte year: 2006 ident: D4GC04279D/cit30/1 – volume: 5 start-page: 61 year: 2017 ident: D4GC04279D/cit103/1 publication-title: Curr. Opin. Green Sustain. Chem. doi: 10.1016/j.cogsc.2017.03.012 – volume: 74 start-page: 102536 year: 2023 ident: D4GC04279D/cit5/1 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2023.102536 – volume: 9 start-page: 50 year: 2021 ident: D4GC04279D/cit36/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c07119 – volume: 10 start-page: 51 year: 1942 ident: D4GC04279D/cit58/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1723621 – volume: 13 start-page: 1391 year: 2011 ident: D4GC04279D/cit35/1 publication-title: Green Chem. doi: 10.1039/c0gc00797h – volume: 265 start-page: 118492 year: 2021 ident: D4GC04279D/cit82/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118492 – volume: 20 start-page: 28 year: 2018 ident: D4GC04279D/cit105/1 publication-title: Green Chem. doi: 10.1039/C7GC01764B – volume: 2 start-page: 1063 year: 2014 ident: D4GC04279D/cit16/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc500096j – volume: 62 start-page: 130 year: 2015 ident: D4GC04279D/cit94/1 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.11.016 – volume: 24 start-page: 100379 year: 2023 ident: D4GC04279D/cit162/1 publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2023.100379 – volume: 16 start-page: e202300748 year: 2023 ident: D4GC04279D/cit101/1 publication-title: ChemSusChem doi: 10.1002/cssc.202300748 – volume: 8 start-page: 23 year: 2018 ident: D4GC04279D/cit137/1 publication-title: Membranes doi: 10.3390/membranes8020023 – volume: 353 start-page: 17 year: 2010 ident: D4GC04279D/cit83/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.02.012 – volume: 3 start-page: 566 year: 2010 ident: D4GC04279D/cit119/1 publication-title: ChemSusChem doi: 10.1002/cssc.201000011 – volume: 25 start-page: 7292 year: 2023 ident: D4GC04279D/cit123/1 publication-title: Green Chem. doi: 10.1039/D3GC01795H – volume: 8 start-page: 659 year: 2020 ident: D4GC04279D/cit7/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b06496 – volume: 493 start-page: 232 year: 2015 ident: D4GC04279D/cit71/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.07.003 – volume: 478 start-page: 147451 year: 2023 ident: D4GC04279D/cit75/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.147451 – volume: 11 start-page: 14582 year: 2023 ident: D4GC04279D/cit69/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.3c04231 – start-page: 253 volume-title: Green Sustainable Process for Chemical and Environmental Engineering and Science year: 2021 ident: D4GC04279D/cit107/1 doi: 10.1016/B978-0-12-819721-9.00010-8 – volume-title: Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) year: 2006 ident: D4GC04279D/cit25/1 – volume: 18 start-page: 3990 year: 2016 ident: D4GC04279D/cit140/1 publication-title: Green Chem. doi: 10.1039/C6GC00932H – volume: 6 start-page: 609 year: 2004 ident: D4GC04279D/cit92/1 publication-title: Green Chem. doi: 10.1039/B412722F – volume: 186 start-page: 122071 year: 2020 ident: D4GC04279D/cit53/1 publication-title: Polymer doi: 10.1016/j.polymer.2019.122071 – volume: 635 start-page: 119530 year: 2021 ident: D4GC04279D/cit142/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2021.119530 – volume: 6 start-page: 5773 year: 2015 ident: D4GC04279D/cit157/1 publication-title: Polym. Chem. doi: 10.1039/C5PY00231A – volume: 23 start-page: 9815 year: 2021 ident: D4GC04279D/cit45/1 publication-title: Green Chem. doi: 10.1039/D1GC03318B – volume: 472 start-page: 75 year: 2018 ident: D4GC04279D/cit66/1 publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2018.05.003 – volume: 11 start-page: 161 year: 1976 ident: D4GC04279D/cit89/1 publication-title: J. Polym. Sci., Part D: Macromol. Rev. – volume-title: Economic valuation in 1-Methyl-2-pyrrolidone (NMP) regulation year: 2018 ident: D4GC04279D/cit138/1 – volume-title: Hansen solubility parameters: a user's handbook year: 2007 ident: D4GC04279D/cit61/1 doi: 10.1201/9781420006834 – volume: 334 start-page: 130098 year: 2022 ident: D4GC04279D/cit32/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2021.130098 – volume: 21 start-page: 1054 year: 2019 ident: D4GC04279D/cit10/1 publication-title: Green Chem. doi: 10.1039/C8GC03652G – volume: 62 start-page: 20936 year: 2023 ident: D4GC04279D/cit67/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c03310 – volume: 119 start-page: 2400 year: 2011 ident: D4GC04279D/cit122/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.32913 – volume: 380 start-page: 55 year: 2022 ident: D4GC04279D/cit129/1 publication-title: Top. Curr. Chem. doi: 10.1007/s41061-022-00411-8 – volume: 11 start-page: 418 year: 2021 ident: D4GC04279D/cit11/1 publication-title: Membranes doi: 10.3390/membranes11060418 – volume: 69 start-page: 1 year: 1969 ident: D4GC04279D/cit42/1 publication-title: Chem. Rev. doi: 10.1021/cr60257a001 – volume: 17 start-page: 2846 year: 2015 ident: D4GC04279D/cit23/1 publication-title: Green Chem. doi: 10.1039/C4GC02169J – volume: 5 start-page: 167 year: 2012 ident: D4GC04279D/cit113/1 publication-title: ChemSusChem doi: 10.1002/cssc.201100580 – volume: 26 start-page: 147 year: 2003 ident: D4GC04279D/cit154/1 publication-title: J. Supercrit. Fluids doi: 10.1016/S0896-8446(02)00210-3 – volume: 16 start-page: 4546 year: 2014 ident: D4GC04279D/cit28/1 publication-title: Green Chem. doi: 10.1039/C4GC01149J – volume-title: The three dimensional solubility parameter and solvent diffusion coefficient year: 1967 ident: D4GC04279D/cit60/1 – volume: 25 start-page: 4501 year: 2023 ident: D4GC04279D/cit17/1 publication-title: Green Chem. doi: 10.1039/D3GC00776F – volume: 17 start-page: 333 year: 1978 ident: D4GC04279D/cit62/1 publication-title: Ind. Eng. Chem. Process Des. Dev. doi: 10.1021/i260067a021 – volume: 10 start-page: 3334 year: 2019 ident: D4GC04279D/cit90/1 publication-title: Polym. Chem. doi: 10.1039/C9PY00353C – volume: 10 start-page: 31 year: 2008 ident: D4GC04279D/cit22/1 publication-title: Green Chem. doi: 10.1039/B711717E – volume: 5 start-page: 41497 year: 2015 ident: D4GC04279D/cit87/1 publication-title: RSC Adv. doi: 10.1039/C5RA03809J – start-page: 3331 volume-title: Encyclopedia of Separation Science year: 2000 ident: D4GC04279D/cit50/1 doi: 10.1016/B0-12-226770-2/05271-6 – volume: 83 start-page: 117 year: 1961 ident: D4GC04279D/cit43/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01462a023 – volume: 99 start-page: 2224 year: 1995 ident: D4GC04279D/cit65/1 publication-title: J. Phys. Chem. doi: 10.1021/j100007a062 – volume: 26 start-page: 14774 year: 2019 ident: D4GC04279D/cit130/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-3575-9 – volume: 61 start-page: 501 year: 2008 ident: D4GC04279D/cit73/1 publication-title: Polym. Bull. doi: 10.1007/s00289-008-0963-1 – volume: 33 start-page: 3107 year: 1971 ident: D4GC04279D/cit131/1 publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(71)80077-5 – volume: 433 start-page: 19 year: 2005 ident: D4GC04279D/cit132/1 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2005.02.011 – volume: 13 start-page: 266 year: 2023 ident: D4GC04279D/cit161/1 publication-title: Membranes doi: 10.3390/membranes13030266 – volume: 50 start-page: 5839 year: 2017 ident: D4GC04279D/cit57/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01051 – volume: 77 start-page: 1191 year: 2020 ident: D4GC04279D/cit93/1 publication-title: Polym. Bull. doi: 10.1007/s00289-019-02793-0 – volume: 40 start-page: 21 year: 2001 ident: D4GC04279D/cit84/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9904955 – volume: 18 start-page: 288 year: 2016 ident: D4GC04279D/cit20/1 publication-title: Green Chem. doi: 10.1039/C5GC01008J – volume: 26 start-page: 100639 year: 2022 ident: D4GC04279D/cit109/1 publication-title: Sustainable Chem. Pharm. doi: 10.1016/j.scp.2022.100639 – volume: 50 start-page: 3798 year: 2011 ident: D4GC04279D/cit47/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie101928r – volume: 24 start-page: 7545 year: 2022 ident: D4GC04279D/cit117/1 publication-title: Green Chem. doi: 10.1039/D2GC02342C – volume: 155 start-page: 084801 year: 2021 ident: D4GC04279D/cit68/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0055522 – start-page: 515 volume-title: Green Membrane Technologies towards Environmental Sustainability year: 2023 ident: D4GC04279D/cit144/1 doi: 10.1016/B978-0-323-95165-4.00022-7 – start-page: 315 volume-title: Solvents as Reagents in Organic Synthesis year: 2017 ident: D4GC04279D/cit128/1 doi: 10.1002/9783527805624.ch7 – volume: 59 start-page: 943 year: 2021 ident: D4GC04279D/cit40/1 publication-title: J. Polym. Sci. doi: 10.1002/pol.20210001 – volume: 539 start-page: 295 year: 2017 ident: D4GC04279D/cit145/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.06.002 – volume: 303 start-page: 121333 year: 2021 ident: D4GC04279D/cit96/1 publication-title: Fuel doi: 10.1016/j.fuel.2021.121333 – volume: 90 start-page: 1631 year: 2015 ident: D4GC04279D/cit152/1 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4668 – volume: 21 start-page: 1070 year: 2023 ident: D4GC04279D/cit91/1 publication-title: Org. Biomol. Chem. doi: 10.1039/D2OB02222B – volume: 51 start-page: 804 year: 2023 ident: D4GC04279D/cit102/1 publication-title: J. Fuel Chem. Technol. doi: 10.1016/S1872-5813(22)60075-6 – volume: 118 start-page: 747 year: 2018 ident: D4GC04279D/cit37/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00571 – volume: 17 start-page: 5155 year: 2011 ident: D4GC04279D/cit51/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201001743 – volume: 5 start-page: 429 year: 2003 ident: D4GC04279D/cit104/1 publication-title: Green Chem. doi: 10.1039/b304182d – volume: 43 start-page: 220 year: 2007 ident: D4GC04279D/cit115/1 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2006.08.012 – volume: 102 start-page: 16 year: 2016 ident: D4GC04279D/cit146/1 publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2016.01.007 – volume: 12 start-page: 539 year: 2010 ident: D4GC04279D/cit158/1 publication-title: Green Chem. doi: 10.1039/b922014c – volume: 14 start-page: 3367 year: 2021 ident: D4GC04279D/cit6/1 publication-title: ChemSusChem doi: 10.1002/cssc.202101125 – volume: 232 start-page: 115903 year: 2020 ident: D4GC04279D/cit8/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115903 – volume: 362 start-page: 127829 year: 2022 ident: D4GC04279D/cit160/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.127829 – volume-title: fixant des valeurs limites d’exposition professionnelle contraignantes pour certains agents chimiques year: 2012 ident: D4GC04279D/cit29/1 – volume-title: Globally Harmonized System of Classification and Labelling of Chemicals (GHS) year: 2019 ident: D4GC04279D/cit18/1 doi: 10.18356/f8fbb7cb-en – volume: 102 start-page: 5074 year: 1998 ident: D4GC04279D/cit64/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp980017s – volume: 36 start-page: 100634 year: 2022 ident: D4GC04279D/cit97/1 publication-title: Curr. Opin. Green Sustain. Chem. doi: 10.1016/j.cogsc.2022.100634 – volume: 10 start-page: 4 year: 2020 ident: D4GC04279D/cit81/1 publication-title: Membranes doi: 10.3390/membranes10010004 – volume: 7 start-page: 13774 year: 2019 ident: D4GC04279D/cit108/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b01507 – volume: 331 start-page: 125724 year: 2024 ident: D4GC04279D/cit76/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.125724 – volume: 14 start-page: 534 year: 2021 ident: D4GC04279D/cit120/1 publication-title: Green Chem. Lett. Rev. doi: 10.1080/17518253.2021.1965223 – volume: 14 start-page: 545 year: 2021 ident: D4GC04279D/cit136/1 publication-title: Green Chem. Lett. Rev. doi: 10.1080/17518253.2021.1965663 – volume: 57 start-page: 894 year: 2008 ident: D4GC04279D/cit56/1 publication-title: Kobunshi doi: 10.1295/kobunshi.57.894 – volume: 25 start-page: 1687 year: 2014 ident: D4GC04279D/cit155/1 publication-title: Struct. Chem. doi: 10.1007/s11224-014-0443-1 – start-page: 1 year: 2014 ident: D4GC04279D/cit116/1 publication-title: Sci. Open Res. – volume: 59 start-page: 4188 year: 2019 ident: D4GC04279D/cit70/1 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00656 – volume: 3 start-page: 82 year: 2011 ident: D4GC04279D/cit112/1 publication-title: ChemCatChem doi: 10.1002/cctc.201000302 – volume: 41 start-page: 7780 year: 2012 ident: D4GC04279D/cit151/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35177c – volume: 358 start-page: 336 year: 2016 ident: D4GC04279D/cit126/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201501007 – volume: 91 start-page: 262 year: 2016 ident: D4GC04279D/cit124/1 publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.11.065 – volume: 362 start-page: 65 year: 2020 ident: D4GC04279D/cit127/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201901021 – volume: 14 start-page: 1132 year: 2012 ident: D4GC04279D/cit52/1 publication-title: Green Chem. doi: 10.1039/c2gc16515e – volume: 55 start-page: 10253 year: 2019 ident: D4GC04279D/cit149/1 publication-title: Chem. Commun. doi: 10.1039/C9CC04846D – volume: 43 start-page: 507 year: 2007 ident: D4GC04279D/cit85/1 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2006.11.019 – volume: 22 start-page: 3162 year: 2020 ident: D4GC04279D/cit141/1 publication-title: Green Chem. doi: 10.1039/C9GC03784E – volume: 9 start-page: 14401 year: 2017 ident: D4GC04279D/cit33/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02295 – volume: 207 start-page: 227 year: 2002 ident: D4GC04279D/cit79/1 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(02)00251-X – volume: 37 start-page: e3210 year: 2021 ident: D4GC04279D/cit121/1 publication-title: Biotechnol. Prog. doi: 10.1002/btpr.3210 – volume: 11 start-page: 16594 year: 2023 ident: D4GC04279D/cit150/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.3c04944 – volume-title: Classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 year: 2008 ident: D4GC04279D/cit27/1 – volume: 683 start-page: 121864 year: 2023 ident: D4GC04279D/cit78/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2023.121864 – volume: 16 start-page: 13 year: 2024 ident: D4GC04279D/cit88/1 publication-title: Polymers doi: 10.3390/polym16010013 – volume: 423 start-page: 113892 year: 2023 ident: D4GC04279D/cit111/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2022.08.034 – volume: 81 start-page: 1971 year: 2009 ident: D4GC04279D/cit106/1 publication-title: Pure Appl. Chem. doi: 10.1351/PAC-CON-08-12-02 – volume: 4 start-page: 2010 year: 2018 ident: D4GC04279D/cit139/1 publication-title: Chem doi: 10.1016/j.chempr.2018.08.035 – volume: 21 start-page: 82 year: 2020 ident: D4GC04279D/cit114/1 publication-title: Curr. Opin. Green Sustain. Chem. doi: 10.1016/j.cogsc.2020.02.002 – volume: 84 start-page: 132001 year: 2021 ident: D4GC04279D/cit99/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2021.132001 – volume: 4 start-page: 7 year: 2016 ident: D4GC04279D/cit24/1 publication-title: Sustainable Chem. Processes doi: 10.1186/s40508-016-0051-z – volume: 45 start-page: 1931 year: 2012 ident: D4GC04279D/cit72/1 publication-title: Macromolecules doi: 10.1021/ma202685j – volume: 7 start-page: e202300527 year: 2024 ident: D4GC04279D/cit135/1 publication-title: Batteries Supercaps doi: 10.1002/batt.202300527 – volume: 12 start-page: 2256 year: 2016 ident: D4GC04279D/cit159/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.12.218 – volume: 12 start-page: 309 year: 2022 ident: D4GC04279D/cit110/1 publication-title: Catalysts doi: 10.3390/catal12030309 – volume: 293 start-page: 22 year: 2007 ident: D4GC04279D/cit26/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.01.022 – volume: 7 start-page: 999 year: 2014 ident: D4GC04279D/cit153/1 publication-title: ChemSusChem doi: 10.1002/cssc.201300864 – volume: 693 start-page: 122346 year: 2024 ident: D4GC04279D/cit12/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2023.122346 – volume: 258 start-page: 118015 year: 2021 ident: D4GC04279D/cit15/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.118015 – volume: 16 start-page: 179 year: 1975 ident: D4GC04279D/cit46/1 publication-title: Desalination doi: 10.1016/S0011-9164(00)82092-5 – volume: 122 start-page: 6749 year: 2022 ident: D4GC04279D/cit2/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00672 – volume: 138 start-page: 50935 year: 2021 ident: D4GC04279D/cit55/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.50935 – volume: 57 start-page: 18617 year: 2023 ident: D4GC04279D/cit133/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c06753 – volume: 44 start-page: 597 year: 1999 ident: D4GC04279D/cit98/1 publication-title: J. Chem. Eng. Data doi: 10.1021/je980288w – volume: 40 start-page: 2799 year: 2006 ident: D4GC04279D/cit34/1 publication-title: Water Res. doi: 10.1016/j.watres.2006.06.011 – volume: 379 start-page: 121676 year: 2023 ident: D4GC04279D/cit148/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2023.121676 – volume: 9 start-page: 3503 year: 2016 ident: D4GC04279D/cit100/1 publication-title: ChemSusChem doi: 10.1002/cssc.201600795 – volume: 4 start-page: 1838 year: 2011 ident: D4GC04279D/cit95/1 publication-title: ChemSusChem doi: 10.1002/cssc.201100483 – volume: 10 start-page: 106414 year: 2022 ident: D4GC04279D/cit14/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106414 |
SSID | ssj0011764 |
Score | 2.4565787 |
Snippet | The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 11984 |
SubjectTerms | Chemical synthesis Dimethyl sulfoxide Guidelines Industrial applications Industrial development Legislation Membranes Molecular weight N-Methyl-2-pyrrolidone Organic solvents Polyimide resins Polymers Solvents Substitution reactions |
Title | Green dipolar aprotic solvents for the dynamic polycondensation of high-performance polyimide membranes |
URI | https://www.proquest.com/docview/3142182280 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gF4QFCYVhjIErxFgTh2m-Rx6tpNbAxptNC3yF-pilhb9QMJ_j3-Mc6OnYRqQsBLFFm5xLr7xb473wdCryMqqCRFFGpQ8MFAKVjIBWMhE0IpLqIiEiZ3-P11_2LC3k1701brZyNqabcVb-SPO_NK_keqMAZyNVmy_yDZ6qUwAPcgX7iChOH6VzK2QTOBmq-MfRpwU3NhLgP45jebt-YjCFXZdd40ZPgO5i-sNJtaUQTjPFw1sgfMQ_PbuQls1bdgSi9ckOGX5ielbxNnPQp8YatO1I5FX47COOVnewRrd15gKc8rH-0w-GgTqTblyX2Fg-AmgKl85cGn-a52Hgz4Gphs9d5R42BruW04fp0rI7YFE6N6wSwdJj5a1UajuLk1FmjWp6GpcVjuX82xsgGJX9XLPHyH3pg11mhCsrIrndvwiXHX3rmbRNQUY1VsJk1HkkzVe6aPE7j-kI8mV1f5eDgdH6DDGGyVuI0OTy9vPl9Wh1kksVXMqqn7Krk0e1u_-3e9qDZ2Dta-E43VeMaP0ENnquDTEnePUUsvOuhexa0OetAoZtlBR8M6ZxLI3KaxeYJmFjPYwRQ7mGIPUwzQwwBT7GCK92GKlwXehymuYIormD5Fk9FwPLgIXX-PUIIeuQ1T2ldxpJOkiLlKUsYp1_20l3BGmOxFIit6nItMxkWS6T5wlsaK0FRQXjAKVPQItRfLhT5GWIs04kwSGfcUk1zxTOtUSiU4l4QS1UWvPHfzVVnGJbfhFzTLz9j5wMrgrItOPONz96dsckqY6XIQp1EXHYEwKvpads_-TPcc3a_RfoLa2_VOvwBVditeOqj8AgaYp4M |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+dipolar+aprotic+solvents+for+the+dynamic+polycondensation+of+high-performance+polyimide+membranes&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=E+San+Jos%C3%A9&rft.au=M+R+de+la+Viuda&rft.au=Carmona%2C+F+J&rft.au=Soto%2C+C&rft.date=2024-12-09&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=26&rft.issue=24&rft.spage=11984&rft.epage=12007&rft_id=info:doi/10.1039%2Fd4gc04279d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |