Green dipolar aprotic solvents for the dynamic polycondensation of high-performance polyimide membranes

The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues and the development and implementation of circular methodologies, together with growing environmental and health awareness, will promote the...

Full description

Saved in:
Bibliographic Details
Published inGreen chemistry : an international journal and green chemistry resource : GC Vol. 26; no. 24; pp. 11984 - 127
Main Authors San José, E, de la Viuda, M. R, Carmona, F. J, Soto, C, Palacio, L, Prádanos, P, Hernández, A, Tena, A
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 09.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues and the development and implementation of circular methodologies, together with growing environmental and health awareness, will promote the replacement of traditional solvents by more sustainable alternatives. In general, high-performance polymers, such as polyimides, are synthesized under specific reaction conditions. This work defines and develops clear guidelines, integrating them into a decision map to evaluate the potential of an alternative solvent for application in the synthesis of polyimides. Since every industrial application demands explicit criteria, our study focused on the development of polyimides for the membrane industry. More than 130 solvents were evaluated, and 10 solvents were found to have the potential to be employed in the synthesis of polyimides. The outcome was verified with 7 of those solvents, namely, γ-valerolactone (GVL), cyrene (Cy), dimethyl carbonate (DMC), dimethyl isosorbide (DMI), dimethyl sulfoxide (DMSO), 3-methoxy- N , N -dimethylpropanamide (commercially known as KJCMPA®-100), and the reference N -methyl-2-pyrrolidone (NMP), and tested for the synthesis of 3 polyimides (6FDA-HAB, 6FDA-6FpDA and 6FDA-DAM), obtaining extremely consistent outcomes. This work found four solvents, GVL, DMI, DMSO, and KJCMPA, that could substitute NMP, and other harmful solvents, in the synthesis of high-performance polymers. GVL provided even better results in terms of the molecular weight of the polyimides than the reference NMP, showing a realistic potential for its direct substitution. This work also reports more than 40 alternative solvents derived from the identified solvents. Finally, the key action points that should be taken into account for imminent advances in the subject were recognized. Guidelines for the evaluation of green solvents were revisited and integrated into a decision diagram. GVL, Cyrene™, DMC, NOP, DEC, DMI, GBL, NBP, Rhodiasolv® PolarClean, and DMSO showed the potential to substitute hazardous polar aprotic solvents.
AbstractList The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues and the development and implementation of circular methodologies, together with growing environmental and health awareness, will promote the replacement of traditional solvents by more sustainable alternatives. In general, high-performance polymers, such as polyimides, are synthesized under specific reaction conditions. This work defines and develops clear guidelines, integrating them into a decision map to evaluate the potential of an alternative solvent for application in the synthesis of polyimides. Since every industrial application demands explicit criteria, our study focused on the development of polyimides for the membrane industry. More than 130 solvents were evaluated, and 10 solvents were found to have the potential to be employed in the synthesis of polyimides. The outcome was verified with 7 of those solvents, namely, γ-valerolactone (GVL), cyrene (Cy), dimethyl carbonate (DMC), dimethyl isosorbide (DMI), dimethyl sulfoxide (DMSO), 3-methoxy- N , N -dimethylpropanamide (commercially known as KJCMPA®-100), and the reference N -methyl-2-pyrrolidone (NMP), and tested for the synthesis of 3 polyimides (6FDA-HAB, 6FDA-6FpDA and 6FDA-DAM), obtaining extremely consistent outcomes. This work found four solvents, GVL, DMI, DMSO, and KJCMPA, that could substitute NMP, and other harmful solvents, in the synthesis of high-performance polymers. GVL provided even better results in terms of the molecular weight of the polyimides than the reference NMP, showing a realistic potential for its direct substitution. This work also reports more than 40 alternative solvents derived from the identified solvents. Finally, the key action points that should be taken into account for imminent advances in the subject were recognized.
The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues and the development and implementation of circular methodologies, together with growing environmental and health awareness, will promote the replacement of traditional solvents by more sustainable alternatives. In general, high-performance polymers, such as polyimides, are synthesized under specific reaction conditions. This work defines and develops clear guidelines, integrating them into a decision map to evaluate the potential of an alternative solvent for application in the synthesis of polyimides. Since every industrial application demands explicit criteria, our study focused on the development of polyimides for the membrane industry. More than 130 solvents were evaluated, and 10 solvents were found to have the potential to be employed in the synthesis of polyimides. The outcome was verified with 7 of those solvents, namely, γ-valerolactone (GVL), cyrene (Cy), dimethyl carbonate (DMC), dimethyl isosorbide (DMI), dimethyl sulfoxide (DMSO), 3-methoxy- N , N -dimethylpropanamide (commercially known as KJCMPA®-100), and the reference N -methyl-2-pyrrolidone (NMP), and tested for the synthesis of 3 polyimides (6FDA-HAB, 6FDA-6FpDA and 6FDA-DAM), obtaining extremely consistent outcomes. This work found four solvents, GVL, DMI, DMSO, and KJCMPA, that could substitute NMP, and other harmful solvents, in the synthesis of high-performance polymers. GVL provided even better results in terms of the molecular weight of the polyimides than the reference NMP, showing a realistic potential for its direct substitution. This work also reports more than 40 alternative solvents derived from the identified solvents. Finally, the key action points that should be taken into account for imminent advances in the subject were recognized. Guidelines for the evaluation of green solvents were revisited and integrated into a decision diagram. GVL, Cyrene™, DMC, NOP, DEC, DMI, GBL, NBP, Rhodiasolv® PolarClean, and DMSO showed the potential to substitute hazardous polar aprotic solvents.
The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues and the development and implementation of circular methodologies, together with growing environmental and health awareness, will promote the replacement of traditional solvents by more sustainable alternatives. In general, high-performance polymers, such as polyimides, are synthesized under specific reaction conditions. This work defines and develops clear guidelines, integrating them into a decision map to evaluate the potential of an alternative solvent for application in the synthesis of polyimides. Since every industrial application demands explicit criteria, our study focused on the development of polyimides for the membrane industry. More than 130 solvents were evaluated, and 10 solvents were found to have the potential to be employed in the synthesis of polyimides. The outcome was verified with 7 of those solvents, namely, γ-valerolactone (GVL), cyrene (Cy), dimethyl carbonate (DMC), dimethyl isosorbide (DMI), dimethyl sulfoxide (DMSO), 3-methoxy-N,N-dimethylpropanamide (commercially known as KJCMPA®-100), and the reference N-methyl-2-pyrrolidone (NMP), and tested for the synthesis of 3 polyimides (6FDA-HAB, 6FDA-6FpDA and 6FDA-DAM), obtaining extremely consistent outcomes. This work found four solvents, GVL, DMI, DMSO, and KJCMPA, that could substitute NMP, and other harmful solvents, in the synthesis of high-performance polymers. GVL provided even better results in terms of the molecular weight of the polyimides than the reference NMP, showing a realistic potential for its direct substitution. This work also reports more than 40 alternative solvents derived from the identified solvents. Finally, the key action points that should be taken into account for imminent advances in the subject were recognized.
Author Palacio, L
Hernández, A
Carmona, F. J
Tena, A
San José, E
Soto, C
de la Viuda, M. R
Prádanos, P
AuthorAffiliation CSIC-Associated Research Unit
Universidad de Valladolid
Surfaces and Porous Materials (SMAP)
Institute of Sustainable Processes (ISP)
AuthorAffiliation_xml – sequence: 0
  name: Universidad de Valladolid
– sequence: 0
  name: Surfaces and Porous Materials (SMAP)
– sequence: 0
  name: Institute of Sustainable Processes (ISP)
– sequence: 0
  name: CSIC-Associated Research Unit
Author_xml – sequence: 1
  givenname: E
  surname: San José
  fullname: San José, E
– sequence: 2
  givenname: M. R
  surname: de la Viuda
  fullname: de la Viuda, M. R
– sequence: 3
  givenname: F. J
  surname: Carmona
  fullname: Carmona, F. J
– sequence: 4
  givenname: C
  surname: Soto
  fullname: Soto, C
– sequence: 5
  givenname: L
  surname: Palacio
  fullname: Palacio, L
– sequence: 6
  givenname: P
  surname: Prádanos
  fullname: Prádanos, P
– sequence: 7
  givenname: A
  surname: Hernández
  fullname: Hernández, A
– sequence: 8
  givenname: A
  surname: Tena
  fullname: Tena, A
BookMark eNpF0E1LAzEQBuAgFWyrF-9CwJuwmq9udo_SahUKXvS8ZJNJm9JN1mQr9N8bW9FTBvLMDPNO0MgHDwhdU3JPCa8fjFhrIpiszRkaU1HyomaSjP7qkl2gSUpbQiiVpRij9TICeGxcH3YqYtXHMDiNU9h9gR8StiHiYQPYHLzq8kdmBx28AZ_U4ILHweKNW2-KHmK2nfIajsh1zgDuoGuj8pAu0blVuwRXv-8UfTw_vc9fitXb8nX-uCo0E2QoKl4aRkBKy5SRlVBcQVnNpBJU6BlpaztTqq01s7KGUjLGmaG8armygucuPkW3p7n5kM89pKHZhn30eWXDqWC0YqwiWd2dlI4hpQi26aPrVDw0lDQ_QTYLsZwfg1xkfHPCMek_9x80_wbrz3L_
Cites_doi 10.1002/cssc.202000462
10.1021/acs.langmuir.8b01513
10.1021/acsapm.3c00940
10.1021/acs.macromol.2c02600
10.1016/j.eurpolymj.2017.05.035
10.1016/j.seppur.2023.125072
10.1021/acs.macromol.9b00985
10.1039/c0gc00918k
10.3390/ijms160817101
10.1016/j.memsci.2024.122519
10.1016/j.eurpolymj.2018.04.031
10.1021/ja01594a055
10.3390/catal12080909
10.1039/B918763B
10.1021/op300125p
10.1016/j.memsci.2008.12.068
10.1021/acs.iecr.2c02747
10.1002/1097-4628(20000919)77:12<2756::AID-APP240>3.0.CO;2-C
10.1002/app.48419
10.1016/j.cogsc.2017.03.012
10.1016/j.jcou.2023.102536
10.1021/acssuschemeng.0c07119
10.1063/1.1723621
10.1039/c0gc00797h
10.1016/j.seppur.2021.118492
10.1039/C7GC01764B
10.1021/sc500096j
10.1016/j.eurpolymj.2014.11.016
10.1016/j.mtnano.2023.100379
10.1002/cssc.202300748
10.3390/membranes8020023
10.1016/j.memsci.2010.02.012
10.1002/cssc.201000011
10.1039/D3GC01795H
10.1021/acssuschemeng.9b06496
10.1016/j.memsci.2015.07.003
10.1016/j.cej.2023.147451
10.1021/acssuschemeng.3c04231
10.1016/B978-0-12-819721-9.00010-8
10.1039/C6GC00932H
10.1039/B412722F
10.1016/j.polymer.2019.122071
10.1016/j.memsci.2021.119530
10.1039/C5PY00231A
10.1039/D1GC03318B
10.1016/j.fluid.2018.05.003
10.1201/9781420006834
10.1016/j.jclepro.2021.130098
10.1039/C8GC03652G
10.1021/acs.iecr.3c03310
10.1002/app.32913
10.1007/s41061-022-00411-8
10.3390/membranes11060418
10.1021/cr60257a001
10.1039/C4GC02169J
10.1002/cssc.201100580
10.1016/S0896-8446(02)00210-3
10.1039/C4GC01149J
10.1039/D3GC00776F
10.1021/i260067a021
10.1039/C9PY00353C
10.1039/B711717E
10.1039/C5RA03809J
10.1016/B0-12-226770-2/05271-6
10.1021/ja01462a023
10.1021/j100007a062
10.1007/s11356-018-3575-9
10.1007/s00289-008-0963-1
10.1016/0022-1902(71)80077-5
10.1016/j.tca.2005.02.011
10.3390/membranes13030266
10.1021/acs.macromol.7b01051
10.1007/s00289-019-02793-0
10.1021/ie9904955
10.1039/C5GC01008J
10.1016/j.scp.2022.100639
10.1021/ie101928r
10.1039/D2GC02342C
10.1063/5.0055522
10.1016/B978-0-323-95165-4.00022-7
10.1002/9783527805624.ch7
10.1002/pol.20210001
10.1016/j.memsci.2017.06.002
10.1016/j.fuel.2021.121333
10.1002/jctb.4668
10.1039/D2OB02222B
10.1016/S1872-5813(22)60075-6
10.1021/acs.chemrev.7b00571
10.1002/chem.201001743
10.1039/b304182d
10.1016/j.eurpolymj.2006.08.012
10.1016/j.cep.2016.01.007
10.1039/b922014c
10.1002/cssc.202101125
10.1016/j.seppur.2019.115903
10.1016/j.biortech.2022.127829
10.18356/f8fbb7cb-en
10.1021/jp980017s
10.1016/j.cogsc.2022.100634
10.3390/membranes10010004
10.1021/acssuschemeng.9b01507
10.1016/j.seppur.2023.125724
10.1080/17518253.2021.1965223
10.1080/17518253.2021.1965663
10.1295/kobunshi.57.894
10.1007/s11224-014-0443-1
10.1021/acs.jcim.9b00656
10.1002/cctc.201000302
10.1039/c2cs35177c
10.1002/adsc.201501007
10.1016/j.matdes.2015.11.065
10.1002/adsc.201901021
10.1039/c2gc16515e
10.1039/C9CC04846D
10.1016/j.eurpolymj.2006.11.019
10.1039/C9GC03784E
10.1021/acsami.7b02295
10.1016/S0376-7388(02)00251-X
10.1002/btpr.3210
10.1021/acssuschemeng.3c04944
10.1016/j.memsci.2023.121864
10.3390/polym16010013
10.1016/j.cattod.2022.08.034
10.1351/PAC-CON-08-12-02
10.1016/j.chempr.2018.08.035
10.1016/j.cogsc.2020.02.002
10.1016/j.tet.2021.132001
10.1186/s40508-016-0051-z
10.1021/ma202685j
10.1002/batt.202300527
10.3762/bjoc.12.218
10.3390/catal12030309
10.1016/j.memsci.2007.01.022
10.1002/cssc.201300864
10.1016/j.memsci.2023.122346
10.1016/j.seppur.2020.118015
10.1016/S0011-9164(00)82092-5
10.1021/acs.chemrev.1c00672
10.1002/app.50935
10.1021/acs.est.2c06753
10.1021/je980288w
10.1016/j.watres.2006.06.011
10.1016/j.molliq.2023.121676
10.1002/cssc.201600795
10.1002/cssc.201100483
10.1016/j.jece.2021.106414
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
DOI 10.1039/d4gc04279d
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Sustainability Science Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Sustainability Science Abstracts
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1463-9270
EndPage 127
ExternalDocumentID 10_1039_D4GC04279D
d4gc04279d
GroupedDBID -JG
0-7
0R~
29I
4.4
5GY
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AALRI
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
ADVLN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
FDB
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
M4U
R56
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
ID FETCH-LOGICAL-c240t-836d20e77f2ad784a3ae6857a414c50b9f5aab9c2f79e672232d138b3af4377f3
ISSN 1463-9262
IngestDate Mon Jun 30 12:04:42 EDT 2025
Tue Jul 01 02:24:58 EDT 2025
Tue Dec 17 20:57:29 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c240t-836d20e77f2ad784a3ae6857a414c50b9f5aab9c2f79e672232d138b3af4377f3
Notes https://doi.org/10.1039/d4gc04279d
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9465-0562
0000-0001-8939-8518
0000-0001-9078-3990
0009-0004-1249-6012
0000-0001-9886-9553
PQID 3142182280
PQPubID 2047490
PageCount 24
ParticipantIDs rsc_primary_d4gc04279d
proquest_journals_3142182280
crossref_primary_10_1039_D4GC04279D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-09
PublicationDateYYYYMMDD 2024-12-09
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-09
  day: 09
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Green chemistry : an international journal and green chemistry resource : GC
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Aoki (D4GC04279D/cit63/1) 2023; 56
Miller (D4GC04279D/cit43/1) 1961; 83
Epifanovsky (D4GC04279D/cit68/1) 2021; 155
Bozell (D4GC04279D/cit158/1) 2010; 12
Clarke (D4GC04279D/cit37/1) 2018; 118
Kita (D4GC04279D/cit56/1) 2008; 57
Said-Galiyev (D4GC04279D/cit154/1) 2003; 26
Tena (D4GC04279D/cit94/1) 2015; 62
Rasool (D4GC04279D/cit108/1) 2019; 7
Cabezas (D4GC04279D/cit13/1) 2022; 61
Trapasso (D4GC04279D/cit109/1) 2022; 26
Aricò (D4GC04279D/cit114/1) 2020; 21
Yin (D4GC04279D/cit122/1) 2011; 119
Cuadra-Rodríguez (D4GC04279D/cit5/1) 2023; 74
Paiva (D4GC04279D/cit16/1) 2014; 2
Xu (D4GC04279D/cit40/1) 2021; 59
Dalla Torre (D4GC04279D/cit111/1) 2023; 423
Uebele (D4GC04279D/cit55/1) 2021; 138
Hildebrand (D4GC04279D/cit59/1) 1964
Tundo (D4GC04279D/cit106/1) 2009; 81
Jordan (D4GC04279D/cit2/1) 2022; 122
Valentini (D4GC04279D/cit97/1) 2022; 36
Zou (D4GC04279D/cit45/1) 2021; 23
Ren (D4GC04279D/cit79/1) 2002; 207
Jessop (D4GC04279D/cit35/1) 2011; 13
Sawada (D4GC04279D/cit71/1) 2015; 493
Che (D4GC04279D/cit117/1) 2022; 24
Alhanish (D4GC04279D/cit121/1) 2021; 37
Yaacoubi (D4GC04279D/cit144/1) 2023
(D4GC04279D/cit27/1) 2008
Vandezande (D4GC04279D/cit48/1) 2009; 330
(D4GC04279D/cit30/1) 2006
Hansen (D4GC04279D/cit60/1) 1967
Kim (D4GC04279D/cit77/1) 2000; 77
del Monte (D4GC04279D/cit153/1) 2014; 7
Rose (D4GC04279D/cit113/1) 2012; 5
Pyo (D4GC04279D/cit103/1) 2017; 5
Kumar (D4GC04279D/cit136/1) 2021; 14
United-Nations (D4GC04279D/cit18/1) 2019
Anastas (D4GC04279D/cit19/1) 2010; 39
Ray (D4GC04279D/cit90/1) 2019; 10
Sroog (D4GC04279D/cit89/1) 1976; 11
Torres (D4GC04279D/cit88/1) 2024; 16
Chang (D4GC04279D/cit145/1) 2017; 539
Klamt (D4GC04279D/cit65/1) 1995; 99
Clark (D4GC04279D/cit3/1) 2015; 16
Phan (D4GC04279D/cit23/1) 2015; 17
Tena (D4GC04279D/cit57/1) 2017; 50
Fadhil (D4GC04279D/cit146/1) 2016; 102
Tundo (D4GC04279D/cit105/1) 2018; 20
Muñoz (D4GC04279D/cit34/1) 2006; 40
de la Torre (D4GC04279D/cit141/1) 2020; 22
Taublaender (D4GC04279D/cit156/1) 2019; 52
Escorial (D4GC04279D/cit86/1) 2018; 103
Russo (D4GC04279D/cit7/1) 2020; 8
(D4GC04279D/cit25/1) 2006
Chen (D4GC04279D/cit133/1) 2023; 57
Cvjetko Bubalo (D4GC04279D/cit152/1) 2015; 90
Yang (D4GC04279D/cit124/1) 2016; 91
Sherwood (D4GC04279D/cit140/1) 2016; 18
A. European Chemicals (D4GC04279D/cit4/1) 2019
Prat (D4GC04279D/cit20/1) 2016; 18
Prat (D4GC04279D/cit28/1) 2014; 16
Tena (D4GC04279D/cit87/1) 2015; 5
Alves Costa Pacheco (D4GC04279D/cit100/1) 2016; 9
Xiang (D4GC04279D/cit128/1) 2017
Henderson (D4GC04279D/cit21/1) 2011; 13
Hansen (D4GC04279D/cit61/1) 2007
Städtke (D4GC04279D/cit123/1) 2023; 25
Alqadhi (D4GC04279D/cit143/1) 2024; 328
Van de Vyver (D4GC04279D/cit112/1) 2011; 3
Flory (D4GC04279D/cit58/1) 1942; 10
Cope (D4GC04279D/cit118/1) 1956; 78
Gómez-de-Miranda-Jiménez-de-Aberasturi (D4GC04279D/cit120/1) 2021; 14
Li (D4GC04279D/cit80/1) 2023; 5
Staudt (D4GC04279D/cit66/1) 2018; 472
Chen (D4GC04279D/cit76/1) 2024; 331
Bonora (D4GC04279D/cit132/1) 2005; 433
Hunt (D4GC04279D/cit138/1) 2018
Durand (D4GC04279D/cit51/1) 2011; 17
Dong (D4GC04279D/cit83/1) 2010; 353
Sartori (D4GC04279D/cit99/1) 2021; 84
Jiang (D4GC04279D/cit142/1) 2021; 635
Salamanca (D4GC04279D/cit161/1) 2023; 13
Yang (D4GC04279D/cit69/1) 2023; 11
Tilstam (D4GC04279D/cit147/1) 2012; 16
Klamt (D4GC04279D/cit64/1) 1998; 102
Capriotti (D4GC04279D/cit125/1) 2012; 5
Rivera (D4GC04279D/cit160/1) 2022; 362
Raj (D4GC04279D/cit96/1) 2021; 303
Marino (D4GC04279D/cit130/1) 2019; 26
Liu (D4GC04279D/cit73/1) 2008; 61
Sing Soh (D4GC04279D/cit75/1) 2023; 478
Chen (D4GC04279D/cit102/1) 2023; 51
Teo (D4GC04279D/cit44/1) 2018; 34
Sliz (D4GC04279D/cit135/1) 2024; 7
Baumgartner (D4GC04279D/cit157/1) 2015; 6
Radmanesh (D4GC04279D/cit162/1) 2023; 24
Cakar (D4GC04279D/cit85/1) 2007; 43
Tundo (D4GC04279D/cit119/1) 2010; 3
Yazgan (D4GC04279D/cit93/1) 2020; 77
Worsawat (D4GC04279D/cit91/1) 2023; 21
Kahrs (D4GC04279D/cit53/1) 2020; 186
Tundo (D4GC04279D/cit92/1) 2004; 6
Prabhune (D4GC04279D/cit148/1) 2023; 379
Rasool (D4GC04279D/cit10/1) 2019; 21
McDowell (D4GC04279D/cit131/1) 1971; 33
Milescu (D4GC04279D/cit6/1) 2021; 14
Mulder (D4GC04279D/cit50/1) 2000
Thiermeyer (D4GC04279D/cit82/1) 2021; 265
Byrne (D4GC04279D/cit9/1) 2020; 13
Silva (D4GC04279D/cit67/1) 2023; 62
Abranches (D4GC04279D/cit149/1) 2019; 55
Du (D4GC04279D/cit95/1) 2011; 4
Truong (D4GC04279D/cit107/1) 2021
Ortiz-Albo (D4GC04279D/cit12/1) 2024; 693
Sherwood (D4GC04279D/cit139/1) 2018; 4
Hansen (D4GC04279D/cit84/1) 2001; 40
Victor (D4GC04279D/cit134/1) 2022; 12
(D4GC04279D/cit29/1) 2012
Niedermeyer (D4GC04279D/cit151/1) 2012; 41
Oishi (D4GC04279D/cit62/1) 1978; 17
Ronova (D4GC04279D/cit155/1) 2014; 25
Strathmann (D4GC04279D/cit46/1) 1975; 16
Venkatram (D4GC04279D/cit70/1) 2019; 59
Moity (D4GC04279D/cit52/1) 2012; 14
Fornefeld-Schwarz (D4GC04279D/cit98/1) 1999; 44
Freitas (D4GC04279D/cit150/1) 2023; 11
Taghizadeh (D4GC04279D/cit15/1) 2021; 258
Guillen (D4GC04279D/cit47/1) 2011; 50
Aricò (D4GC04279D/cit159/1) 2016; 12
Rasool (D4GC04279D/cit11/1) 2021; 11
Rasool (D4GC04279D/cit8/1) 2020; 232
Recio (D4GC04279D/cit26/1) 2007; 293
Tashrifi (D4GC04279D/cit127/1) 2020; 362
Xie (D4GC04279D/cit36/1) 2021; 9
Tundo (D4GC04279D/cit101/1) 2023; 16
Gronwald (D4GC04279D/cit54/1) 2020; 137
Cheng (D4GC04279D/cit33/1) 2017; 9
Lu (D4GC04279D/cit129/1) 2022; 380
Hong (D4GC04279D/cit17/1) 2023; 25
Etxeberria-Benavides (D4GC04279D/cit81/1) 2020; 10
Dong (D4GC04279D/cit137/1) 2018; 8
Alfonsi (D4GC04279D/cit22/1) 2008; 10
Vayer (D4GC04279D/cit74/1) 2017; 93
Milliman (D4GC04279D/cit72/1) 2012; 45
Huang (D4GC04279D/cit78/1) 2023; 683
Kotyrba (D4GC04279D/cit110/1) 2022; 12
Caouthar (D4GC04279D/cit115/1) 2007; 43
Wu (D4GC04279D/cit126/1) 2016; 358
Byrne (D4GC04279D/cit24/1) 2016; 4
Fink (D4GC04279D/cit41/1) 2008
Bhanage (D4GC04279D/cit104/1) 2003; 5
Castro-Muñoz (D4GC04279D/cit14/1) 2022; 10
Parker (D4GC04279D/cit42/1) 1969; 69
Ramirez-Kantun (D4GC04279D/cit49/1) 2024; 695
Bhojani (D4GC04279D/cit32/1) 2022; 334
Aricò (D4GC04279D/cit116/1) 2014
References_xml – issn: 2018
  publication-title: Economic valuation in 1-Methyl-2-pyrrolidone (NMP) regulation
  doi: Hunt Dale
– issn: 2008
  publication-title: High Performance Polymers
  doi: Fink
– issn: 1964
  publication-title: The solubility of nonelectrolytes
  doi: Hildebrand Scott
– issn: 2019
  publication-title: Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
  doi: United-Nations
– issn: 2008
  volume-title: Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008
  publication-title: Classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006
– issn: 2000
  end-page: 3331-3346
  publication-title: Encyclopedia of Separation Science
  doi: Mulder
– issn: 1967
  publication-title: The three dimensional solubility parameter and solvent diffusion coefficient
  doi: Hansen
– issn: 2021
  end-page: 253-275
  publication-title: Green Sustainable Process for Chemical and Environmental Engineering and Science
  doi: Truong Mishra Mishra
– issn: 2023
  end-page: 515-554
  publication-title: Green Membrane Technologies towards Environmental Sustainability
  doi: Yaacoubi Dumée
– issn: 2012
  volume-title: Décrete n° 2012-746 du 9 mai 2012
  publication-title: fixant des valeurs limites d'exposition professionnelle contraignantes pour certains agents chimiques
– issn: 2019
  publication-title: How to comply with REACH Restriction 71, guideline for users of NMP (1-methyl-2-pyrrolidone)
  doi: A. European Chemicals
– issn: 2006
  volume-title: European-Parliament, Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006
  publication-title: Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)
– issn: 2017
  end-page: 315-353
  publication-title: Solvents as Reagents in Organic Synthesis
  doi: Xiang Gao Wu
– issn: 2006
  volume-title: Federal Institute for Occupational Safety and Health
  publication-title: TRGS 900 Arbeitsplatzgrenzwerte
– issn: 2007
  publication-title: Hansen solubility parameters: a user's handbook
  doi: Hansen
– volume: 13
  start-page: 3212
  year: 2020
  ident: D4GC04279D/cit9/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202000462
– volume: 34
  start-page: 8581
  year: 2018
  ident: D4GC04279D/cit44/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01513
– volume: 5
  start-page: 5641
  year: 2023
  ident: D4GC04279D/cit80/1
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.3c00940
– volume: 56
  start-page: 5446
  year: 2023
  ident: D4GC04279D/cit63/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.2c02600
– volume: 93
  start-page: 132
  year: 2017
  ident: D4GC04279D/cit74/1
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2017.05.035
– volume: 328
  start-page: 125072
  year: 2024
  ident: D4GC04279D/cit143/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.125072
– volume-title: How to comply with REACH Restriction 71, guideline for users of NMP (1-methyl-2-pyrrolidone)
  year: 2019
  ident: D4GC04279D/cit4/1
– volume: 5
  start-page: 24
  year: 2012
  ident: D4GC04279D/cit125/1
  publication-title: J. Clin. Aesthet. Dermatol.
– volume: 52
  start-page: 6318
  year: 2019
  ident: D4GC04279D/cit156/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.9b00985
– volume: 13
  start-page: 854
  year: 2011
  ident: D4GC04279D/cit21/1
  publication-title: Green Chem.
  doi: 10.1039/c0gc00918k
– volume: 16
  start-page: 17101
  year: 2015
  ident: D4GC04279D/cit3/1
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms160817101
– volume: 695
  start-page: 122519
  year: 2024
  ident: D4GC04279D/cit49/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2024.122519
– volume-title: The solubility of nonelectrolytes
  year: 1964
  ident: D4GC04279D/cit59/1
– volume: 103
  start-page: 390
  year: 2018
  ident: D4GC04279D/cit86/1
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.04.031
– volume: 78
  start-page: 3177
  year: 1956
  ident: D4GC04279D/cit118/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01594a055
– volume: 12
  start-page: 909
  year: 2022
  ident: D4GC04279D/cit134/1
  publication-title: Catalysts
  doi: 10.3390/catal12080909
– volume: 39
  start-page: 301
  year: 2010
  ident: D4GC04279D/cit19/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B918763B
– volume-title: High Performance Polymers
  year: 2008
  ident: D4GC04279D/cit41/1
– volume: 16
  start-page: 1449
  year: 2012
  ident: D4GC04279D/cit147/1
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op300125p
– volume: 330
  start-page: 307
  year: 2009
  ident: D4GC04279D/cit48/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.12.068
– volume: 61
  start-page: 17397
  year: 2022
  ident: D4GC04279D/cit13/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c02747
– volume: 77
  start-page: 2756
  year: 2000
  ident: D4GC04279D/cit77/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/1097-4628(20000919)77:12<2756::AID-APP240>3.0.CO;2-C
– volume: 137
  start-page: 48419
  year: 2020
  ident: D4GC04279D/cit54/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.48419
– volume-title: TRGS 900 Arbeitsplatzgrenzwerte
  year: 2006
  ident: D4GC04279D/cit30/1
– volume: 5
  start-page: 61
  year: 2017
  ident: D4GC04279D/cit103/1
  publication-title: Curr. Opin. Green Sustain. Chem.
  doi: 10.1016/j.cogsc.2017.03.012
– volume: 74
  start-page: 102536
  year: 2023
  ident: D4GC04279D/cit5/1
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2023.102536
– volume: 9
  start-page: 50
  year: 2021
  ident: D4GC04279D/cit36/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c07119
– volume: 10
  start-page: 51
  year: 1942
  ident: D4GC04279D/cit58/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1723621
– volume: 13
  start-page: 1391
  year: 2011
  ident: D4GC04279D/cit35/1
  publication-title: Green Chem.
  doi: 10.1039/c0gc00797h
– volume: 265
  start-page: 118492
  year: 2021
  ident: D4GC04279D/cit82/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118492
– volume: 20
  start-page: 28
  year: 2018
  ident: D4GC04279D/cit105/1
  publication-title: Green Chem.
  doi: 10.1039/C7GC01764B
– volume: 2
  start-page: 1063
  year: 2014
  ident: D4GC04279D/cit16/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc500096j
– volume: 62
  start-page: 130
  year: 2015
  ident: D4GC04279D/cit94/1
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2014.11.016
– volume: 24
  start-page: 100379
  year: 2023
  ident: D4GC04279D/cit162/1
  publication-title: Mater. Today Nano
  doi: 10.1016/j.mtnano.2023.100379
– volume: 16
  start-page: e202300748
  year: 2023
  ident: D4GC04279D/cit101/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202300748
– volume: 8
  start-page: 23
  year: 2018
  ident: D4GC04279D/cit137/1
  publication-title: Membranes
  doi: 10.3390/membranes8020023
– volume: 353
  start-page: 17
  year: 2010
  ident: D4GC04279D/cit83/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.02.012
– volume: 3
  start-page: 566
  year: 2010
  ident: D4GC04279D/cit119/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000011
– volume: 25
  start-page: 7292
  year: 2023
  ident: D4GC04279D/cit123/1
  publication-title: Green Chem.
  doi: 10.1039/D3GC01795H
– volume: 8
  start-page: 659
  year: 2020
  ident: D4GC04279D/cit7/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06496
– volume: 493
  start-page: 232
  year: 2015
  ident: D4GC04279D/cit71/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.07.003
– volume: 478
  start-page: 147451
  year: 2023
  ident: D4GC04279D/cit75/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.147451
– volume: 11
  start-page: 14582
  year: 2023
  ident: D4GC04279D/cit69/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.3c04231
– start-page: 253
  volume-title: Green Sustainable Process for Chemical and Environmental Engineering and Science
  year: 2021
  ident: D4GC04279D/cit107/1
  doi: 10.1016/B978-0-12-819721-9.00010-8
– volume-title: Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)
  year: 2006
  ident: D4GC04279D/cit25/1
– volume: 18
  start-page: 3990
  year: 2016
  ident: D4GC04279D/cit140/1
  publication-title: Green Chem.
  doi: 10.1039/C6GC00932H
– volume: 6
  start-page: 609
  year: 2004
  ident: D4GC04279D/cit92/1
  publication-title: Green Chem.
  doi: 10.1039/B412722F
– volume: 186
  start-page: 122071
  year: 2020
  ident: D4GC04279D/cit53/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.122071
– volume: 635
  start-page: 119530
  year: 2021
  ident: D4GC04279D/cit142/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2021.119530
– volume: 6
  start-page: 5773
  year: 2015
  ident: D4GC04279D/cit157/1
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY00231A
– volume: 23
  start-page: 9815
  year: 2021
  ident: D4GC04279D/cit45/1
  publication-title: Green Chem.
  doi: 10.1039/D1GC03318B
– volume: 472
  start-page: 75
  year: 2018
  ident: D4GC04279D/cit66/1
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2018.05.003
– volume: 11
  start-page: 161
  year: 1976
  ident: D4GC04279D/cit89/1
  publication-title: J. Polym. Sci., Part D: Macromol. Rev.
– volume-title: Economic valuation in 1-Methyl-2-pyrrolidone (NMP) regulation
  year: 2018
  ident: D4GC04279D/cit138/1
– volume-title: Hansen solubility parameters: a user's handbook
  year: 2007
  ident: D4GC04279D/cit61/1
  doi: 10.1201/9781420006834
– volume: 334
  start-page: 130098
  year: 2022
  ident: D4GC04279D/cit32/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2021.130098
– volume: 21
  start-page: 1054
  year: 2019
  ident: D4GC04279D/cit10/1
  publication-title: Green Chem.
  doi: 10.1039/C8GC03652G
– volume: 62
  start-page: 20936
  year: 2023
  ident: D4GC04279D/cit67/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c03310
– volume: 119
  start-page: 2400
  year: 2011
  ident: D4GC04279D/cit122/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.32913
– volume: 380
  start-page: 55
  year: 2022
  ident: D4GC04279D/cit129/1
  publication-title: Top. Curr. Chem.
  doi: 10.1007/s41061-022-00411-8
– volume: 11
  start-page: 418
  year: 2021
  ident: D4GC04279D/cit11/1
  publication-title: Membranes
  doi: 10.3390/membranes11060418
– volume: 69
  start-page: 1
  year: 1969
  ident: D4GC04279D/cit42/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr60257a001
– volume: 17
  start-page: 2846
  year: 2015
  ident: D4GC04279D/cit23/1
  publication-title: Green Chem.
  doi: 10.1039/C4GC02169J
– volume: 5
  start-page: 167
  year: 2012
  ident: D4GC04279D/cit113/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100580
– volume: 26
  start-page: 147
  year: 2003
  ident: D4GC04279D/cit154/1
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/S0896-8446(02)00210-3
– volume: 16
  start-page: 4546
  year: 2014
  ident: D4GC04279D/cit28/1
  publication-title: Green Chem.
  doi: 10.1039/C4GC01149J
– volume-title: The three dimensional solubility parameter and solvent diffusion coefficient
  year: 1967
  ident: D4GC04279D/cit60/1
– volume: 25
  start-page: 4501
  year: 2023
  ident: D4GC04279D/cit17/1
  publication-title: Green Chem.
  doi: 10.1039/D3GC00776F
– volume: 17
  start-page: 333
  year: 1978
  ident: D4GC04279D/cit62/1
  publication-title: Ind. Eng. Chem. Process Des. Dev.
  doi: 10.1021/i260067a021
– volume: 10
  start-page: 3334
  year: 2019
  ident: D4GC04279D/cit90/1
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY00353C
– volume: 10
  start-page: 31
  year: 2008
  ident: D4GC04279D/cit22/1
  publication-title: Green Chem.
  doi: 10.1039/B711717E
– volume: 5
  start-page: 41497
  year: 2015
  ident: D4GC04279D/cit87/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA03809J
– start-page: 3331
  volume-title: Encyclopedia of Separation Science
  year: 2000
  ident: D4GC04279D/cit50/1
  doi: 10.1016/B0-12-226770-2/05271-6
– volume: 83
  start-page: 117
  year: 1961
  ident: D4GC04279D/cit43/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01462a023
– volume: 99
  start-page: 2224
  year: 1995
  ident: D4GC04279D/cit65/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100007a062
– volume: 26
  start-page: 14774
  year: 2019
  ident: D4GC04279D/cit130/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-3575-9
– volume: 61
  start-page: 501
  year: 2008
  ident: D4GC04279D/cit73/1
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-008-0963-1
– volume: 33
  start-page: 3107
  year: 1971
  ident: D4GC04279D/cit131/1
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(71)80077-5
– volume: 433
  start-page: 19
  year: 2005
  ident: D4GC04279D/cit132/1
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2005.02.011
– volume: 13
  start-page: 266
  year: 2023
  ident: D4GC04279D/cit161/1
  publication-title: Membranes
  doi: 10.3390/membranes13030266
– volume: 50
  start-page: 5839
  year: 2017
  ident: D4GC04279D/cit57/1
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b01051
– volume: 77
  start-page: 1191
  year: 2020
  ident: D4GC04279D/cit93/1
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-019-02793-0
– volume: 40
  start-page: 21
  year: 2001
  ident: D4GC04279D/cit84/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie9904955
– volume: 18
  start-page: 288
  year: 2016
  ident: D4GC04279D/cit20/1
  publication-title: Green Chem.
  doi: 10.1039/C5GC01008J
– volume: 26
  start-page: 100639
  year: 2022
  ident: D4GC04279D/cit109/1
  publication-title: Sustainable Chem. Pharm.
  doi: 10.1016/j.scp.2022.100639
– volume: 50
  start-page: 3798
  year: 2011
  ident: D4GC04279D/cit47/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie101928r
– volume: 24
  start-page: 7545
  year: 2022
  ident: D4GC04279D/cit117/1
  publication-title: Green Chem.
  doi: 10.1039/D2GC02342C
– volume: 155
  start-page: 084801
  year: 2021
  ident: D4GC04279D/cit68/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0055522
– start-page: 515
  volume-title: Green Membrane Technologies towards Environmental Sustainability
  year: 2023
  ident: D4GC04279D/cit144/1
  doi: 10.1016/B978-0-323-95165-4.00022-7
– start-page: 315
  volume-title: Solvents as Reagents in Organic Synthesis
  year: 2017
  ident: D4GC04279D/cit128/1
  doi: 10.1002/9783527805624.ch7
– volume: 59
  start-page: 943
  year: 2021
  ident: D4GC04279D/cit40/1
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.20210001
– volume: 539
  start-page: 295
  year: 2017
  ident: D4GC04279D/cit145/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.06.002
– volume: 303
  start-page: 121333
  year: 2021
  ident: D4GC04279D/cit96/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121333
– volume: 90
  start-page: 1631
  year: 2015
  ident: D4GC04279D/cit152/1
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.4668
– volume: 21
  start-page: 1070
  year: 2023
  ident: D4GC04279D/cit91/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/D2OB02222B
– volume: 51
  start-page: 804
  year: 2023
  ident: D4GC04279D/cit102/1
  publication-title: J. Fuel Chem. Technol.
  doi: 10.1016/S1872-5813(22)60075-6
– volume: 118
  start-page: 747
  year: 2018
  ident: D4GC04279D/cit37/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00571
– volume: 17
  start-page: 5155
  year: 2011
  ident: D4GC04279D/cit51/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201001743
– volume: 5
  start-page: 429
  year: 2003
  ident: D4GC04279D/cit104/1
  publication-title: Green Chem.
  doi: 10.1039/b304182d
– volume: 43
  start-page: 220
  year: 2007
  ident: D4GC04279D/cit115/1
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2006.08.012
– volume: 102
  start-page: 16
  year: 2016
  ident: D4GC04279D/cit146/1
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2016.01.007
– volume: 12
  start-page: 539
  year: 2010
  ident: D4GC04279D/cit158/1
  publication-title: Green Chem.
  doi: 10.1039/b922014c
– volume: 14
  start-page: 3367
  year: 2021
  ident: D4GC04279D/cit6/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202101125
– volume: 232
  start-page: 115903
  year: 2020
  ident: D4GC04279D/cit8/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115903
– volume: 362
  start-page: 127829
  year: 2022
  ident: D4GC04279D/cit160/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.127829
– volume-title: fixant des valeurs limites d’exposition professionnelle contraignantes pour certains agents chimiques
  year: 2012
  ident: D4GC04279D/cit29/1
– volume-title: Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
  year: 2019
  ident: D4GC04279D/cit18/1
  doi: 10.18356/f8fbb7cb-en
– volume: 102
  start-page: 5074
  year: 1998
  ident: D4GC04279D/cit64/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp980017s
– volume: 36
  start-page: 100634
  year: 2022
  ident: D4GC04279D/cit97/1
  publication-title: Curr. Opin. Green Sustain. Chem.
  doi: 10.1016/j.cogsc.2022.100634
– volume: 10
  start-page: 4
  year: 2020
  ident: D4GC04279D/cit81/1
  publication-title: Membranes
  doi: 10.3390/membranes10010004
– volume: 7
  start-page: 13774
  year: 2019
  ident: D4GC04279D/cit108/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01507
– volume: 331
  start-page: 125724
  year: 2024
  ident: D4GC04279D/cit76/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.125724
– volume: 14
  start-page: 534
  year: 2021
  ident: D4GC04279D/cit120/1
  publication-title: Green Chem. Lett. Rev.
  doi: 10.1080/17518253.2021.1965223
– volume: 14
  start-page: 545
  year: 2021
  ident: D4GC04279D/cit136/1
  publication-title: Green Chem. Lett. Rev.
  doi: 10.1080/17518253.2021.1965663
– volume: 57
  start-page: 894
  year: 2008
  ident: D4GC04279D/cit56/1
  publication-title: Kobunshi
  doi: 10.1295/kobunshi.57.894
– volume: 25
  start-page: 1687
  year: 2014
  ident: D4GC04279D/cit155/1
  publication-title: Struct. Chem.
  doi: 10.1007/s11224-014-0443-1
– start-page: 1
  year: 2014
  ident: D4GC04279D/cit116/1
  publication-title: Sci. Open Res.
– volume: 59
  start-page: 4188
  year: 2019
  ident: D4GC04279D/cit70/1
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00656
– volume: 3
  start-page: 82
  year: 2011
  ident: D4GC04279D/cit112/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000302
– volume: 41
  start-page: 7780
  year: 2012
  ident: D4GC04279D/cit151/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35177c
– volume: 358
  start-page: 336
  year: 2016
  ident: D4GC04279D/cit126/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201501007
– volume: 91
  start-page: 262
  year: 2016
  ident: D4GC04279D/cit124/1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.11.065
– volume: 362
  start-page: 65
  year: 2020
  ident: D4GC04279D/cit127/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201901021
– volume: 14
  start-page: 1132
  year: 2012
  ident: D4GC04279D/cit52/1
  publication-title: Green Chem.
  doi: 10.1039/c2gc16515e
– volume: 55
  start-page: 10253
  year: 2019
  ident: D4GC04279D/cit149/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04846D
– volume: 43
  start-page: 507
  year: 2007
  ident: D4GC04279D/cit85/1
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2006.11.019
– volume: 22
  start-page: 3162
  year: 2020
  ident: D4GC04279D/cit141/1
  publication-title: Green Chem.
  doi: 10.1039/C9GC03784E
– volume: 9
  start-page: 14401
  year: 2017
  ident: D4GC04279D/cit33/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02295
– volume: 207
  start-page: 227
  year: 2002
  ident: D4GC04279D/cit79/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(02)00251-X
– volume: 37
  start-page: e3210
  year: 2021
  ident: D4GC04279D/cit121/1
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.3210
– volume: 11
  start-page: 16594
  year: 2023
  ident: D4GC04279D/cit150/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.3c04944
– volume-title: Classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006
  year: 2008
  ident: D4GC04279D/cit27/1
– volume: 683
  start-page: 121864
  year: 2023
  ident: D4GC04279D/cit78/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2023.121864
– volume: 16
  start-page: 13
  year: 2024
  ident: D4GC04279D/cit88/1
  publication-title: Polymers
  doi: 10.3390/polym16010013
– volume: 423
  start-page: 113892
  year: 2023
  ident: D4GC04279D/cit111/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2022.08.034
– volume: 81
  start-page: 1971
  year: 2009
  ident: D4GC04279D/cit106/1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/PAC-CON-08-12-02
– volume: 4
  start-page: 2010
  year: 2018
  ident: D4GC04279D/cit139/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.08.035
– volume: 21
  start-page: 82
  year: 2020
  ident: D4GC04279D/cit114/1
  publication-title: Curr. Opin. Green Sustain. Chem.
  doi: 10.1016/j.cogsc.2020.02.002
– volume: 84
  start-page: 132001
  year: 2021
  ident: D4GC04279D/cit99/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2021.132001
– volume: 4
  start-page: 7
  year: 2016
  ident: D4GC04279D/cit24/1
  publication-title: Sustainable Chem. Processes
  doi: 10.1186/s40508-016-0051-z
– volume: 45
  start-page: 1931
  year: 2012
  ident: D4GC04279D/cit72/1
  publication-title: Macromolecules
  doi: 10.1021/ma202685j
– volume: 7
  start-page: e202300527
  year: 2024
  ident: D4GC04279D/cit135/1
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.202300527
– volume: 12
  start-page: 2256
  year: 2016
  ident: D4GC04279D/cit159/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.12.218
– volume: 12
  start-page: 309
  year: 2022
  ident: D4GC04279D/cit110/1
  publication-title: Catalysts
  doi: 10.3390/catal12030309
– volume: 293
  start-page: 22
  year: 2007
  ident: D4GC04279D/cit26/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.01.022
– volume: 7
  start-page: 999
  year: 2014
  ident: D4GC04279D/cit153/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300864
– volume: 693
  start-page: 122346
  year: 2024
  ident: D4GC04279D/cit12/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2023.122346
– volume: 258
  start-page: 118015
  year: 2021
  ident: D4GC04279D/cit15/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.118015
– volume: 16
  start-page: 179
  year: 1975
  ident: D4GC04279D/cit46/1
  publication-title: Desalination
  doi: 10.1016/S0011-9164(00)82092-5
– volume: 122
  start-page: 6749
  year: 2022
  ident: D4GC04279D/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00672
– volume: 138
  start-page: 50935
  year: 2021
  ident: D4GC04279D/cit55/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.50935
– volume: 57
  start-page: 18617
  year: 2023
  ident: D4GC04279D/cit133/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c06753
– volume: 44
  start-page: 597
  year: 1999
  ident: D4GC04279D/cit98/1
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je980288w
– volume: 40
  start-page: 2799
  year: 2006
  ident: D4GC04279D/cit34/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.06.011
– volume: 379
  start-page: 121676
  year: 2023
  ident: D4GC04279D/cit148/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2023.121676
– volume: 9
  start-page: 3503
  year: 2016
  ident: D4GC04279D/cit100/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600795
– volume: 4
  start-page: 1838
  year: 2011
  ident: D4GC04279D/cit95/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100483
– volume: 10
  start-page: 106414
  year: 2022
  ident: D4GC04279D/cit14/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106414
SSID ssj0011764
Score 2.4565787
Snippet The legislation is limiting the use of harmful organic solvents in industrial processes. The establishment of clear guidelines for minimizing solvent residues...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 11984
SubjectTerms Chemical synthesis
Dimethyl sulfoxide
Guidelines
Industrial applications
Industrial development
Legislation
Membranes
Molecular weight
N-Methyl-2-pyrrolidone
Organic solvents
Polyimide resins
Polymers
Solvents
Substitution reactions
Title Green dipolar aprotic solvents for the dynamic polycondensation of high-performance polyimide membranes
URI https://www.proquest.com/docview/3142182280
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gF4QFCYVhjIErxFgTh2m-Rx6tpNbAxptNC3yF-pilhb9QMJ_j3-Mc6OnYRqQsBLFFm5xLr7xb473wdCryMqqCRFFGpQ8MFAKVjIBWMhE0IpLqIiEiZ3-P11_2LC3k1701brZyNqabcVb-SPO_NK_keqMAZyNVmy_yDZ6qUwAPcgX7iChOH6VzK2QTOBmq-MfRpwU3NhLgP45jebt-YjCFXZdd40ZPgO5i-sNJtaUQTjPFw1sgfMQ_PbuQls1bdgSi9ckOGX5ielbxNnPQp8YatO1I5FX47COOVnewRrd15gKc8rH-0w-GgTqTblyX2Fg-AmgKl85cGn-a52Hgz4Gphs9d5R42BruW04fp0rI7YFE6N6wSwdJj5a1UajuLk1FmjWp6GpcVjuX82xsgGJX9XLPHyH3pg11mhCsrIrndvwiXHX3rmbRNQUY1VsJk1HkkzVe6aPE7j-kI8mV1f5eDgdH6DDGGyVuI0OTy9vPl9Wh1kksVXMqqn7Krk0e1u_-3e9qDZ2Dta-E43VeMaP0ENnquDTEnePUUsvOuhexa0OetAoZtlBR8M6ZxLI3KaxeYJmFjPYwRQ7mGIPUwzQwwBT7GCK92GKlwXehymuYIormD5Fk9FwPLgIXX-PUIIeuQ1T2ldxpJOkiLlKUsYp1_20l3BGmOxFIit6nItMxkWS6T5wlsaK0FRQXjAKVPQItRfLhT5GWIs04kwSGfcUk1zxTOtUSiU4l4QS1UWvPHfzVVnGJbfhFzTLz9j5wMrgrItOPONz96dsckqY6XIQp1EXHYEwKvpads_-TPcc3a_RfoLa2_VOvwBVditeOqj8AgaYp4M
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+dipolar+aprotic+solvents+for+the+dynamic+polycondensation+of+high-performance+polyimide+membranes&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=E+San+Jos%C3%A9&rft.au=M+R+de+la+Viuda&rft.au=Carmona%2C+F+J&rft.au=Soto%2C+C&rft.date=2024-12-09&rft.pub=Royal+Society+of+Chemistry&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=26&rft.issue=24&rft.spage=11984&rft.epage=12007&rft_id=info:doi/10.1039%2Fd4gc04279d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon