Lewis acid sites and flexible active centers synergistically boost efficient electrochemical ammonia synthesis
Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of present catalysts are still limited in their applications. Herein, from the perspective of Lewis acid-base interactions and flexible active cen...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 44; pp. 3476 - 3485 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
12.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of present catalysts are still limited in their applications. Herein, from the perspective of Lewis acid-base interactions and flexible active centers, positively charged tetrahedron transition metal (TM) clusters were anchored onto boron nitride nanotubes (BNNTs) with B-vacancies to design a series of efficient NRR catalysts, meeting the above requirements. Through Density Functional Theory (DFT) calculations, our results uncover that the Mn
4
/BNNT (6, 6) system exhibits optimal activity characterized by a low limiting potential of only −0.29 V and high selectivity, as confirmed by the adsorption energy difference between nitrogen molecules and hydrogen proton (−0.73 eV). Owing to the existence of electron-deficient Lewis acid sites, the adsorption and activation of N
2
are strongly enhanced. Simultaneously, the flexible active center destabilizes the N-containing intermediates and upgrades the hydrogenation reaction process, facilitating the desorption of NH
3
or its further hydrogenation to NH
4
+
. This innovative approach, employing a Lewis acid pair and a flexible active center to design efficient NRR catalysts, holds great promise for NH
3
synthesis under ambient conditions.
The Lewis acid sites enhance N
2
adsorption and activation, while the flexible active center facilitates hydrogenation and NH
4
+
formation, regenerating the catalyst. |
---|---|
AbstractList | Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of present catalysts are still limited in their applications. Herein, from the perspective of Lewis acid–base interactions and flexible active centers, positively charged tetrahedron transition metal (TM) clusters were anchored onto boron nitride nanotubes (BNNTs) with B-vacancies to design a series of efficient NRR catalysts, meeting the above requirements. Through Density Functional Theory (DFT) calculations, our results uncover that the Mn4/BNNT (6, 6) system exhibits optimal activity characterized by a low limiting potential of only −0.29 V and high selectivity, as confirmed by the adsorption energy difference between nitrogen molecules and hydrogen proton (−0.73 eV). Owing to the existence of electron-deficient Lewis acid sites, the adsorption and activation of N2 are strongly enhanced. Simultaneously, the flexible active center destabilizes the N-containing intermediates and upgrades the hydrogenation reaction process, facilitating the desorption of NH3 or its further hydrogenation to NH4+. This innovative approach, employing a Lewis acid pair and a flexible active center to design efficient NRR catalysts, holds great promise for NH3 synthesis under ambient conditions. Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of present catalysts are still limited in their applications. Herein, from the perspective of Lewis acid-base interactions and flexible active centers, positively charged tetrahedron transition metal (TM) clusters were anchored onto boron nitride nanotubes (BNNTs) with B-vacancies to design a series of efficient NRR catalysts, meeting the above requirements. Through Density Functional Theory (DFT) calculations, our results uncover that the Mn 4 /BNNT (6, 6) system exhibits optimal activity characterized by a low limiting potential of only −0.29 V and high selectivity, as confirmed by the adsorption energy difference between nitrogen molecules and hydrogen proton (−0.73 eV). Owing to the existence of electron-deficient Lewis acid sites, the adsorption and activation of N 2 are strongly enhanced. Simultaneously, the flexible active center destabilizes the N-containing intermediates and upgrades the hydrogenation reaction process, facilitating the desorption of NH 3 or its further hydrogenation to NH 4 + . This innovative approach, employing a Lewis acid pair and a flexible active center to design efficient NRR catalysts, holds great promise for NH 3 synthesis under ambient conditions. The Lewis acid sites enhance N 2 adsorption and activation, while the flexible active center facilitates hydrogenation and NH 4 + formation, regenerating the catalyst. Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of present catalysts are still limited in their applications. Herein, from the perspective of Lewis acid–base interactions and flexible active centers, positively charged tetrahedron transition metal (TM) clusters were anchored onto boron nitride nanotubes (BNNTs) with B-vacancies to design a series of efficient NRR catalysts, meeting the above requirements. Through Density Functional Theory (DFT) calculations, our results uncover that the Mn 4 /BNNT (6, 6) system exhibits optimal activity characterized by a low limiting potential of only −0.29 V and high selectivity, as confirmed by the adsorption energy difference between nitrogen molecules and hydrogen proton (−0.73 eV). Owing to the existence of electron-deficient Lewis acid sites, the adsorption and activation of N 2 are strongly enhanced. Simultaneously, the flexible active center destabilizes the N-containing intermediates and upgrades the hydrogenation reaction process, facilitating the desorption of NH 3 or its further hydrogenation to NH 4 + . This innovative approach, employing a Lewis acid pair and a flexible active center to design efficient NRR catalysts, holds great promise for NH 3 synthesis under ambient conditions. |
Author | Lang, Xing-You Jiang, Qing Chen, Li-Bo Wang, Tong-Hui |
AuthorAffiliation | Ministry of Education Jilin University School of Materials Science and Engineering Key Laboratory of Automobile Materials |
AuthorAffiliation_xml | – sequence: 0 name: Jilin University – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: Key Laboratory of Automobile Materials – sequence: 0 name: Ministry of Education |
Author_xml | – sequence: 1 givenname: Li-Bo surname: Chen fullname: Chen, Li-Bo – sequence: 2 givenname: Tong-Hui surname: Wang fullname: Wang, Tong-Hui – sequence: 3 givenname: Xing-You surname: Lang fullname: Lang, Xing-You – sequence: 4 givenname: Qing surname: Jiang fullname: Jiang, Qing |
BookMark | eNpFkE1LAzEQhoNUsNZevAsBb8JqdpNNNsdSP6HgpZ6XbDKxKbubmqRq_71bK3Uu8zI8MwPPORr1vgeELnNymxMq7wxLirCqYuoEjQtSkkwwyUfHXFVnaBrjmgxVEcKlHKN-AV8uYqWdwdElGGJvsG3h2zUtDPPkPgFr6BOEiOOuh_DuYnJate0ON97HhMFap92AYGhBp-D1Cro9gVXX-d6p_V5aQXTxAp1a1UaY_vUJent8WM6fs8Xr08t8tsh0wUjKeGGUsExIrq0WVijTlEIJbphsqCylEcYqbYELKCpelBWlXClprCkNMZLQCbo-3N0E_7GFmOq134Z-eFnTvBCMskKWA3VzoHTwMQaw9Sa4ToVdnZN6r7S-Z8vZr9LZAF8d4BD1kftXTn8AXtB3mg |
Cites_doi | 10.1002/cssc.202102648 10.1126/science.aad4998 10.1039/C9NR08969A 10.1201/9781315380476 10.1021/acscatal.0c03140 10.1002/adfm.202211537 10.1002/anie.202207807 10.1002/jcc.20495 10.1016/j.apcatb.2021.121023 10.1021/acscatal.8b00905 10.3389/fctls.2022.1096824 10.1021/jacs.9b13349 10.1039/D1TA02681J 10.1103/PhysRevB.66.155125 10.1016/j.nanoen.2019.104304 10.1039/D0TA04919K 10.1039/D1TA04638A 10.1039/D2TA04140E 10.1039/C8TA11025E 10.1039/D0TA09496J 10.1002/advs.202103583 10.1063/1.1316015 10.1016/j.chempr.2021.01.009 10.1063/1.458452 10.1016/j.ijhydene.2024.03.282 10.1039/C9CS00280D 10.1002/smtd.201800291 10.1021/jp047349j 10.1039/D0GC01149E 10.1002/cssc.201500322 10.1002/smtd.201800386 10.1002/cphc.202300991 10.1039/D2TA00308B 10.1039/C1CP22271F 10.1016/j.apsusc.2022.153130 10.1021/acs.chemrev.9b00659 10.1016/j.ijhydene.2022.06.307 10.1021/acscatal.6b03035 10.1016/j.nanoen.2020.105391 10.1016/j.apcatb.2022.121574 10.1038/s41467-018-03795-8 10.1021/acscatal.8b05061 10.1021/acscatal.9b04103 10.1021/acs.nanolett.0c05080 10.1016/j.jechem.2020.09.002 10.1021/acsami.2c02048 10.1039/D1TA01269J 10.1016/j.jece.2022.107752 10.1021/acs.jpcc.4c02148 10.1021/acsanm.2c00379 10.1126/science.aar6611 10.1039/C8TA03481H 10.1021/acs.nanolett.1c02502 10.1039/C9TA04650J 10.1039/D0TA05943A 10.1016/j.chempr.2018.10.007 10.1063/1.2404663 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d4ta04884a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 3485 |
ExternalDocumentID | 10_1039_D4TA04884A d4ta04884a |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c240t-62da7f4796cfc7f7adb57a76d49b3959d7dfacfe67e286258336aa9dfd5d0d903 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 11:57:52 EDT 2025 Tue Jul 01 03:28:24 EDT 2025 Tue Dec 17 20:58:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c240t-62da7f4796cfc7f7adb57a76d49b3959d7dfacfe67e286258336aa9dfd5d0d903 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d4ta04884a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8227-9695 0000-0003-0660-596X |
PQID | 3127434295 |
PQPubID | 2047523 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1039_D4TA04884A rsc_primary_d4ta04884a proquest_journals_3127434295 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-12 |
PublicationDateYYYYMMDD | 2024-11-12 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Seh (D4TA04884A/cit13/1) 2017; 355 Tang (D4TA04884A/cit1/1) 2019; 48 Shen (D4TA04884A/cit2/1) 2021; 7 Zhao (D4TA04884A/cit55/1) 2019; 9 Garden (D4TA04884A/cit27/1) 2018 Iqbal (D4TA04884A/cit26/1) 2024; 128 Liu (D4TA04884A/cit9/1) 2022; 9 Chen (D4TA04884A/cit29/1) 2021; 9 Wang (D4TA04884A/cit34/1) 2020; 22 Lv (D4TA04884A/cit12/1) 2021; 21 Lin (D4TA04884A/cit40/1) 2022; 61 Ma (D4TA04884A/cit22/1) 2022; 315 Delley (D4TA04884A/cit46/1) 2000; 113 Li (D4TA04884A/cit21/1) 2019; 7 Choi (D4TA04884A/cit15/1) 2018; 8 Jiang (D4TA04884A/cit31/1) 2022; 14 Nørskov (D4TA04884A/cit51/1) 2004; 108 Chen (D4TA04884A/cit37/1) 2021; 21 Yang (D4TA04884A/cit6/1) 2020; 68 Chen (D4TA04884A/cit45/1) 2020; 8 Singh (D4TA04884A/cit5/1) 2016; 7 Li (D4TA04884A/cit59/1) 2020; 10 Gao (D4TA04884A/cit4/1) 2022; 591 Tao (D4TA04884A/cit8/1) 2019; 5 Abghoui (D4TA04884A/cit28/1) 2023; 2 Iqbal (D4TA04884A/cit24/1) 2024; 25 Zhou (D4TA04884A/cit44/1) 2022; 305 Iqbal (D4TA04884A/cit25/1) 2024; 64 Xu (D4TA04884A/cit39/1) 2021; 37 Guo (D4TA04884A/cit16/1) 2020; 142 Chen (D4TA04884A/cit20/1) 2019; 3 Ren (D4TA04884A/cit36/1) 2021; 9 Grimme (D4TA04884A/cit49/1) 2006; 27 Yang (D4TA04884A/cit57/1) 2022; 15 Jiao (D4TA04884A/cit10/1) 2021; 9 Long (D4TA04884A/cit56/1) 2020; 8 Jonuarti (D4TA04884A/cit30/1) 2022; 47 Lv (D4TA04884A/cit18/1) 2022; 5 Delley (D4TA04884A/cit50/1) 1990; 92 Chen (D4TA04884A/cit14/1) 2018; 6 Qing (D4TA04884A/cit3/1) 2020; 120 Liu (D4TA04884A/cit11/1) 2020; 10 Xue (D4TA04884A/cit19/1) 2021; 57 Haynes (D4TA04884A/cit54/1) 2016 Tran (D4TA04884A/cit41/1) 2022; 10 Zhou (D4TA04884A/cit23/1) 2022; 10 Liu (D4TA04884A/cit33/1) 2018; 9 Shi (D4TA04884A/cit42/1) 2019; 7 Delley (D4TA04884A/cit48/1) 2002; 66 Dai (D4TA04884A/cit35/1) 2022; 10 Ma (D4TA04884A/cit17/1) 2020; 12 Huang (D4TA04884A/cit43/1) 2019; 3 Montoya (D4TA04884A/cit53/1) 2015; 8 Chen (D4TA04884A/cit7/1) 2018; 360 Krukau (D4TA04884A/cit47/1) 2006; 125 Guo (D4TA04884A/cit58/1) 2020; 78 Dai (D4TA04884A/cit32/1) 2021; 9 Zhang (D4TA04884A/cit38/1) 2023; 33 Skulason (D4TA04884A/cit52/1) 2012; 14 |
References_xml | – issn: 2016 publication-title: CRC Handbook of Chemistry and Physics doi: Haynes – issn: 2018 end-page: p 146-176 publication-title: Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Alloys doi: Garden Abghoui Skúlason – volume: 15 start-page: e202102648 year: 2022 ident: D4TA04884A/cit57/1 publication-title: ChemSusChem doi: 10.1002/cssc.202102648 – volume: 355 start-page: eaad4998 year: 2017 ident: D4TA04884A/cit13/1 publication-title: Science doi: 10.1126/science.aad4998 – volume: 12 start-page: 1541 year: 2020 ident: D4TA04884A/cit17/1 publication-title: Nanoscale doi: 10.1039/C9NR08969A – volume-title: CRC Handbook of Chemistry and Physics year: 2016 ident: D4TA04884A/cit54/1 doi: 10.1201/9781315380476 – volume: 10 start-page: 12841 year: 2020 ident: D4TA04884A/cit59/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03140 – volume: 33 start-page: 2211537 year: 2023 ident: D4TA04884A/cit38/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211537 – volume: 61 start-page: e202207807 year: 2022 ident: D4TA04884A/cit40/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202207807 – volume: 27 start-page: 1787 year: 2006 ident: D4TA04884A/cit49/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 305 start-page: 121023 year: 2022 ident: D4TA04884A/cit44/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.121023 – volume: 8 start-page: 7517 year: 2018 ident: D4TA04884A/cit15/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00905 – volume: 2 start-page: 1096824 year: 2023 ident: D4TA04884A/cit28/1 publication-title: Front. Catal. doi: 10.3389/fctls.2022.1096824 – volume: 142 start-page: 5709 year: 2020 ident: D4TA04884A/cit16/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13349 – volume: 9 start-page: 13036 year: 2021 ident: D4TA04884A/cit36/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02681J – volume: 66 start-page: 155125 year: 2002 ident: D4TA04884A/cit48/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.66.155125 – volume: 68 start-page: 104304 year: 2020 ident: D4TA04884A/cit6/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104304 – volume: 8 start-page: 15086 year: 2020 ident: D4TA04884A/cit45/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04919K – volume: 9 start-page: 21219 year: 2021 ident: D4TA04884A/cit32/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA04638A – volume: 10 start-page: 16900 year: 2022 ident: D4TA04884A/cit35/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA04140E – volume: 7 start-page: 4865 year: 2019 ident: D4TA04884A/cit42/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11025E – volume: 9 start-page: 1240 year: 2021 ident: D4TA04884A/cit10/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09496J – volume: 9 start-page: 2103583 year: 2022 ident: D4TA04884A/cit9/1 publication-title: Adv. Sci. doi: 10.1002/advs.202103583 – volume: 113 start-page: 7756 year: 2000 ident: D4TA04884A/cit46/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 7 start-page: 1708 year: 2021 ident: D4TA04884A/cit2/1 publication-title: Chem doi: 10.1016/j.chempr.2021.01.009 – volume: 92 start-page: 508 year: 1990 ident: D4TA04884A/cit50/1 publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 64 start-page: 744 year: 2024 ident: D4TA04884A/cit25/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2024.03.282 – volume: 48 start-page: 3166 year: 2019 ident: D4TA04884A/cit1/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00280D – volume: 3 start-page: 1800291 year: 2019 ident: D4TA04884A/cit20/1 publication-title: Small Methods doi: 10.1002/smtd.201800291 – volume: 108 start-page: 17886 year: 2004 ident: D4TA04884A/cit51/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 22 start-page: 6157 year: 2020 ident: D4TA04884A/cit34/1 publication-title: Green Chem. doi: 10.1039/D0GC01149E – volume: 8 start-page: 2180 year: 2015 ident: D4TA04884A/cit53/1 publication-title: ChemSusChem doi: 10.1002/cssc.201500322 – volume: 3 start-page: 1800386 year: 2019 ident: D4TA04884A/cit43/1 publication-title: Small Methods doi: 10.1002/smtd.201800386 – volume: 25 start-page: e202300991 year: 2024 ident: D4TA04884A/cit24/1 publication-title: ChemPhysChem doi: 10.1002/cphc.202300991 – volume: 10 start-page: 8432 year: 2022 ident: D4TA04884A/cit41/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA00308B – volume: 14 start-page: 1235 year: 2012 ident: D4TA04884A/cit52/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22271F – volume: 591 start-page: 153130 year: 2022 ident: D4TA04884A/cit4/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153130 – start-page: 146 volume-title: Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Alloys year: 2018 ident: D4TA04884A/cit27/1 – volume: 120 start-page: 5437 year: 2020 ident: D4TA04884A/cit3/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00659 – volume: 47 start-page: 29907 year: 2022 ident: D4TA04884A/cit30/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.06.307 – volume: 7 start-page: 706 year: 2016 ident: D4TA04884A/cit5/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b03035 – volume: 78 start-page: 105391 year: 2020 ident: D4TA04884A/cit58/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105391 – volume: 315 start-page: 121574 year: 2022 ident: D4TA04884A/cit22/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121574 – volume: 9 start-page: 1610 year: 2018 ident: D4TA04884A/cit33/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03795-8 – volume: 9 start-page: 3419 year: 2019 ident: D4TA04884A/cit55/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b05061 – volume: 10 start-page: 1847 year: 2020 ident: D4TA04884A/cit11/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b04103 – volume: 21 start-page: 1871 year: 2021 ident: D4TA04884A/cit12/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c05080 – volume: 57 start-page: 443 year: 2021 ident: D4TA04884A/cit19/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.09.002 – volume: 14 start-page: 17470 year: 2022 ident: D4TA04884A/cit31/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c02048 – volume: 9 start-page: 11726 year: 2021 ident: D4TA04884A/cit29/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA01269J – volume: 10 start-page: 107752 year: 2022 ident: D4TA04884A/cit23/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.107752 – volume: 128 start-page: 10300 year: 2024 ident: D4TA04884A/cit26/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.4c02148 – volume: 5 start-page: 7382 year: 2022 ident: D4TA04884A/cit18/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c00379 – volume: 360 start-page: eaar6611 year: 2018 ident: D4TA04884A/cit7/1 publication-title: Science doi: 10.1126/science.aar6611 – volume: 6 start-page: 9623 year: 2018 ident: D4TA04884A/cit14/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03481H – volume: 21 start-page: 7325 year: 2021 ident: D4TA04884A/cit37/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c02502 – volume: 7 start-page: 21507 year: 2019 ident: D4TA04884A/cit21/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04650J – volume: 37 start-page: 2009043 issue: 7 year: 2021 ident: D4TA04884A/cit39/1 publication-title: Acta Phys.-Chim. Sin. – volume: 8 start-page: 17078 year: 2020 ident: D4TA04884A/cit56/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05943A – volume: 5 start-page: 204 year: 2019 ident: D4TA04884A/cit8/1 publication-title: Chem doi: 10.1016/j.chempr.2018.10.007 – volume: 125 start-page: 224106 year: 2006 ident: D4TA04884A/cit47/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2404663 |
SSID | ssj0000800699 |
Score | 2.429127 |
Snippet | Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3476 |
SubjectTerms | Acids Adsorption Ammonia Boron Boron nitride Catalysts Chemical reduction Chemical synthesis Density functional theory Electrochemistry Hydrogenation Intermediates Lewis acid Nanotechnology Nanotubes Nitrogen Tetrahedra Transition metals |
Title | Lewis acid sites and flexible active centers synergistically boost efficient electrochemical ammonia synthesis |
URI | https://www.proquest.com/docview/3127434295 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gUeEF8ThYEswVuUkTlOUj8W6FSmMISUir5Fju2MSFOHllRo_IX8WZy_kjA-BLxErStbie_Xu_PlfncIvRBqToTiKhQiSUOqYVzRKg4jwWIWV4QnVBOc352lqzU93SSbyeTbKGtp11VH4usveSX_I1UYA7lqluw_SLZfFAbgM8gXriBhuP6VjHP1pWkDLhoZ6JfAttxyrUtcaj4UN6os0OmXmqXbXmuan6nLzC8urgNwr9tO53M0hhMZuIY4oq8goJ-j4XoeOIlt0_7GjwWX1z5rIHzzuKNgYXlA_hdTV9yyDE2g3rO2dGJuH9PPm_CVDdx-GvhpxeX2PFztTM7BR-7MLIxvwOSGoKqCfDR42rjo9wdvkF08g1BN7DseTr82auJTVk1Kirv3QTOSKIl0EVSruNV4zLbH7VU7GUGY0pGi1m8b05HVh--2ddBPJiWKdUVWSTuulR0dGU6fLHD2vjxZ53lZLDfFHtoncGAhU7S_WBZv8z7epz3z1LQz7e_eV8uN2cth-R_9o-HQs3flO9IYz6e4i-44UeOFxd89NFHb--j2qJDlA7Q1SMQaidggEYOYsUcitkjEDon4BhKxQSLukYhvIBE7JOIeiQ_R-mRZvF6FrpNHKMBj7MKUSJ7VNGOpqEVWZ1xWScazVFJWxSxhMpM1F7VKM0XgiK2ZgCnnTNYykZFkUXyAptvLrXqEMOdUEsZhFZVRWtcM7DNXc8a4nCdVOp-h537_ys-2YEtpEi1iVr6hxcLs8mKGDv3Wlu4P3ZbxMQF_Ghy0ZIYOYLv7-YN0Hv953hN0a4D0IZp2Vzv1FJzWrnrm8PAd6aai-g |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lewis+acid+sites+and+flexible+active+centers+synergistically+boost+efficient+electrochemical+ammonia+synthesis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li-Bo%2C+Chen&rft.au=Tong-Hui%2C+Wang&rft.au=Xing-You+Lang&rft.au=Jiang%2C+Qing&rft.date=2024-11-12&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=44&rft.spage=30476&rft.epage=30485&rft_id=info:doi/10.1039%2Fd4ta04884a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |