Lewis acid sites and flexible active centers synergistically boost efficient electrochemical ammonia synthesis

Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of present catalysts are still limited in their applications. Herein, from the perspective of Lewis acid-base interactions and flexible active cen...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 44; pp. 3476 - 3485
Main Authors Chen, Li-Bo, Wang, Tong-Hui, Lang, Xing-You, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 12.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of present catalysts are still limited in their applications. Herein, from the perspective of Lewis acid-base interactions and flexible active centers, positively charged tetrahedron transition metal (TM) clusters were anchored onto boron nitride nanotubes (BNNTs) with B-vacancies to design a series of efficient NRR catalysts, meeting the above requirements. Through Density Functional Theory (DFT) calculations, our results uncover that the Mn 4 /BNNT (6, 6) system exhibits optimal activity characterized by a low limiting potential of only −0.29 V and high selectivity, as confirmed by the adsorption energy difference between nitrogen molecules and hydrogen proton (−0.73 eV). Owing to the existence of electron-deficient Lewis acid sites, the adsorption and activation of N 2 are strongly enhanced. Simultaneously, the flexible active center destabilizes the N-containing intermediates and upgrades the hydrogenation reaction process, facilitating the desorption of NH 3 or its further hydrogenation to NH 4 + . This innovative approach, employing a Lewis acid pair and a flexible active center to design efficient NRR catalysts, holds great promise for NH 3 synthesis under ambient conditions. The Lewis acid sites enhance N 2 adsorption and activation, while the flexible active center facilitates hydrogenation and NH 4 + formation, regenerating the catalyst.
AbstractList Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of present catalysts are still limited in their applications. Herein, from the perspective of Lewis acid–base interactions and flexible active centers, positively charged tetrahedron transition metal (TM) clusters were anchored onto boron nitride nanotubes (BNNTs) with B-vacancies to design a series of efficient NRR catalysts, meeting the above requirements. Through Density Functional Theory (DFT) calculations, our results uncover that the Mn4/BNNT (6, 6) system exhibits optimal activity characterized by a low limiting potential of only −0.29 V and high selectivity, as confirmed by the adsorption energy difference between nitrogen molecules and hydrogen proton (−0.73 eV). Owing to the existence of electron-deficient Lewis acid sites, the adsorption and activation of N2 are strongly enhanced. Simultaneously, the flexible active center destabilizes the N-containing intermediates and upgrades the hydrogenation reaction process, facilitating the desorption of NH3 or its further hydrogenation to NH4+. This innovative approach, employing a Lewis acid pair and a flexible active center to design efficient NRR catalysts, holds great promise for NH3 synthesis under ambient conditions.
Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of present catalysts are still limited in their applications. Herein, from the perspective of Lewis acid-base interactions and flexible active centers, positively charged tetrahedron transition metal (TM) clusters were anchored onto boron nitride nanotubes (BNNTs) with B-vacancies to design a series of efficient NRR catalysts, meeting the above requirements. Through Density Functional Theory (DFT) calculations, our results uncover that the Mn 4 /BNNT (6, 6) system exhibits optimal activity characterized by a low limiting potential of only −0.29 V and high selectivity, as confirmed by the adsorption energy difference between nitrogen molecules and hydrogen proton (−0.73 eV). Owing to the existence of electron-deficient Lewis acid sites, the adsorption and activation of N 2 are strongly enhanced. Simultaneously, the flexible active center destabilizes the N-containing intermediates and upgrades the hydrogenation reaction process, facilitating the desorption of NH 3 or its further hydrogenation to NH 4 + . This innovative approach, employing a Lewis acid pair and a flexible active center to design efficient NRR catalysts, holds great promise for NH 3 synthesis under ambient conditions. The Lewis acid sites enhance N 2 adsorption and activation, while the flexible active center facilitates hydrogenation and NH 4 + formation, regenerating the catalyst.
Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of present catalysts are still limited in their applications. Herein, from the perspective of Lewis acid–base interactions and flexible active centers, positively charged tetrahedron transition metal (TM) clusters were anchored onto boron nitride nanotubes (BNNTs) with B-vacancies to design a series of efficient NRR catalysts, meeting the above requirements. Through Density Functional Theory (DFT) calculations, our results uncover that the Mn 4 /BNNT (6, 6) system exhibits optimal activity characterized by a low limiting potential of only −0.29 V and high selectivity, as confirmed by the adsorption energy difference between nitrogen molecules and hydrogen proton (−0.73 eV). Owing to the existence of electron-deficient Lewis acid sites, the adsorption and activation of N 2 are strongly enhanced. Simultaneously, the flexible active center destabilizes the N-containing intermediates and upgrades the hydrogenation reaction process, facilitating the desorption of NH 3 or its further hydrogenation to NH 4 + . This innovative approach, employing a Lewis acid pair and a flexible active center to design efficient NRR catalysts, holds great promise for NH 3 synthesis under ambient conditions.
Author Lang, Xing-You
Jiang, Qing
Chen, Li-Bo
Wang, Tong-Hui
AuthorAffiliation Ministry of Education
Jilin University
School of Materials Science and Engineering
Key Laboratory of Automobile Materials
AuthorAffiliation_xml – sequence: 0
  name: Jilin University
– sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: Key Laboratory of Automobile Materials
– sequence: 0
  name: Ministry of Education
Author_xml – sequence: 1
  givenname: Li-Bo
  surname: Chen
  fullname: Chen, Li-Bo
– sequence: 2
  givenname: Tong-Hui
  surname: Wang
  fullname: Wang, Tong-Hui
– sequence: 3
  givenname: Xing-You
  surname: Lang
  fullname: Lang, Xing-You
– sequence: 4
  givenname: Qing
  surname: Jiang
  fullname: Jiang, Qing
BookMark eNpFkE1LAzEQhoNUsNZevAsBb8JqdpNNNsdSP6HgpZ6XbDKxKbubmqRq_71bK3Uu8zI8MwPPORr1vgeELnNymxMq7wxLirCqYuoEjQtSkkwwyUfHXFVnaBrjmgxVEcKlHKN-AV8uYqWdwdElGGJvsG3h2zUtDPPkPgFr6BOEiOOuh_DuYnJate0ON97HhMFap92AYGhBp-D1Cro9gVXX-d6p_V5aQXTxAp1a1UaY_vUJent8WM6fs8Xr08t8tsh0wUjKeGGUsExIrq0WVijTlEIJbphsqCylEcYqbYELKCpelBWlXClprCkNMZLQCbo-3N0E_7GFmOq134Z-eFnTvBCMskKWA3VzoHTwMQaw9Sa4ToVdnZN6r7S-Z8vZr9LZAF8d4BD1kftXTn8AXtB3mg
Cites_doi 10.1002/cssc.202102648
10.1126/science.aad4998
10.1039/C9NR08969A
10.1201/9781315380476
10.1021/acscatal.0c03140
10.1002/adfm.202211537
10.1002/anie.202207807
10.1002/jcc.20495
10.1016/j.apcatb.2021.121023
10.1021/acscatal.8b00905
10.3389/fctls.2022.1096824
10.1021/jacs.9b13349
10.1039/D1TA02681J
10.1103/PhysRevB.66.155125
10.1016/j.nanoen.2019.104304
10.1039/D0TA04919K
10.1039/D1TA04638A
10.1039/D2TA04140E
10.1039/C8TA11025E
10.1039/D0TA09496J
10.1002/advs.202103583
10.1063/1.1316015
10.1016/j.chempr.2021.01.009
10.1063/1.458452
10.1016/j.ijhydene.2024.03.282
10.1039/C9CS00280D
10.1002/smtd.201800291
10.1021/jp047349j
10.1039/D0GC01149E
10.1002/cssc.201500322
10.1002/smtd.201800386
10.1002/cphc.202300991
10.1039/D2TA00308B
10.1039/C1CP22271F
10.1016/j.apsusc.2022.153130
10.1021/acs.chemrev.9b00659
10.1016/j.ijhydene.2022.06.307
10.1021/acscatal.6b03035
10.1016/j.nanoen.2020.105391
10.1016/j.apcatb.2022.121574
10.1038/s41467-018-03795-8
10.1021/acscatal.8b05061
10.1021/acscatal.9b04103
10.1021/acs.nanolett.0c05080
10.1016/j.jechem.2020.09.002
10.1021/acsami.2c02048
10.1039/D1TA01269J
10.1016/j.jece.2022.107752
10.1021/acs.jpcc.4c02148
10.1021/acsanm.2c00379
10.1126/science.aar6611
10.1039/C8TA03481H
10.1021/acs.nanolett.1c02502
10.1039/C9TA04650J
10.1039/D0TA05943A
10.1016/j.chempr.2018.10.007
10.1063/1.2404663
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d4ta04884a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 3485
ExternalDocumentID 10_1039_D4TA04884A
d4ta04884a
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c240t-62da7f4796cfc7f7adb57a76d49b3959d7dfacfe67e286258336aa9dfd5d0d903
ISSN 2050-7488
IngestDate Mon Jun 30 11:57:52 EDT 2025
Tue Jul 01 03:28:24 EDT 2025
Tue Dec 17 20:58:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c240t-62da7f4796cfc7f7adb57a76d49b3959d7dfacfe67e286258336aa9dfd5d0d903
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4ta04884a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8227-9695
0000-0003-0660-596X
PQID 3127434295
PQPubID 2047523
PageCount 1
ParticipantIDs crossref_primary_10_1039_D4TA04884A
rsc_primary_d4ta04884a
proquest_journals_3127434295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-12
PublicationDateYYYYMMDD 2024-11-12
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-12
  day: 12
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Seh (D4TA04884A/cit13/1) 2017; 355
Tang (D4TA04884A/cit1/1) 2019; 48
Shen (D4TA04884A/cit2/1) 2021; 7
Zhao (D4TA04884A/cit55/1) 2019; 9
Garden (D4TA04884A/cit27/1) 2018
Iqbal (D4TA04884A/cit26/1) 2024; 128
Liu (D4TA04884A/cit9/1) 2022; 9
Chen (D4TA04884A/cit29/1) 2021; 9
Wang (D4TA04884A/cit34/1) 2020; 22
Lv (D4TA04884A/cit12/1) 2021; 21
Lin (D4TA04884A/cit40/1) 2022; 61
Ma (D4TA04884A/cit22/1) 2022; 315
Delley (D4TA04884A/cit46/1) 2000; 113
Li (D4TA04884A/cit21/1) 2019; 7
Choi (D4TA04884A/cit15/1) 2018; 8
Jiang (D4TA04884A/cit31/1) 2022; 14
Nørskov (D4TA04884A/cit51/1) 2004; 108
Chen (D4TA04884A/cit37/1) 2021; 21
Yang (D4TA04884A/cit6/1) 2020; 68
Chen (D4TA04884A/cit45/1) 2020; 8
Singh (D4TA04884A/cit5/1) 2016; 7
Li (D4TA04884A/cit59/1) 2020; 10
Gao (D4TA04884A/cit4/1) 2022; 591
Tao (D4TA04884A/cit8/1) 2019; 5
Abghoui (D4TA04884A/cit28/1) 2023; 2
Iqbal (D4TA04884A/cit24/1) 2024; 25
Zhou (D4TA04884A/cit44/1) 2022; 305
Iqbal (D4TA04884A/cit25/1) 2024; 64
Xu (D4TA04884A/cit39/1) 2021; 37
Guo (D4TA04884A/cit16/1) 2020; 142
Chen (D4TA04884A/cit20/1) 2019; 3
Ren (D4TA04884A/cit36/1) 2021; 9
Grimme (D4TA04884A/cit49/1) 2006; 27
Yang (D4TA04884A/cit57/1) 2022; 15
Jiao (D4TA04884A/cit10/1) 2021; 9
Long (D4TA04884A/cit56/1) 2020; 8
Jonuarti (D4TA04884A/cit30/1) 2022; 47
Lv (D4TA04884A/cit18/1) 2022; 5
Delley (D4TA04884A/cit50/1) 1990; 92
Chen (D4TA04884A/cit14/1) 2018; 6
Qing (D4TA04884A/cit3/1) 2020; 120
Liu (D4TA04884A/cit11/1) 2020; 10
Xue (D4TA04884A/cit19/1) 2021; 57
Haynes (D4TA04884A/cit54/1) 2016
Tran (D4TA04884A/cit41/1) 2022; 10
Zhou (D4TA04884A/cit23/1) 2022; 10
Liu (D4TA04884A/cit33/1) 2018; 9
Shi (D4TA04884A/cit42/1) 2019; 7
Delley (D4TA04884A/cit48/1) 2002; 66
Dai (D4TA04884A/cit35/1) 2022; 10
Ma (D4TA04884A/cit17/1) 2020; 12
Huang (D4TA04884A/cit43/1) 2019; 3
Montoya (D4TA04884A/cit53/1) 2015; 8
Chen (D4TA04884A/cit7/1) 2018; 360
Krukau (D4TA04884A/cit47/1) 2006; 125
Guo (D4TA04884A/cit58/1) 2020; 78
Dai (D4TA04884A/cit32/1) 2021; 9
Zhang (D4TA04884A/cit38/1) 2023; 33
Skulason (D4TA04884A/cit52/1) 2012; 14
References_xml – issn: 2016
  publication-title: CRC Handbook of Chemistry and Physics
  doi: Haynes
– issn: 2018
  end-page: p 146-176
  publication-title: Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Alloys
  doi: Garden Abghoui Skúlason
– volume: 15
  start-page: e202102648
  year: 2022
  ident: D4TA04884A/cit57/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202102648
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: D4TA04884A/cit13/1
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 12
  start-page: 1541
  year: 2020
  ident: D4TA04884A/cit17/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR08969A
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2016
  ident: D4TA04884A/cit54/1
  doi: 10.1201/9781315380476
– volume: 10
  start-page: 12841
  year: 2020
  ident: D4TA04884A/cit59/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03140
– volume: 33
  start-page: 2211537
  year: 2023
  ident: D4TA04884A/cit38/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211537
– volume: 61
  start-page: e202207807
  year: 2022
  ident: D4TA04884A/cit40/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202207807
– volume: 27
  start-page: 1787
  year: 2006
  ident: D4TA04884A/cit49/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 305
  start-page: 121023
  year: 2022
  ident: D4TA04884A/cit44/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.121023
– volume: 8
  start-page: 7517
  year: 2018
  ident: D4TA04884A/cit15/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00905
– volume: 2
  start-page: 1096824
  year: 2023
  ident: D4TA04884A/cit28/1
  publication-title: Front. Catal.
  doi: 10.3389/fctls.2022.1096824
– volume: 142
  start-page: 5709
  year: 2020
  ident: D4TA04884A/cit16/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13349
– volume: 9
  start-page: 13036
  year: 2021
  ident: D4TA04884A/cit36/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02681J
– volume: 66
  start-page: 155125
  year: 2002
  ident: D4TA04884A/cit48/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.66.155125
– volume: 68
  start-page: 104304
  year: 2020
  ident: D4TA04884A/cit6/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104304
– volume: 8
  start-page: 15086
  year: 2020
  ident: D4TA04884A/cit45/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04919K
– volume: 9
  start-page: 21219
  year: 2021
  ident: D4TA04884A/cit32/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA04638A
– volume: 10
  start-page: 16900
  year: 2022
  ident: D4TA04884A/cit35/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA04140E
– volume: 7
  start-page: 4865
  year: 2019
  ident: D4TA04884A/cit42/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11025E
– volume: 9
  start-page: 1240
  year: 2021
  ident: D4TA04884A/cit10/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09496J
– volume: 9
  start-page: 2103583
  year: 2022
  ident: D4TA04884A/cit9/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202103583
– volume: 113
  start-page: 7756
  year: 2000
  ident: D4TA04884A/cit46/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 7
  start-page: 1708
  year: 2021
  ident: D4TA04884A/cit2/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2021.01.009
– volume: 92
  start-page: 508
  year: 1990
  ident: D4TA04884A/cit50/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 64
  start-page: 744
  year: 2024
  ident: D4TA04884A/cit25/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.03.282
– volume: 48
  start-page: 3166
  year: 2019
  ident: D4TA04884A/cit1/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00280D
– volume: 3
  start-page: 1800291
  year: 2019
  ident: D4TA04884A/cit20/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800291
– volume: 108
  start-page: 17886
  year: 2004
  ident: D4TA04884A/cit51/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 22
  start-page: 6157
  year: 2020
  ident: D4TA04884A/cit34/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC01149E
– volume: 8
  start-page: 2180
  year: 2015
  ident: D4TA04884A/cit53/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500322
– volume: 3
  start-page: 1800386
  year: 2019
  ident: D4TA04884A/cit43/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800386
– volume: 25
  start-page: e202300991
  year: 2024
  ident: D4TA04884A/cit24/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.202300991
– volume: 10
  start-page: 8432
  year: 2022
  ident: D4TA04884A/cit41/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA00308B
– volume: 14
  start-page: 1235
  year: 2012
  ident: D4TA04884A/cit52/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22271F
– volume: 591
  start-page: 153130
  year: 2022
  ident: D4TA04884A/cit4/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153130
– start-page: 146
  volume-title: Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Alloys
  year: 2018
  ident: D4TA04884A/cit27/1
– volume: 120
  start-page: 5437
  year: 2020
  ident: D4TA04884A/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00659
– volume: 47
  start-page: 29907
  year: 2022
  ident: D4TA04884A/cit30/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.06.307
– volume: 7
  start-page: 706
  year: 2016
  ident: D4TA04884A/cit5/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03035
– volume: 78
  start-page: 105391
  year: 2020
  ident: D4TA04884A/cit58/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105391
– volume: 315
  start-page: 121574
  year: 2022
  ident: D4TA04884A/cit22/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121574
– volume: 9
  start-page: 1610
  year: 2018
  ident: D4TA04884A/cit33/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03795-8
– volume: 9
  start-page: 3419
  year: 2019
  ident: D4TA04884A/cit55/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b05061
– volume: 10
  start-page: 1847
  year: 2020
  ident: D4TA04884A/cit11/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04103
– volume: 21
  start-page: 1871
  year: 2021
  ident: D4TA04884A/cit12/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c05080
– volume: 57
  start-page: 443
  year: 2021
  ident: D4TA04884A/cit19/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.09.002
– volume: 14
  start-page: 17470
  year: 2022
  ident: D4TA04884A/cit31/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c02048
– volume: 9
  start-page: 11726
  year: 2021
  ident: D4TA04884A/cit29/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA01269J
– volume: 10
  start-page: 107752
  year: 2022
  ident: D4TA04884A/cit23/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.107752
– volume: 128
  start-page: 10300
  year: 2024
  ident: D4TA04884A/cit26/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.4c02148
– volume: 5
  start-page: 7382
  year: 2022
  ident: D4TA04884A/cit18/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c00379
– volume: 360
  start-page: eaar6611
  year: 2018
  ident: D4TA04884A/cit7/1
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 6
  start-page: 9623
  year: 2018
  ident: D4TA04884A/cit14/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03481H
– volume: 21
  start-page: 7325
  year: 2021
  ident: D4TA04884A/cit37/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c02502
– volume: 7
  start-page: 21507
  year: 2019
  ident: D4TA04884A/cit21/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04650J
– volume: 37
  start-page: 2009043
  issue: 7
  year: 2021
  ident: D4TA04884A/cit39/1
  publication-title: Acta Phys.-Chim. Sin.
– volume: 8
  start-page: 17078
  year: 2020
  ident: D4TA04884A/cit56/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05943A
– volume: 5
  start-page: 204
  year: 2019
  ident: D4TA04884A/cit8/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.10.007
– volume: 125
  start-page: 224106
  year: 2006
  ident: D4TA04884A/cit47/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2404663
SSID ssj0000800699
Score 2.429127
Snippet Much effort has been made to develop efficient electrochemical catalysts for the nitrogen reduction reaction (NRR). However, the activity and selectivity of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 3476
SubjectTerms Acids
Adsorption
Ammonia
Boron
Boron nitride
Catalysts
Chemical reduction
Chemical synthesis
Density functional theory
Electrochemistry
Hydrogenation
Intermediates
Lewis acid
Nanotechnology
Nanotubes
Nitrogen
Tetrahedra
Transition metals
Title Lewis acid sites and flexible active centers synergistically boost efficient electrochemical ammonia synthesis
URI https://www.proquest.com/docview/3127434295
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gUeEF8ThYEswVuUkTlOUj8W6FSmMISUir5Fju2MSFOHllRo_IX8WZy_kjA-BLxErStbie_Xu_PlfncIvRBqToTiKhQiSUOqYVzRKg4jwWIWV4QnVBOc352lqzU93SSbyeTbKGtp11VH4usveSX_I1UYA7lqluw_SLZfFAbgM8gXriBhuP6VjHP1pWkDLhoZ6JfAttxyrUtcaj4UN6os0OmXmqXbXmuan6nLzC8urgNwr9tO53M0hhMZuIY4oq8goJ-j4XoeOIlt0_7GjwWX1z5rIHzzuKNgYXlA_hdTV9yyDE2g3rO2dGJuH9PPm_CVDdx-GvhpxeX2PFztTM7BR-7MLIxvwOSGoKqCfDR42rjo9wdvkF08g1BN7DseTr82auJTVk1Kirv3QTOSKIl0EVSruNV4zLbH7VU7GUGY0pGi1m8b05HVh--2ddBPJiWKdUVWSTuulR0dGU6fLHD2vjxZ53lZLDfFHtoncGAhU7S_WBZv8z7epz3z1LQz7e_eV8uN2cth-R_9o-HQs3flO9IYz6e4i-44UeOFxd89NFHb--j2qJDlA7Q1SMQaidggEYOYsUcitkjEDon4BhKxQSLukYhvIBE7JOIeiQ_R-mRZvF6FrpNHKMBj7MKUSJ7VNGOpqEVWZ1xWScazVFJWxSxhMpM1F7VKM0XgiK2ZgCnnTNYykZFkUXyAptvLrXqEMOdUEsZhFZVRWtcM7DNXc8a4nCdVOp-h537_ys-2YEtpEi1iVr6hxcLs8mKGDv3Wlu4P3ZbxMQF_Ghy0ZIYOYLv7-YN0Hv953hN0a4D0IZp2Vzv1FJzWrnrm8PAd6aai-g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lewis+acid+sites+and+flexible+active+centers+synergistically+boost+efficient+electrochemical+ammonia+synthesis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li-Bo%2C+Chen&rft.au=Tong-Hui%2C+Wang&rft.au=Xing-You+Lang&rft.au=Jiang%2C+Qing&rft.date=2024-11-12&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=44&rft.spage=30476&rft.epage=30485&rft_id=info:doi/10.1039%2Fd4ta04884a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon