(CHN)[Zn(HPO)Cl]: substitution-activated new short-wave ultraviolet phosphate with pivotal dual-property enhancement
Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the inherent contradiction between wide band gap and large birefringence, the exploration of ultraviolet phosphates with improved optical anisot...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 12; no. 43; pp. 17482 - 17489 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
07.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the inherent contradiction between wide band gap and large birefringence, the exploration of ultraviolet phosphates with improved optical anisotropy is a great challenge. Herein, a new short-wave ultraviolet phosphate of (C
2
H
10
N
2
)[Zn
2
(HPO
4
)
2
Cl
2
] was rationally obtained through a substitution-oriented design strategy, namely the excess substitution of bridging O
2−
with Cl
−
and OH
−
as well as the aliovalent substitution of K
+
with ethylenediamine polycations with reference to the prototype of β-K
2
[Zn
2
(PO
4
)
2
]. Having benefitted from this substitution, (C
2
H
10
N
2
)[Zn
2
(HPO
4
)
2
Cl
2
] was characterized by dual property enhancement as compared with β-K
2
[Zn
2
(PO
4
)
2
]. Specifically, the band gap was expanded from 3.848 eV to 5.043 eV and the birefringence was dramatically enlarged from 0.011@546 nm to 0.066@546 nm, indicating the feasibility of substitution for the design of ultraviolet phosphates with enhanced birefringence.
A substitution-oriented rational approach to a short-wave ultraviolet phosphate, (C
2
H
10
N
2
)[Zn
2
(HPO
4
)
2
Cl
2
], results in significant dual-property enhancement. |
---|---|
AbstractList | Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the inherent contradiction between wide band gap and large birefringence, the exploration of ultraviolet phosphates with improved optical anisotropy is a great challenge. Herein, a new short-wave ultraviolet phosphate of (C2H10N2)[Zn2(HPO4)2Cl2] was rationally obtained through a substitution-oriented design strategy, namely the excess substitution of bridging O2− with Cl− and OH− as well as the aliovalent substitution of K+ with ethylenediamine polycations with reference to the prototype of β-K2[Zn2(PO4)2]. Having benefitted from this substitution, (C2H10N2)[Zn2(HPO4)2Cl2] was characterized by dual property enhancement as compared with β-K2[Zn2(PO4)2]. Specifically, the band gap was expanded from 3.848 eV to 5.043 eV and the birefringence was dramatically enlarged from 0.011@546 nm to 0.066@546 nm, indicating the feasibility of substitution for the design of ultraviolet phosphates with enhanced birefringence. Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the inherent contradiction between wide band gap and large birefringence, the exploration of ultraviolet phosphates with improved optical anisotropy is a great challenge. Herein, a new short-wave ultraviolet phosphate of (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ] was rationally obtained through a substitution-oriented design strategy, namely the excess substitution of bridging O 2− with Cl − and OH − as well as the aliovalent substitution of K + with ethylenediamine polycations with reference to the prototype of β-K 2 [Zn 2 (PO 4 ) 2 ]. Having benefitted from this substitution, (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ] was characterized by dual property enhancement as compared with β-K 2 [Zn 2 (PO 4 ) 2 ]. Specifically, the band gap was expanded from 3.848 eV to 5.043 eV and the birefringence was dramatically enlarged from 0.011@546 nm to 0.066@546 nm, indicating the feasibility of substitution for the design of ultraviolet phosphates with enhanced birefringence. A substitution-oriented rational approach to a short-wave ultraviolet phosphate, (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ], results in significant dual-property enhancement. Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the inherent contradiction between wide band gap and large birefringence, the exploration of ultraviolet phosphates with improved optical anisotropy is a great challenge. Herein, a new short-wave ultraviolet phosphate of (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ] was rationally obtained through a substitution-oriented design strategy, namely the excess substitution of bridging O 2− with Cl − and OH − as well as the aliovalent substitution of K + with ethylenediamine polycations with reference to the prototype of β-K 2 [Zn 2 (PO 4 ) 2 ]. Having benefitted from this substitution, (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ] was characterized by dual property enhancement as compared with β-K 2 [Zn 2 (PO 4 ) 2 ]. Specifically, the band gap was expanded from 3.848 eV to 5.043 eV and the birefringence was dramatically enlarged from 0.011@546 nm to 0.066@546 nm, indicating the feasibility of substitution for the design of ultraviolet phosphates with enhanced birefringence. |
Author | Duan, Mei-Hong Han, Pei Pan, Yu-Ming Fang, Zhi Yang, Bing-Ping |
AuthorAffiliation | Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province State Key Laboratory of Structural Chemistry China West Normal University Chinese Academy of Sciences CAS College of Physics and Astronomy College of Chemistry and Chemical Engineering Fujian Institute of Research on the Structure of Matter Key Laboratory of Functional Crystals and Laser Technology TIPC |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Structural Chemistry – sequence: 0 name: CAS – sequence: 0 name: Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province – sequence: 0 name: College of Chemistry and Chemical Engineering – sequence: 0 name: Key Laboratory of Functional Crystals and Laser Technology – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: China West Normal University – sequence: 0 name: TIPC – sequence: 0 name: Fujian Institute of Research on the Structure of Matter – sequence: 0 name: College of Physics and Astronomy |
Author_xml | – sequence: 1 givenname: Zhi surname: Fang fullname: Fang, Zhi – sequence: 2 givenname: Yu-Ming surname: Pan fullname: Pan, Yu-Ming – sequence: 3 givenname: Pei surname: Han fullname: Han, Pei – sequence: 4 givenname: Bing-Ping surname: Yang fullname: Yang, Bing-Ping – sequence: 5 givenname: Mei-Hong surname: Duan fullname: Duan, Mei-Hong |
BookMark | eNpF0EFLwzAUB_AgCur04l0IeNmEapqmaepNqnPCUA96UaRk6Svt6JKapB379lYn813eO_x47_E_RvvaaEDoLCRXIYnS64J5RaKYsHIPHVESkyCJI7a_myk_RKfOLclQIuSCp0fIj7PZ0-TjXY9nL8-TrPm8wa5bOF_7ztdGB1L5upceCqxhjV1lrA_WsgfcNd7KvjYNeNxWxrXVoPC69hVu69542eCik03QWtOC9RsMupJawQq0P0EHpWwcnP71EXqb3r9ms2D-_PCY3c4DRRnxASt5ylhIYh7TkgpGJU0F8JRIoBQ4VYngcZGwBBKhRMJLxlMOwMSiYGGkFtEIXWz3Dk98deB8vjSd1cPJPAppTERCWTqoy61S1jhnocxbW6-k3eQhyX-Cze_Ya_Yb7HTA51tsndq5_-CjbwK3dtc |
Cites_doi | 10.1021/ja907519c 10.1107/S2053229614024218 10.1103/PhysRevB.106.024426 10.1002/anie.202008346 10.1021/ja411272y 10.1021/acs.inorgchem.7b01627 10.1038/373322a0 10.1107/S2053273314026370 10.1016/S0025-5408(99)00124-5 10.1021/ic025808u 10.1021/jacs.6b00436 10.1007/s10853-021-05784-7 10.1103/PhysRevB.91.155105 10.1364/OE.25.026500 10.1016/j.apcatb.2017.09.049 10.1021/jacs.4c01740 10.1039/C8TC00415C 10.1016/j.colsurfa.2004.12.015 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C 10.1063/1.104275 10.1021/acs.inorgchem.1c01015 10.1002/ange.202116790 10.1002/anie.201409333 10.1039/C9CC08739G 10.1021/jacs.9b05125 10.1039/D3QI00230F 10.1021/acsami.2c12001 10.1021/ja002481s 10.1088/0253-6102/58/5/26 10.1039/D1QI01273H 10.1039/C9TC05648C 10.1103/PhysRevLett.77.3865 10.1039/B207212M 10.1039/D2CC01035F 10.1038/ncomms9253 10.1107/S0021889808042726 10.1016/j.materresbull.2003.12.016 10.1039/C9TC03105G 10.1039/D3QI02561F 10.1016/j.watres.2018.01.061 10.1039/b003153o 10.1039/D1DT02356J 10.1021/acs.inorgchem.2c01381 10.1107/S0021889802022112 10.1002/(SICI)1521-3773(19991216)38:24<3641::AID-ANIE3641>3.0.CO;2-B |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/d4tc03504f |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 17489 |
ExternalDocumentID | 10_1039_D4TC03504F d4tc03504f |
GroupedDBID | -JG 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c240t-4f6944105652f2842a298e690ae22e62c7865d747e78c876f4696ee48bd413cb3 |
ISSN | 2050-7526 |
IngestDate | Mon Jun 30 14:50:47 EDT 2025 Tue Jul 01 04:30:18 EDT 2025 Tue Dec 17 20:57:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c240t-4f6944105652f2842a298e690ae22e62c7865d747e78c876f4696ee48bd413cb3 |
Notes | Electronic supplementary information (ESI) available. CCDC For ESI and crystallographic data in CIF or other electronic format see DOI https://doi.org/10.1039/d4tc03504f 2375899 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1743-7658 0009-0006-2120-4274 0009-0007-3648-3859 0000-0001-5002-4842 0000-0002-4164-4086 |
PQID | 3125087249 |
PQPubID | 2047521 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_D4TC03504F rsc_primary_d4tc03504f proquest_journals_3125087249 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-07 |
PublicationDateYYYYMMDD | 2024-11-07 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Milman (D4TC03504F/cit31/1) 2000; 77 Bataille (D4TC03504F/cit40/1) 2002; 12 Sheldrick (D4TC03504F/cit27/1) 2015; 71 Spek (D4TC03504F/cit29/1) 2003; 36 Fang (D4TC03504F/cit8/1) 2019; 7 Fang (D4TC03504F/cit47/1) 2017; 25 Zhao (D4TC03504F/cit10/1) 2016; 138 Sheldrick (D4TC03504F/cit28/1) 2015; 71 Bhaumik (D4TC03504F/cit1/1) 2001; 123 Dolomanov (D4TC03504F/cit30/1) 2009; 42 Wu (D4TC03504F/cit14/1) 2019; 141 Perdew (D4TC03504F/cit33/1) 1996; 77 Zhao (D4TC03504F/cit13/1) 2018; 6 Kim (D4TC03504F/cit6/1) 2015; 6 González-Flores (D4TC03504F/cit4/1) 2015; 54 Qiu (D4TC03504F/cit17/1) 2022; 58 Rayes (D4TC03504F/cit34/1) 2004; 39 Chubar (D4TC03504F/cit3/1) 2005; 255 Li (D4TC03504F/cit12/1) 2023; 10 Li (D4TC03504F/cit7/1) 2020; 39 Segall (D4TC03504F/cit32/1) 2002; 14 Wei (D4TC03504F/cit42/1) 2000; 13 Zhou (D4TC03504F/cit35/1) 2020; 59 Yu (D4TC03504F/cit15/1) 2014; 136 Bui (D4TC03504F/cit2/1) 2018; 134 Fang (D4TC03504F/cit21/1) 2024; 11 Li (D4TC03504F/cit22/1) 2022; 9 Li (D4TC03504F/cit44/1) 2021; 56 Wallez (D4TC03504F/cit26/1) 1999; 34 Hou (D4TC03504F/cit5/1) 2018; 224 Duan (D4TC03504F/cit39/1) 2021; 60 Guo (D4TC03504F/cit24/1) 2017; 56 Li (D4TC03504F/cit36/1) 2022; 61 Dong (D4TC03504F/cit19/1) 2022; 134 Yousaf (D4TC03504F/cit43/1) 2012; 58 Ye (D4TC03504F/cit48/1) 1998; 3556 Li (D4TC03504F/cit9/1) 2024; 146 Zhang (D4TC03504F/cit11/1) 2020; 56 Ukachi (D4TC03504F/cit46/1) 1990; 57 Chen (D4TC03504F/cit18/1) 2019; 7 Chen (D4TC03504F/cit23/1) 1995; 373 Qiu (D4TC03504F/cit25/1) 2021; 50 Nayak (D4TC03504F/cit45/1) 2015; 91 Guchhait (D4TC03504F/cit37/1) 2022; 106 Li (D4TC03504F/cit41/1) 2003; 42 Wu (D4TC03504F/cit16/1) 2022; 14 Katz (D4TC03504F/cit20/1) 2009; 131 Kniep (D4TC03504F/cit38/1) 1999; 38 |
References_xml | – volume: 131 start-page: 18435 year: 2009 ident: D4TC03504F/cit20/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907519c – volume: 71 start-page: 3 year: 2015 ident: D4TC03504F/cit28/1 publication-title: Acta Crystallogr., Sect. C: Struct. Chem. doi: 10.1107/S2053229614024218 – volume: 106 start-page: 024426 year: 2022 ident: D4TC03504F/cit37/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.024426 – volume: 59 start-page: 19006 year: 2020 ident: D4TC03504F/cit35/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202008346 – volume: 136 start-page: 480 year: 2014 ident: D4TC03504F/cit15/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja411272y – volume: 56 start-page: 11451 year: 2017 ident: D4TC03504F/cit24/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b01627 – volume: 373 start-page: 322 year: 1995 ident: D4TC03504F/cit23/1 publication-title: Nature doi: 10.1038/373322a0 – volume: 71 start-page: 3 year: 2015 ident: D4TC03504F/cit27/1 publication-title: Acta Crystallogr., Sect. A: Found. Adv. doi: 10.1107/S2053273314026370 – volume: 34 start-page: 1251 year: 1999 ident: D4TC03504F/cit26/1 publication-title: Mater. Res. Bull. doi: 10.1016/S0025-5408(99)00124-5 – volume: 42 start-page: 1170 year: 2003 ident: D4TC03504F/cit41/1 publication-title: Inorg. Chem. doi: 10.1021/ic025808u – volume: 138 start-page: 2961 year: 2016 ident: D4TC03504F/cit10/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00436 – volume: 56 start-page: 8563 year: 2021 ident: D4TC03504F/cit44/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-05784-7 – volume: 91 start-page: 155105 year: 2015 ident: D4TC03504F/cit45/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.155105 – volume: 25 start-page: 26500 year: 2017 ident: D4TC03504F/cit47/1 publication-title: Opt. Express doi: 10.1364/OE.25.026500 – volume: 224 start-page: 183 year: 2018 ident: D4TC03504F/cit5/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.09.049 – volume: 146 start-page: 7868 year: 2024 ident: D4TC03504F/cit9/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c01740 – volume: 6 start-page: 3910 year: 2018 ident: D4TC03504F/cit13/1 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC00415C – volume: 255 start-page: 55 year: 2005 ident: D4TC03504F/cit3/1 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2004.12.015 – volume: 77 start-page: 895 year: 2000 ident: D4TC03504F/cit31/1 publication-title: Int. J. Quantum Chem. doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C – volume: 57 start-page: 980 year: 1990 ident: D4TC03504F/cit46/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.104275 – volume: 3556 start-page: 21 year: 1998 ident: D4TC03504F/cit48/1 publication-title: SPIE – volume: 60 start-page: 8451 year: 2021 ident: D4TC03504F/cit39/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c01015 – volume: 134 start-page: e202116790 year: 2022 ident: D4TC03504F/cit19/1 publication-title: Angew. Chem. doi: 10.1002/ange.202116790 – volume: 54 start-page: 2472 year: 2015 ident: D4TC03504F/cit4/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409333 – volume: 39 start-page: 485 year: 2020 ident: D4TC03504F/cit7/1 publication-title: Chin. J. Struct. Chem. – volume: 56 start-page: 635 year: 2020 ident: D4TC03504F/cit11/1 publication-title: Chem. Commun. doi: 10.1039/C9CC08739G – volume: 141 start-page: 10188 year: 2019 ident: D4TC03504F/cit14/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05125 – volume: 10 start-page: 2268 year: 2023 ident: D4TC03504F/cit12/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI00230F – volume: 14 start-page: 39081 year: 2022 ident: D4TC03504F/cit16/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c12001 – volume: 123 start-page: 691 year: 2001 ident: D4TC03504F/cit1/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja002481s – volume: 58 start-page: 777 year: 2012 ident: D4TC03504F/cit43/1 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/58/5/26 – volume: 9 start-page: 363 year: 2022 ident: D4TC03504F/cit22/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D1QI01273H – volume: 7 start-page: 15162 year: 2019 ident: D4TC03504F/cit8/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC05648C – volume: 77 start-page: 3865 year: 1996 ident: D4TC03504F/cit33/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 12 start-page: 3487 year: 2002 ident: D4TC03504F/cit40/1 publication-title: J. Mater. Chem. doi: 10.1039/B207212M – volume: 58 start-page: 5594 year: 2022 ident: D4TC03504F/cit17/1 publication-title: Chem. Commun. doi: 10.1039/D2CC01035F – volume: 6 start-page: 8253 year: 2015 ident: D4TC03504F/cit6/1 publication-title: Nat. Commun. doi: 10.1038/ncomms9253 – volume: 42 start-page: 339 year: 2009 ident: D4TC03504F/cit30/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889808042726 – volume: 39 start-page: 571 year: 2004 ident: D4TC03504F/cit34/1 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2003.12.016 – volume: 7 start-page: 9900 year: 2019 ident: D4TC03504F/cit18/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC03105G – volume: 14 start-page: 2717 year: 2002 ident: D4TC03504F/cit32/1 publication-title: J. Phys.: Condens. Matter – volume: 11 start-page: 1775 year: 2024 ident: D4TC03504F/cit21/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D3QI02561F – volume: 134 start-page: 22 year: 2018 ident: D4TC03504F/cit2/1 publication-title: Water Res. doi: 10.1016/j.watres.2018.01.061 – volume: 13 start-page: 1979 year: 2000 ident: D4TC03504F/cit42/1 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/b003153o – volume: 50 start-page: 13216 year: 2021 ident: D4TC03504F/cit25/1 publication-title: Dalton Trans. doi: 10.1039/D1DT02356J – volume: 61 start-page: 10182 year: 2022 ident: D4TC03504F/cit36/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c01381 – volume: 36 start-page: 7 year: 2003 ident: D4TC03504F/cit29/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889802022112 – volume: 38 start-page: 3641 year: 1999 ident: D4TC03504F/cit38/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19991216)38:24<3641::AID-ANIE3641>3.0.CO;2-B |
SSID | ssj0000816869 |
Score | 2.280495 |
Snippet | Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 17482 |
SubjectTerms | Anisotropy Birefringence Energy gap Ethylenediamine Optical properties Phosphates Polyelectrolytes Substitutes Ultraviolet lasers |
Title | (CHN)[Zn(HPO)Cl]: substitution-activated new short-wave ultraviolet phosphate with pivotal dual-property enhancement |
URI | https://www.proquest.com/docview/3125087249 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9swEBZpymD7MLZuZdm6YdgKLUGdIssv2rc2TchGmuaDA13HMLYsk0JJTOJ0MPZ79zt2kuWXsjC2fTG2LBuhezg9d7rTIfTOi90koamHCSxmmPFUYF-6FPPISXsyJXHPU_nOFxN3NGOfrpyrVutnI2ppk8cn4vvWvJL_kSq0gVxVluw_SLb6KTTAPcgXriBhuP6VjNUOLB31yISCQX_onF0v4MYfTS8ZPNP-LT10zpXJvwbtoEMCYCRYZTLcRYpoAqPurufAv_E3VYNoc5uvIr1Rn3ez-XKdzaFX4ajNbu6WKmtSJW7hTPnvV0De5WKuMFPFzvzOcYEOF_PQFWVhuZNuv8gRKt-oOMdlllenFjQK8yRS67EKY8a3fT2_qZTVBl-YqizTGuejwqs7lVW_M-iEp6bn58gs18bbQZlO-_MqfBY-lTKgVQesmNHXepMSh2DPoeaE7Wab8ZuWip82AM7shhoHM60oiWQ4gXrmWxccYqvzWhOWC7VFy9J6WS1DCSaX4XA2HofB4CrYQbsUzBnaRrung-DjuPIG6vInuv5iNfryLF2bv69_f5891SbRzqqsV6N5UfAEPTbCtk4LdD5FLbnYQ48ax1zuoQc6zFisn6EfRwavx18Aq0cKqccKp18_WNsxagFGrRqjVgOjVoVRS2HUMhi17mHUamD0OZoNB0F_hE39DyyAZ-aYpS5nKgzZdWgKNIpGlIMi4SSSlIJCEZ7vOgnYw9LzBazqKXO5KyXz4wSomYjtfdReLBfyBbK4TXwBVFX2XMJiIMkEeLqIac9lRHAad9Dbcl7DrDjmJdThGTYPz1nQ17M_7KCDcspDowbWoQ0mAvE9yngH7YMYqu9rqb3883ev0MMa6geona828jVQ3Tx-Y3DyC_b1qd8 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28C2H10N2%29%5BZn2%28HPO4%292Cl2%5D%3A+substitution-activated+new+short-wave+ultraviolet+phosphate+with+pivotal+dual-property+enhancement&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Fang%2C+Zhi&rft.au=Yu-Ming%2C+Pan&rft.au=Han%2C+Pei&rft.au=Bing-Ping%2C+Yang&rft.date=2024-11-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=12&rft.issue=43&rft.spage=17482&rft.epage=17489&rft_id=info:doi/10.1039%2Fd4tc03504f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |