(CHN)[Zn(HPO)Cl]: substitution-activated new short-wave ultraviolet phosphate with pivotal dual-property enhancement

Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the inherent contradiction between wide band gap and large birefringence, the exploration of ultraviolet phosphates with improved optical anisot...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 12; no. 43; pp. 17482 - 17489
Main Authors Fang, Zhi, Pan, Yu-Ming, Han, Pei, Yang, Bing-Ping, Duan, Mei-Hong
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the inherent contradiction between wide band gap and large birefringence, the exploration of ultraviolet phosphates with improved optical anisotropy is a great challenge. Herein, a new short-wave ultraviolet phosphate of (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ] was rationally obtained through a substitution-oriented design strategy, namely the excess substitution of bridging O 2− with Cl − and OH − as well as the aliovalent substitution of K + with ethylenediamine polycations with reference to the prototype of β-K 2 [Zn 2 (PO 4 ) 2 ]. Having benefitted from this substitution, (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ] was characterized by dual property enhancement as compared with β-K 2 [Zn 2 (PO 4 ) 2 ]. Specifically, the band gap was expanded from 3.848 eV to 5.043 eV and the birefringence was dramatically enlarged from 0.011@546 nm to 0.066@546 nm, indicating the feasibility of substitution for the design of ultraviolet phosphates with enhanced birefringence. A substitution-oriented rational approach to a short-wave ultraviolet phosphate, (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ], results in significant dual-property enhancement.
AbstractList Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the inherent contradiction between wide band gap and large birefringence, the exploration of ultraviolet phosphates with improved optical anisotropy is a great challenge. Herein, a new short-wave ultraviolet phosphate of (C2H10N2)[Zn2(HPO4)2Cl2] was rationally obtained through a substitution-oriented design strategy, namely the excess substitution of bridging O2− with Cl− and OH− as well as the aliovalent substitution of K+ with ethylenediamine polycations with reference to the prototype of β-K2[Zn2(PO4)2]. Having benefitted from this substitution, (C2H10N2)[Zn2(HPO4)2Cl2] was characterized by dual property enhancement as compared with β-K2[Zn2(PO4)2]. Specifically, the band gap was expanded from 3.848 eV to 5.043 eV and the birefringence was dramatically enlarged from 0.011@546 nm to 0.066@546 nm, indicating the feasibility of substitution for the design of ultraviolet phosphates with enhanced birefringence.
Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the inherent contradiction between wide band gap and large birefringence, the exploration of ultraviolet phosphates with improved optical anisotropy is a great challenge. Herein, a new short-wave ultraviolet phosphate of (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ] was rationally obtained through a substitution-oriented design strategy, namely the excess substitution of bridging O 2− with Cl − and OH − as well as the aliovalent substitution of K + with ethylenediamine polycations with reference to the prototype of β-K 2 [Zn 2 (PO 4 ) 2 ]. Having benefitted from this substitution, (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ] was characterized by dual property enhancement as compared with β-K 2 [Zn 2 (PO 4 ) 2 ]. Specifically, the band gap was expanded from 3.848 eV to 5.043 eV and the birefringence was dramatically enlarged from 0.011@546 nm to 0.066@546 nm, indicating the feasibility of substitution for the design of ultraviolet phosphates with enhanced birefringence. A substitution-oriented rational approach to a short-wave ultraviolet phosphate, (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ], results in significant dual-property enhancement.
Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the inherent contradiction between wide band gap and large birefringence, the exploration of ultraviolet phosphates with improved optical anisotropy is a great challenge. Herein, a new short-wave ultraviolet phosphate of (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ] was rationally obtained through a substitution-oriented design strategy, namely the excess substitution of bridging O 2− with Cl − and OH − as well as the aliovalent substitution of K + with ethylenediamine polycations with reference to the prototype of β-K 2 [Zn 2 (PO 4 ) 2 ]. Having benefitted from this substitution, (C 2 H 10 N 2 )[Zn 2 (HPO 4 ) 2 Cl 2 ] was characterized by dual property enhancement as compared with β-K 2 [Zn 2 (PO 4 ) 2 ]. Specifically, the band gap was expanded from 3.848 eV to 5.043 eV and the birefringence was dramatically enlarged from 0.011@546 nm to 0.066@546 nm, indicating the feasibility of substitution for the design of ultraviolet phosphates with enhanced birefringence.
Author Duan, Mei-Hong
Han, Pei
Pan, Yu-Ming
Fang, Zhi
Yang, Bing-Ping
AuthorAffiliation Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
State Key Laboratory of Structural Chemistry
China West Normal University
Chinese Academy of Sciences
CAS
College of Physics and Astronomy
College of Chemistry and Chemical Engineering
Fujian Institute of Research on the Structure of Matter
Key Laboratory of Functional Crystals and Laser Technology
TIPC
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Structural Chemistry
– sequence: 0
  name: CAS
– sequence: 0
  name: Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province
– sequence: 0
  name: College of Chemistry and Chemical Engineering
– sequence: 0
  name: Key Laboratory of Functional Crystals and Laser Technology
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: China West Normal University
– sequence: 0
  name: TIPC
– sequence: 0
  name: Fujian Institute of Research on the Structure of Matter
– sequence: 0
  name: College of Physics and Astronomy
Author_xml – sequence: 1
  givenname: Zhi
  surname: Fang
  fullname: Fang, Zhi
– sequence: 2
  givenname: Yu-Ming
  surname: Pan
  fullname: Pan, Yu-Ming
– sequence: 3
  givenname: Pei
  surname: Han
  fullname: Han, Pei
– sequence: 4
  givenname: Bing-Ping
  surname: Yang
  fullname: Yang, Bing-Ping
– sequence: 5
  givenname: Mei-Hong
  surname: Duan
  fullname: Duan, Mei-Hong
BookMark eNpF0EFLwzAUB_AgCur04l0IeNmEapqmaepNqnPCUA96UaRk6Svt6JKapB379lYn813eO_x47_E_RvvaaEDoLCRXIYnS64J5RaKYsHIPHVESkyCJI7a_myk_RKfOLclQIuSCp0fIj7PZ0-TjXY9nL8-TrPm8wa5bOF_7ztdGB1L5upceCqxhjV1lrA_WsgfcNd7KvjYNeNxWxrXVoPC69hVu69542eCik03QWtOC9RsMupJawQq0P0EHpWwcnP71EXqb3r9ms2D-_PCY3c4DRRnxASt5ylhIYh7TkgpGJU0F8JRIoBQ4VYngcZGwBBKhRMJLxlMOwMSiYGGkFtEIXWz3Dk98deB8vjSd1cPJPAppTERCWTqoy61S1jhnocxbW6-k3eQhyX-Cze_Ya_Yb7HTA51tsndq5_-CjbwK3dtc
Cites_doi 10.1021/ja907519c
10.1107/S2053229614024218
10.1103/PhysRevB.106.024426
10.1002/anie.202008346
10.1021/ja411272y
10.1021/acs.inorgchem.7b01627
10.1038/373322a0
10.1107/S2053273314026370
10.1016/S0025-5408(99)00124-5
10.1021/ic025808u
10.1021/jacs.6b00436
10.1007/s10853-021-05784-7
10.1103/PhysRevB.91.155105
10.1364/OE.25.026500
10.1016/j.apcatb.2017.09.049
10.1021/jacs.4c01740
10.1039/C8TC00415C
10.1016/j.colsurfa.2004.12.015
10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
10.1063/1.104275
10.1021/acs.inorgchem.1c01015
10.1002/ange.202116790
10.1002/anie.201409333
10.1039/C9CC08739G
10.1021/jacs.9b05125
10.1039/D3QI00230F
10.1021/acsami.2c12001
10.1021/ja002481s
10.1088/0253-6102/58/5/26
10.1039/D1QI01273H
10.1039/C9TC05648C
10.1103/PhysRevLett.77.3865
10.1039/B207212M
10.1039/D2CC01035F
10.1038/ncomms9253
10.1107/S0021889808042726
10.1016/j.materresbull.2003.12.016
10.1039/C9TC03105G
10.1039/D3QI02561F
10.1016/j.watres.2018.01.061
10.1039/b003153o
10.1039/D1DT02356J
10.1021/acs.inorgchem.2c01381
10.1107/S0021889802022112
10.1002/(SICI)1521-3773(19991216)38:24<3641::AID-ANIE3641>3.0.CO;2-B
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d4tc03504f
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 17489
ExternalDocumentID 10_1039_D4TC03504F
d4tc03504f
GroupedDBID -JG
0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c240t-4f6944105652f2842a298e690ae22e62c7865d747e78c876f4696ee48bd413cb3
ISSN 2050-7526
IngestDate Mon Jun 30 14:50:47 EDT 2025
Tue Jul 01 04:30:18 EDT 2025
Tue Dec 17 20:57:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c240t-4f6944105652f2842a298e690ae22e62c7865d747e78c876f4696ee48bd413cb3
Notes Electronic supplementary information (ESI) available. CCDC
For ESI and crystallographic data in CIF or other electronic format see DOI
https://doi.org/10.1039/d4tc03504f
2375899
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1743-7658
0009-0006-2120-4274
0009-0007-3648-3859
0000-0001-5002-4842
0000-0002-4164-4086
PQID 3125087249
PQPubID 2047521
PageCount 8
ParticipantIDs crossref_primary_10_1039_D4TC03504F
rsc_primary_d4tc03504f
proquest_journals_3125087249
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-07
PublicationDateYYYYMMDD 2024-11-07
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-07
  day: 07
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Milman (D4TC03504F/cit31/1) 2000; 77
Bataille (D4TC03504F/cit40/1) 2002; 12
Sheldrick (D4TC03504F/cit27/1) 2015; 71
Spek (D4TC03504F/cit29/1) 2003; 36
Fang (D4TC03504F/cit8/1) 2019; 7
Fang (D4TC03504F/cit47/1) 2017; 25
Zhao (D4TC03504F/cit10/1) 2016; 138
Sheldrick (D4TC03504F/cit28/1) 2015; 71
Bhaumik (D4TC03504F/cit1/1) 2001; 123
Dolomanov (D4TC03504F/cit30/1) 2009; 42
Wu (D4TC03504F/cit14/1) 2019; 141
Perdew (D4TC03504F/cit33/1) 1996; 77
Zhao (D4TC03504F/cit13/1) 2018; 6
Kim (D4TC03504F/cit6/1) 2015; 6
González-Flores (D4TC03504F/cit4/1) 2015; 54
Qiu (D4TC03504F/cit17/1) 2022; 58
Rayes (D4TC03504F/cit34/1) 2004; 39
Chubar (D4TC03504F/cit3/1) 2005; 255
Li (D4TC03504F/cit12/1) 2023; 10
Li (D4TC03504F/cit7/1) 2020; 39
Segall (D4TC03504F/cit32/1) 2002; 14
Wei (D4TC03504F/cit42/1) 2000; 13
Zhou (D4TC03504F/cit35/1) 2020; 59
Yu (D4TC03504F/cit15/1) 2014; 136
Bui (D4TC03504F/cit2/1) 2018; 134
Fang (D4TC03504F/cit21/1) 2024; 11
Li (D4TC03504F/cit22/1) 2022; 9
Li (D4TC03504F/cit44/1) 2021; 56
Wallez (D4TC03504F/cit26/1) 1999; 34
Hou (D4TC03504F/cit5/1) 2018; 224
Duan (D4TC03504F/cit39/1) 2021; 60
Guo (D4TC03504F/cit24/1) 2017; 56
Li (D4TC03504F/cit36/1) 2022; 61
Dong (D4TC03504F/cit19/1) 2022; 134
Yousaf (D4TC03504F/cit43/1) 2012; 58
Ye (D4TC03504F/cit48/1) 1998; 3556
Li (D4TC03504F/cit9/1) 2024; 146
Zhang (D4TC03504F/cit11/1) 2020; 56
Ukachi (D4TC03504F/cit46/1) 1990; 57
Chen (D4TC03504F/cit18/1) 2019; 7
Chen (D4TC03504F/cit23/1) 1995; 373
Qiu (D4TC03504F/cit25/1) 2021; 50
Nayak (D4TC03504F/cit45/1) 2015; 91
Guchhait (D4TC03504F/cit37/1) 2022; 106
Li (D4TC03504F/cit41/1) 2003; 42
Wu (D4TC03504F/cit16/1) 2022; 14
Katz (D4TC03504F/cit20/1) 2009; 131
Kniep (D4TC03504F/cit38/1) 1999; 38
References_xml – volume: 131
  start-page: 18435
  year: 2009
  ident: D4TC03504F/cit20/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907519c
– volume: 71
  start-page: 3
  year: 2015
  ident: D4TC03504F/cit28/1
  publication-title: Acta Crystallogr., Sect. C: Struct. Chem.
  doi: 10.1107/S2053229614024218
– volume: 106
  start-page: 024426
  year: 2022
  ident: D4TC03504F/cit37/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.024426
– volume: 59
  start-page: 19006
  year: 2020
  ident: D4TC03504F/cit35/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202008346
– volume: 136
  start-page: 480
  year: 2014
  ident: D4TC03504F/cit15/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja411272y
– volume: 56
  start-page: 11451
  year: 2017
  ident: D4TC03504F/cit24/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b01627
– volume: 373
  start-page: 322
  year: 1995
  ident: D4TC03504F/cit23/1
  publication-title: Nature
  doi: 10.1038/373322a0
– volume: 71
  start-page: 3
  year: 2015
  ident: D4TC03504F/cit27/1
  publication-title: Acta Crystallogr., Sect. A: Found. Adv.
  doi: 10.1107/S2053273314026370
– volume: 34
  start-page: 1251
  year: 1999
  ident: D4TC03504F/cit26/1
  publication-title: Mater. Res. Bull.
  doi: 10.1016/S0025-5408(99)00124-5
– volume: 42
  start-page: 1170
  year: 2003
  ident: D4TC03504F/cit41/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic025808u
– volume: 138
  start-page: 2961
  year: 2016
  ident: D4TC03504F/cit10/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00436
– volume: 56
  start-page: 8563
  year: 2021
  ident: D4TC03504F/cit44/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-021-05784-7
– volume: 91
  start-page: 155105
  year: 2015
  ident: D4TC03504F/cit45/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.155105
– volume: 25
  start-page: 26500
  year: 2017
  ident: D4TC03504F/cit47/1
  publication-title: Opt. Express
  doi: 10.1364/OE.25.026500
– volume: 224
  start-page: 183
  year: 2018
  ident: D4TC03504F/cit5/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.09.049
– volume: 146
  start-page: 7868
  year: 2024
  ident: D4TC03504F/cit9/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c01740
– volume: 6
  start-page: 3910
  year: 2018
  ident: D4TC03504F/cit13/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC00415C
– volume: 255
  start-page: 55
  year: 2005
  ident: D4TC03504F/cit3/1
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2004.12.015
– volume: 77
  start-page: 895
  year: 2000
  ident: D4TC03504F/cit31/1
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/(SICI)1097-461X(2000)77:5<895::AID-QUA10>3.0.CO;2-C
– volume: 57
  start-page: 980
  year: 1990
  ident: D4TC03504F/cit46/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.104275
– volume: 3556
  start-page: 21
  year: 1998
  ident: D4TC03504F/cit48/1
  publication-title: SPIE
– volume: 60
  start-page: 8451
  year: 2021
  ident: D4TC03504F/cit39/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c01015
– volume: 134
  start-page: e202116790
  year: 2022
  ident: D4TC03504F/cit19/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202116790
– volume: 54
  start-page: 2472
  year: 2015
  ident: D4TC03504F/cit4/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409333
– volume: 39
  start-page: 485
  year: 2020
  ident: D4TC03504F/cit7/1
  publication-title: Chin. J. Struct. Chem.
– volume: 56
  start-page: 635
  year: 2020
  ident: D4TC03504F/cit11/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC08739G
– volume: 141
  start-page: 10188
  year: 2019
  ident: D4TC03504F/cit14/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05125
– volume: 10
  start-page: 2268
  year: 2023
  ident: D4TC03504F/cit12/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI00230F
– volume: 14
  start-page: 39081
  year: 2022
  ident: D4TC03504F/cit16/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c12001
– volume: 123
  start-page: 691
  year: 2001
  ident: D4TC03504F/cit1/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja002481s
– volume: 58
  start-page: 777
  year: 2012
  ident: D4TC03504F/cit43/1
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/58/5/26
– volume: 9
  start-page: 363
  year: 2022
  ident: D4TC03504F/cit22/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D1QI01273H
– volume: 7
  start-page: 15162
  year: 2019
  ident: D4TC03504F/cit8/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05648C
– volume: 77
  start-page: 3865
  year: 1996
  ident: D4TC03504F/cit33/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 12
  start-page: 3487
  year: 2002
  ident: D4TC03504F/cit40/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/B207212M
– volume: 58
  start-page: 5594
  year: 2022
  ident: D4TC03504F/cit17/1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC01035F
– volume: 6
  start-page: 8253
  year: 2015
  ident: D4TC03504F/cit6/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9253
– volume: 42
  start-page: 339
  year: 2009
  ident: D4TC03504F/cit30/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889808042726
– volume: 39
  start-page: 571
  year: 2004
  ident: D4TC03504F/cit34/1
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2003.12.016
– volume: 7
  start-page: 9900
  year: 2019
  ident: D4TC03504F/cit18/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC03105G
– volume: 14
  start-page: 2717
  year: 2002
  ident: D4TC03504F/cit32/1
  publication-title: J. Phys.: Condens. Matter
– volume: 11
  start-page: 1775
  year: 2024
  ident: D4TC03504F/cit21/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D3QI02561F
– volume: 134
  start-page: 22
  year: 2018
  ident: D4TC03504F/cit2/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.01.061
– volume: 13
  start-page: 1979
  year: 2000
  ident: D4TC03504F/cit42/1
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/b003153o
– volume: 50
  start-page: 13216
  year: 2021
  ident: D4TC03504F/cit25/1
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT02356J
– volume: 61
  start-page: 10182
  year: 2022
  ident: D4TC03504F/cit36/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c01381
– volume: 36
  start-page: 7
  year: 2003
  ident: D4TC03504F/cit29/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889802022112
– volume: 38
  start-page: 3641
  year: 1999
  ident: D4TC03504F/cit38/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19991216)38:24<3641::AID-ANIE3641>3.0.CO;2-B
SSID ssj0000816869
Score 2.280495
Snippet Exploration of ultraviolet phosphates with large optical anisotropy is of great significance to the development of ultraviolet lasers. Nevertheless, due to the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 17482
SubjectTerms Anisotropy
Birefringence
Energy gap
Ethylenediamine
Optical properties
Phosphates
Polyelectrolytes
Substitutes
Ultraviolet lasers
Title (CHN)[Zn(HPO)Cl]: substitution-activated new short-wave ultraviolet phosphate with pivotal dual-property enhancement
URI https://www.proquest.com/docview/3125087249
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9swEBZpymD7MLZuZdm6YdgKLUGdIssv2rc2TchGmuaDA13HMLYsk0JJTOJ0MPZ79zt2kuWXsjC2fTG2LBuhezg9d7rTIfTOi90koamHCSxmmPFUYF-6FPPISXsyJXHPU_nOFxN3NGOfrpyrVutnI2ppk8cn4vvWvJL_kSq0gVxVluw_SLb6KTTAPcgXriBhuP6VjNUOLB31yISCQX_onF0v4MYfTS8ZPNP-LT10zpXJvwbtoEMCYCRYZTLcRYpoAqPurufAv_E3VYNoc5uvIr1Rn3ez-XKdzaFX4ajNbu6WKmtSJW7hTPnvV0De5WKuMFPFzvzOcYEOF_PQFWVhuZNuv8gRKt-oOMdlllenFjQK8yRS67EKY8a3fT2_qZTVBl-YqizTGuejwqs7lVW_M-iEp6bn58gs18bbQZlO-_MqfBY-lTKgVQesmNHXepMSh2DPoeaE7Wab8ZuWip82AM7shhoHM60oiWQ4gXrmWxccYqvzWhOWC7VFy9J6WS1DCSaX4XA2HofB4CrYQbsUzBnaRrung-DjuPIG6vInuv5iNfryLF2bv69_f5891SbRzqqsV6N5UfAEPTbCtk4LdD5FLbnYQ48ax1zuoQc6zFisn6EfRwavx18Aq0cKqccKp18_WNsxagFGrRqjVgOjVoVRS2HUMhi17mHUamD0OZoNB0F_hE39DyyAZ-aYpS5nKgzZdWgKNIpGlIMi4SSSlIJCEZ7vOgnYw9LzBazqKXO5KyXz4wSomYjtfdReLBfyBbK4TXwBVFX2XMJiIMkEeLqIac9lRHAad9Dbcl7DrDjmJdThGTYPz1nQ17M_7KCDcspDowbWoQ0mAvE9yngH7YMYqu9rqb3883ev0MMa6geona828jVQ3Tx-Y3DyC_b1qd8
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28C2H10N2%29%5BZn2%28HPO4%292Cl2%5D%3A+substitution-activated+new+short-wave+ultraviolet+phosphate+with+pivotal+dual-property+enhancement&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Fang%2C+Zhi&rft.au=Yu-Ming%2C+Pan&rft.au=Han%2C+Pei&rft.au=Bing-Ping%2C+Yang&rft.date=2024-11-07&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=12&rft.issue=43&rft.spage=17482&rft.epage=17489&rft_id=info:doi/10.1039%2Fd4tc03504f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon