Exploring high molecular weight vinyl ester polymers made by PET-RAFT
Polyvinyl esters have wide range of applications; however, the synthesis of high molecular weight uniform polymers is an ongoing challenge. Vinyl ester monomers are among the less activated monomers compatible with RAFT polymerization. The highly reactive unconjugated radicals formed during propagat...
Saved in:
Published in | Polymer chemistry Vol. 15; no. 9; pp. 868 - 877 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
27.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polyvinyl esters have wide range of applications; however, the synthesis of high molecular weight uniform polymers is an ongoing challenge. Vinyl ester monomers are among the less activated monomers compatible with RAFT polymerization. The highly reactive unconjugated radicals formed during propagation are prone to side reactions, especially irreversible transfer, limiting the evolution of molecular weight and control over molecular weight distribution. Herein, the effect of monomer type on the control of polyvinyl esters synthesized by photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT) is explored. We show that PET-RAFT is capable of forming high molecular weight polyvinyl esters (vinyl pivalate:
M
n
> 350 000 and vinyl acetate:
M
n
> 80 000) under mild conditions. The livingness of the polymerization was determined by following chain extensions for low and high chain length systems.
Polyvinyl esters are used in many applications, however, high molecular weight polyvinyl esters have many challenges, with strategies for the synthesis of these polymers being the focus of this work. |
---|---|
AbstractList | Polyvinyl esters have wide range of applications; however, the synthesis of high molecular weight uniform polymers is an ongoing challenge. Vinyl ester monomers are among the less activated monomers compatible with RAFT polymerization. The highly reactive unconjugated radicals formed during propagation are prone to side reactions, especially irreversible transfer, limiting the evolution of molecular weight and control over molecular weight distribution. Herein, the effect of monomer type on the control of polyvinyl esters synthesized by photoinduced electron/energy transfer reversible addition–fragmentation chain transfer polymerization (PET-RAFT) is explored. We show that PET-RAFT is capable of forming high molecular weight polyvinyl esters (vinyl pivalate: Mn > 350 000 and vinyl acetate: Mn > 80 000) under mild conditions. The livingness of the polymerization was determined by following chain extensions for low and high chain length systems. Polyvinyl esters have wide range of applications; however, the synthesis of high molecular weight uniform polymers is an ongoing challenge. Vinyl ester monomers are among the less activated monomers compatible with RAFT polymerization. The highly reactive unconjugated radicals formed during propagation are prone to side reactions, especially irreversible transfer, limiting the evolution of molecular weight and control over molecular weight distribution. Herein, the effect of monomer type on the control of polyvinyl esters synthesized by photoinduced electron/energy transfer reversible addition–fragmentation chain transfer polymerization (PET-RAFT) is explored. We show that PET-RAFT is capable of forming high molecular weight polyvinyl esters (vinyl pivalate: M n > 350 000 and vinyl acetate: M n > 80 000) under mild conditions. The livingness of the polymerization was determined by following chain extensions for low and high chain length systems. Polyvinyl esters have wide range of applications; however, the synthesis of high molecular weight uniform polymers is an ongoing challenge. Vinyl ester monomers are among the less activated monomers compatible with RAFT polymerization. The highly reactive unconjugated radicals formed during propagation are prone to side reactions, especially irreversible transfer, limiting the evolution of molecular weight and control over molecular weight distribution. Herein, the effect of monomer type on the control of polyvinyl esters synthesized by photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT) is explored. We show that PET-RAFT is capable of forming high molecular weight polyvinyl esters (vinyl pivalate: M n > 350 000 and vinyl acetate: M n > 80 000) under mild conditions. The livingness of the polymerization was determined by following chain extensions for low and high chain length systems. Polyvinyl esters are used in many applications, however, high molecular weight polyvinyl esters have many challenges, with strategies for the synthesis of these polymers being the focus of this work. |
Author | Weerasinghe, M. A. Sachini N De Alwis Watuthanthrige, Nethmi Konkolewicz, Dominik |
AuthorAffiliation | Department of Chemistry and Biochemistry Miami University |
AuthorAffiliation_xml | – name: Miami University – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: M. A. Sachini N surname: Weerasinghe fullname: Weerasinghe, M. A. Sachini N – sequence: 2 givenname: Nethmi surname: De Alwis Watuthanthrige fullname: De Alwis Watuthanthrige, Nethmi – sequence: 3 givenname: Dominik surname: Konkolewicz fullname: Konkolewicz, Dominik |
BookMark | eNpF0M9LwzAUB_AgE5xzF-9CwJtQzc8uOY7Z-YOBQ-bBU0mTdOtom5psav97oxPN5eXBh_ce31MwaF1rATjH6BojKm8M63qEUMq3R2CIJ1wmUqZk8Pfn7ASMQ9hGgyhmhKZDkGWfXe181a7hplpvYONqq_e18vDDxn4H36u2r6ENO-th5-q-sT7ARhkLix4us1XyPJ2vzsBxqepgx791BF7m2Wp2nyye7h5m00WiCUO7hMaHCkUZFVaRVBuusVBCECF4USBBiOA0nUyYVFYaxksahaXImtJogQ0dgcvD3M67t308Kt-6vW_jypxISjDFKZJRXR2U9i4Eb8u881WjfJ9jlH8nld-y5etPUo8RXxywD_rP_SdJvwBoTGWM |
Cites_doi | 10.1002/advs.201500394 10.1021/ma0602775 10.1016/j.progpolymsci.2016.06.005 10.1002/pola.20681 10.1002/aic.11706 10.1002/pen.760220402 10.1295/polymj.21.1053 10.1002/pola.29247 10.1021/acs.macromol.7b01440 10.1002/pola.20986 10.1002/marc.200400652 10.3390/polym6051437 10.1016/j.polymer.2021.123526 10.1021/acspolymersau.1c00030 10.1002/pi.4985 10.1021/ma702500b 10.1016/j.progpolymsci.2020.101311 10.1002/macp.1961.020440136 10.1007/s00396-002-0691-2 10.1007/s00396-012-2640-z 10.1021/ma971284j 10.1021/jacs.1c08654 10.1021/acs.macromol.7b00767 10.1021/ma500842u 10.1021/ma9804951 10.1002/anie.201811721 10.1016/j.chempr.2016.12.007 10.1002/anie.202010722 10.1016/j.eurpolymj.2016.02.026 10.1021/acsmacrolett.1c00046 10.1007/s00289-005-0338-9 10.1021/ma00081a003 10.1002/pola.22684 10.1002/macp.200700185 10.1071/CH05072 10.1016/j.cej.2022.141007 10.1021/jacs.2c00963 10.1039/C7PY01607G 10.1016/B978-1-78242-373-7.00009-3 10.1039/C3PY01109G |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1039/d4py00065j |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-9962 |
EndPage | 877 |
ExternalDocumentID | 10_1039_D4PY00065J d4py00065j |
GroupedDBID | -JG 0-7 0R~ 29O 4.4 705 7~J AAEMU AAGNR AAIWI AANOJ AAXHV ABASK ABDVN ABGFH ABJNI ABRYZ ACGFS ACIWK ACLDK ADMRA ADNWM AENEX AETIL AFOGI AFVBQ AGRSR AGSTE AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- HZ~ H~N J3I O-G O9- P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF AAJAE AARTK AAWGC AAYXX ABEMK ABPDG ABXOH ADSRN AEFDR AENGV AESAV AFLYV AGEGJ AHGCF APEMP CITATION GGIMP H13 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c240t-33330ba3438ea26cd5c18a882885bb082285367749ae9d45f3d5ce30edfdc81d3 |
ISSN | 1759-9954 |
IngestDate | Thu Oct 10 17:06:54 EDT 2024 Fri Aug 23 03:25:19 EDT 2024 Sat Mar 02 04:23:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c240t-33330ba3438ea26cd5c18a882885bb082285367749ae9d45f3d5ce30edfdc81d3 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d4py00065j |
ORCID | 0000-0002-3828-5481 |
PQID | 2932131609 |
PQPubID | 2047483 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2932131609 crossref_primary_10_1039_D4PY00065J rsc_primary_d4py00065j |
PublicationCentury | 2000 |
PublicationDate | 2024-02-27 |
PublicationDateYYYYMMDD | 2024-02-27 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Polymer chemistry |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Allegrezza (D4PY00065J/cit31/1) 2021; 10 Perrier (D4PY00065J/cit34/1) 2005; 43 Harrisson (D4PY00065J/cit19/1) 2014; 6 Dolinski (D4PY00065J/cit33/1) 2019; 57 Clarke (D4PY00065J/cit44/1) 1961; 44 Grubbs (D4PY00065J/cit45/1) 2017; 50 Chiefari (D4PY00065J/cit22/1) 1998; 31 Perrier (D4PY00065J/cit6/1) 2005; 43 Lyoo (D4PY00065J/cit5/1) 2002; 280 Koumura (D4PY00065J/cit13/1) 2006; 39 Zhao (D4PY00065J/cit25/1) 2012; 290 Peng (D4PY00065J/cit16/1) 2008; 41 Wang (D4PY00065J/cit46/1) 2022; 144 Kubota (D4PY00065J/cit41/1) 2007; 208 Pan (D4PY00065J/cit32/1) 2016; 62 Corrigan (D4PY00065J/cit18/1) 2020; 111 Hwang (D4PY00065J/cit8/1) 2017; 8 Yamamoto (D4PY00065J/cit43/1) 1989; 21 Kaboorani (D4PY00065J/cit4/1) 2015 Shanmugam (D4PY00065J/cit28/1) 2014; 47 Boschmann (D4PY00065J/cit7/1) 2005; 53 Tang (D4PY00065J/cit15/1) 2009; 55 Russum (D4PY00065J/cit23/1) 2005; 43 Li (D4PY00065J/cit26/1) 2020; 59 Abdollahi (D4PY00065J/cit12/1) 2015; 64 Shanmugam (D4PY00065J/cit17/1) 2018 Mardare (D4PY00065J/cit20/1) 1994; 27 Britton (D4PY00065J/cit29/1) 1998; 31 Nunes (D4PY00065J/cit1/1) 1982; 22 Carmean (D4PY00065J/cit27/1) 2017; 2 Mazzotti (D4PY00065J/cit14/1) 2016; 77 Moad (D4PY00065J/cit21/1) 2005; 58 Perrier (D4PY00065J/cit36/1) 2017; 50 Kida (D4PY00065J/cit2/1) 2021; 218 McKenzie (D4PY00065J/cit30/1) 2016; 3 Kamigaito (D4PY00065J/cit9/1) 2022 Perrier (D4PY00065J/cit10/1) 2017; 50 Clarke (D4PY00065J/cit39/1) 1961; 44 Girard (D4PY00065J/cit42/1) 2014; 5 Simms (D4PY00065J/cit24/1) 2005; 26 Shimizu (D4PY00065J/cit3/1) 2021; 1 Johnston-Hall (D4PY00065J/cit38/1) 2008; 46 Bradford (D4PY00065J/cit40/1) 2021; 143 Hakobyan (D4PY00065J/cit35/1) 2019; 58 Parnitzke (D4PY00065J/cit37/1) 2023; 456 Harrisson (D4PY00065J/cit11/1) 2014; 6 |
References_xml | – issn: 2015 end-page: 347-364 publication-title: Biocomposites doi: Kaboorani Riedl – issn: 2018 end-page: 1-39 publication-title: Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies doi: Shanmugam Matyjaszewski – volume: 3 start-page: 1500394 year: 2016 ident: D4PY00065J/cit30/1 publication-title: Adv. Sci. doi: 10.1002/advs.201500394 contributor: fullname: McKenzie – volume: 39 start-page: 4054 year: 2006 ident: D4PY00065J/cit13/1 publication-title: Macromolecules doi: 10.1021/ma0602775 contributor: fullname: Koumura – start-page: 1 year: 2022 ident: D4PY00065J/cit9/1 publication-title: Polym. J. contributor: fullname: Kamigaito – volume: 62 start-page: 73 year: 2016 ident: D4PY00065J/cit32/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2016.06.005 contributor: fullname: Pan – volume: 43 start-page: 2188 year: 2005 ident: D4PY00065J/cit23/1 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.20681 contributor: fullname: Russum – volume: 55 start-page: 737 year: 2009 ident: D4PY00065J/cit15/1 publication-title: AIChE J. doi: 10.1002/aic.11706 contributor: fullname: Tang – volume: 22 start-page: 205 year: 1982 ident: D4PY00065J/cit1/1 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760220402 contributor: fullname: Nunes – volume: 21 start-page: 1053 year: 1989 ident: D4PY00065J/cit43/1 publication-title: Polym. J. doi: 10.1295/polymj.21.1053 contributor: fullname: Yamamoto – volume: 57 start-page: 268 year: 2019 ident: D4PY00065J/cit33/1 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.29247 contributor: fullname: Dolinski – volume: 50 start-page: 6979 year: 2017 ident: D4PY00065J/cit45/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01440 contributor: fullname: Grubbs – volume: 43 start-page: 5347 year: 2005 ident: D4PY00065J/cit6/1 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.20986 contributor: fullname: Perrier – volume: 26 start-page: 592 year: 2005 ident: D4PY00065J/cit24/1 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200400652 contributor: fullname: Simms – volume: 6 start-page: 1437 year: 2014 ident: D4PY00065J/cit11/1 publication-title: Polymers doi: 10.3390/polym6051437 contributor: fullname: Harrisson – volume: 218 start-page: 123526 year: 2021 ident: D4PY00065J/cit2/1 publication-title: Polymer doi: 10.1016/j.polymer.2021.123526 contributor: fullname: Kida – volume: 1 start-page: 187 year: 2021 ident: D4PY00065J/cit3/1 publication-title: ACS Polym. Au doi: 10.1021/acspolymersau.1c00030 contributor: fullname: Shimizu – volume: 64 start-page: 1808 year: 2015 ident: D4PY00065J/cit12/1 publication-title: Polym. Int. doi: 10.1002/pi.4985 contributor: fullname: Abdollahi – volume: 41 start-page: 2368 year: 2008 ident: D4PY00065J/cit16/1 publication-title: Macromolecules doi: 10.1021/ma702500b contributor: fullname: Peng – volume: 111 start-page: 101311 year: 2020 ident: D4PY00065J/cit18/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2020.101311 contributor: fullname: Corrigan – volume: 44 start-page: 427 year: 1961 ident: D4PY00065J/cit39/1 publication-title: Makromol. Chem. doi: 10.1002/macp.1961.020440136 contributor: fullname: Clarke – volume: 6 start-page: 1437 year: 2014 ident: D4PY00065J/cit19/1 publication-title: Polymers doi: 10.3390/polym6051437 contributor: fullname: Harrisson – volume: 280 start-page: 835 year: 2002 ident: D4PY00065J/cit5/1 publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-002-0691-2 contributor: fullname: Lyoo – volume: 290 start-page: 1247 year: 2012 ident: D4PY00065J/cit25/1 publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-012-2640-z contributor: fullname: Zhao – volume: 31 start-page: 2828 year: 1998 ident: D4PY00065J/cit29/1 publication-title: Macromolecules doi: 10.1021/ma971284j contributor: fullname: Britton – volume: 143 start-page: 17769 year: 2021 ident: D4PY00065J/cit40/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c08654 contributor: fullname: Bradford – volume: 50 start-page: 7433 year: 2017 ident: D4PY00065J/cit36/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00767 contributor: fullname: Perrier – volume: 47 start-page: 4930 year: 2014 ident: D4PY00065J/cit28/1 publication-title: Macromolecules doi: 10.1021/ma500842u contributor: fullname: Shanmugam – volume: 43 start-page: 5347 year: 2005 ident: D4PY00065J/cit34/1 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.20986 contributor: fullname: Perrier – volume: 31 start-page: 5559 year: 1998 ident: D4PY00065J/cit22/1 publication-title: Macromolecules doi: 10.1021/ma9804951 contributor: fullname: Chiefari – volume: 58 start-page: 1828 year: 2019 ident: D4PY00065J/cit35/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811721 contributor: fullname: Hakobyan – volume: 2 start-page: 93 year: 2017 ident: D4PY00065J/cit27/1 publication-title: Chem doi: 10.1016/j.chempr.2016.12.007 contributor: fullname: Carmean – volume: 59 start-page: 22258 year: 2020 ident: D4PY00065J/cit26/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202010722 contributor: fullname: Li – volume: 77 start-page: 75 year: 2016 ident: D4PY00065J/cit14/1 publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2016.02.026 contributor: fullname: Mazzotti – volume: 10 start-page: 433 year: 2021 ident: D4PY00065J/cit31/1 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.1c00046 contributor: fullname: Allegrezza – volume: 53 start-page: 231 year: 2005 ident: D4PY00065J/cit7/1 publication-title: Polym. Bull. doi: 10.1007/s00289-005-0338-9 contributor: fullname: Boschmann – start-page: 1 volume-title: Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies year: 2018 ident: D4PY00065J/cit17/1 contributor: fullname: Shanmugam – volume: 27 start-page: 645 year: 1994 ident: D4PY00065J/cit20/1 publication-title: Macromolecules doi: 10.1021/ma00081a003 contributor: fullname: Mardare – volume: 46 start-page: 3155 year: 2008 ident: D4PY00065J/cit38/1 publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.22684 contributor: fullname: Johnston-Hall – volume: 208 start-page: 2403 year: 2007 ident: D4PY00065J/cit41/1 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200700185 contributor: fullname: Kubota – volume: 50 start-page: 7433 year: 2017 ident: D4PY00065J/cit10/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00767 contributor: fullname: Perrier – volume: 58 start-page: 379 year: 2005 ident: D4PY00065J/cit21/1 publication-title: Aust. J. Chem. doi: 10.1071/CH05072 contributor: fullname: Moad – volume: 456 start-page: 141007 year: 2023 ident: D4PY00065J/cit37/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.141007 contributor: fullname: Parnitzke – volume: 144 start-page: 4678 year: 2022 ident: D4PY00065J/cit46/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00963 contributor: fullname: Wang – volume: 8 start-page: 6204 year: 2017 ident: D4PY00065J/cit8/1 publication-title: Polym. Chem. doi: 10.1039/C7PY01607G contributor: fullname: Hwang – volume: 44 start-page: 427 year: 1961 ident: D4PY00065J/cit44/1 publication-title: Makromol. Chem. doi: 10.1002/macp.1961.020440136 contributor: fullname: Clarke – start-page: 347 volume-title: Biocomposites year: 2015 ident: D4PY00065J/cit4/1 doi: 10.1016/B978-1-78242-373-7.00009-3 contributor: fullname: Kaboorani – volume: 5 start-page: 1013 year: 2014 ident: D4PY00065J/cit42/1 publication-title: Polym. Chem. doi: 10.1039/C3PY01109G contributor: fullname: Girard |
SSID | ssj0000314236 |
Score | 2.4390135 |
Snippet | Polyvinyl esters have wide range of applications; however, the synthesis of high molecular weight uniform polymers is an ongoing challenge. Vinyl ester... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 868 |
SubjectTerms | Addition polymerization Chain transfer Chemical synthesis Energy transfer Molecular weight distribution Monomers Polyethylene terephthalate Polymers Polyvinyl esters Vinyl acetate |
Title | Exploring high molecular weight vinyl ester polymers made by PET-RAFT |
URI | https://www.proquest.com/docview/2932131609 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZY9wAviNtEYSBL8GalJLFz8WPYCtMQqIJOG0-VYztatjWbuoyq-_UcOxcHNCSgD1HlxFHk8-X484nPdxB6qxJf6UiFHmeB9FjOhMcLKT2u4lSLRMAcaBKcP3-JD47Y4Ul04gQVbHZJnU_k7Z15Jf9jVWgDu5os2X-wbH9TaID_YF84goXh-Fc2dhvojOowWXalbsnaBjzJj7LaXBCrhWCqMWxMjJoshdKGdM6mc-9r1saPWno6ay4isisD5z7c6JUwYYXTJpI9IdmEfLMbMUv3NWdfk-xiXV6TY1HfmJh8fQqLf9vDJBYvy969X1bn8LDrUt42LN4onJwPIxAhsxndycBpJhH3jK5cM6cM237ztNEAUXzgNtOmtE4_Ayd3OnefGm1Uxa42ljmduSms31joTm6h7RB8TzpC29mn9x-P-8Cb0esPbenI_rk72VrK37kb_EpU3Opja9WVhrEUZP4IPWzXDjhrgPAY3dPVE3R_r7PVUzTtAYENIHAPCNwAAltAYAsI3AECG0DgfIM7QDxDRx-m870Dr62T4UngY7VH4efngjIKr1cYSxXJIBWwdErTKM-NpD9wshh4vhFiVywqKFyhqa9VoSSsV-gOGlWXlX6OMGeai5QFiQ4KplmRp8ABJXROmS-U1GP0phuUxVUjh7Kw2xgoX-yz2Xc7dIdjtNuN16J9Xa4XwCvDgAaxz8doB8aw7--G_MWfTrxEDxzwdtGoXt3oV0AG6_x1a96fEiJhWg |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+high+molecular+weight+vinyl+ester+polymers+made+by+PET-RAFT&rft.jtitle=Polymer+chemistry&rft.au=Weerasinghe%2C+M.+A.+Sachini+N&rft.au=De+Alwis+Watuthanthrige%2C+Nethmi&rft.au=Konkolewicz%2C+Dominik&rft.date=2024-02-27&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=15&rft.issue=9&rft.spage=868&rft.epage=877&rft_id=info:doi/10.1039%2Fd4py00065j&rft.externalDocID=d4py00065j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon |