A Cr() supramolecular network composite membrane with high water stability and proton conductivity
Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a composite membrane with the advantages of individual components. Chitosan (CS) has a strong binding capacity to Cr 3+ ions, and it combines w...
Saved in:
Published in | CrystEngComm Vol. 25; no. 13; pp. 23 - 21 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
27.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1466-8033 1466-8033 |
DOI | 10.1039/d2ce01610a |
Cover
Loading…
Abstract | Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a composite membrane with the advantages of individual components. Chitosan (CS) has a strong binding capacity to Cr
3+
ions, and it combines with polyvinylpyrrolidone (PVP) to form a rich network of hydrogen bonds. Hence, the composite membrane of blending hydrophilic polymer CS-PVP matrix and metal-hydrogen-organic frameworks (MHOFs) [Cr
2
(DBPZ)
2
(μ-OH)
2
]
1
(H
2
DBPZ) = bis(3,5-dicarboxypyrazol-1-yl)dicarboxylic acid were fabricated. The Cr
3+
ion is six-coordinated by four oxygen atoms and two nitrogen atoms to form an octahedron configuration. Two DBPZ
2−
ligands connected two Cr
3+
ions forming a dimeric unit, and an adjacent dimeric core are further connected by a hydrogen bond to form a 3D supramolecular framework. The proton conductivity of
1
@CS/PVP-10 reached up to 8.64 × 10
−2
S cm
−1
at 363 K and 98% RH, which is about 10 times higher than that of
1
.
The blending matrix membrane with highly efficient double proton conduction pathways has been synthesized. The value of
1
@CS/PVP-10 is ten times higher than that of
1
. |
---|---|
AbstractList | Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a composite membrane with the advantages of individual components. Chitosan (CS) has a strong binding capacity to Cr
3+
ions, and it combines with polyvinylpyrrolidone (PVP) to form a rich network of hydrogen bonds. Hence, the composite membrane of blending hydrophilic polymer CS-PVP matrix and metal-hydrogen-organic frameworks (MHOFs) [Cr
2
(DBPZ)
2
(μ-OH)
2
]
1
(H
2
DBPZ) = bis(3,5-dicarboxypyrazol-1-yl)dicarboxylic acid were fabricated. The Cr
3+
ion is six-coordinated by four oxygen atoms and two nitrogen atoms to form an octahedron configuration. Two DBPZ
2−
ligands connected two Cr
3+
ions forming a dimeric unit, and an adjacent dimeric core are further connected by a hydrogen bond to form a 3D supramolecular framework. The proton conductivity of
1
@CS/PVP-10 reached up to 8.64 × 10
−2
S cm
−1
at 363 K and 98% RH, which is about 10 times higher than that of
1
.
The blending matrix membrane with highly efficient double proton conduction pathways has been synthesized. The value of
1
@CS/PVP-10 is ten times higher than that of
1
. Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a composite membrane with the advantages of individual components. Chitosan (CS) has a strong binding capacity to Cr3+ ions, and it combines with polyvinylpyrrolidone (PVP) to form a rich network of hydrogen bonds. Hence, the composite membrane of blending hydrophilic polymer CS-PVP matrix and metal-hydrogen-organic frameworks (MHOFs) [Cr2(DBPZ)2(μ-OH)2] 1 (H2DBPZ) = bis(3,5-dicarboxypyrazol-1-yl)dicarboxylic acid were fabricated. The Cr3+ ion is six-coordinated by four oxygen atoms and two nitrogen atoms to form an octahedron configuration. Two DBPZ2− ligands connected two Cr3+ ions forming a dimeric unit, and an adjacent dimeric core are further connected by a hydrogen bond to form a 3D supramolecular framework. The proton conductivity of 1@CS/PVP-10 reached up to 8.64 × 10−2 S cm−1 at 363 K and 98% RH, which is about 10 times higher than that of 1. Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a composite membrane with the advantages of individual components. Chitosan (CS) has a strong binding capacity to Cr 3+ ions, and it combines with polyvinylpyrrolidone (PVP) to form a rich network of hydrogen bonds. Hence, the composite membrane of blending hydrophilic polymer CS-PVP matrix and metal-hydrogen-organic frameworks (MHOFs) [Cr 2 (DBPZ) 2 (μ-OH) 2 ] 1 (H 2 DBPZ) = bis(3,5-dicarboxypyrazol-1-yl)dicarboxylic acid were fabricated. The Cr 3+ ion is six-coordinated by four oxygen atoms and two nitrogen atoms to form an octahedron configuration. Two DBPZ 2− ligands connected two Cr 3+ ions forming a dimeric unit, and an adjacent dimeric core are further connected by a hydrogen bond to form a 3D supramolecular framework. The proton conductivity of 1@CS/PVP-10 reached up to 8.64 × 10 −2 S cm −1 at 363 K and 98% RH, which is about 10 times higher than that of 1. |
Author | Zhou, Shu-Fang Zhang, Chen-Xi Zhang, Hong-Jie Wang, Qing-Lun |
AuthorAffiliation | Nan kai University College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization College of Chemistry Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) |
AuthorAffiliation_xml | – sequence: 0 name: Nan kai University – sequence: 0 name: College of Chemical Engineering and Materials Science – sequence: 0 name: Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization – sequence: 0 name: College of Chemistry – sequence: 0 name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) – sequence: 0 name: Tianjin University of Science and Technology |
Author_xml | – sequence: 1 givenname: Shu-Fang surname: Zhou fullname: Zhou, Shu-Fang – sequence: 2 givenname: Hong-Jie surname: Zhang fullname: Zhang, Hong-Jie – sequence: 3 givenname: Chen-Xi surname: Zhang fullname: Zhang, Chen-Xi – sequence: 4 givenname: Qing-Lun surname: Wang fullname: Wang, Qing-Lun |
BookMark | eNpNkE1LxDAQhoMouLt68S4EvKhQzTS1TY5LXT9gwYueS5oPt2ub1CR12X9vdUU9zTA8M_PyTNG-dVYjdALkCgjl1yqVmkAOROyhCWR5njBC6f6__hBNQ1gTAhkAmaB6jkt_foHD0HvRuVbLoRUeWx03zr9h6brehSZq3Omu9sJqvGniCq-a1xXeiKg9DlHUTdvELRZW4d676Oy4Z9UgY_Mxzo_QgRFt0Mc_dYZe7hbP5UOyfLp_LOfLRKYZiQlNqSpUIaQpiprlqTbMZCarlZFKgOKGSQKEQZ1yQ6gwRMlM5prlwG-yvOZ0hs52d8cM74MOsVq7wdvxZZUWHIAzzmCkLneU9C4Er03V-6YTflsBqb4cVrdpufh2OB_h0x3sg_zl_hzTT_1KcUQ |
Cites_doi | 10.1021/acssuschemeng.9b01757 10.1002/chem.201805177 10.1016/j.ijbiomac.2022.05.017 10.1002/aoc.5981 10.1016/j.carbpol.2019.05.041 10.1021/acsami.7b05969 10.1021/acsami.8b09070 10.1016/j.renene.2018.03.075 10.1021/ja808681m 10.1021/jacs.1c03432 10.1016/j.poly.2014.04.058 10.1016/j.ijhydene.2019.09.096 10.1039/D0NJ02085K 10.1016/j.jelechem.2008.05.017 10.1021/ja402727d 10.1021/acs.chemrev.9b00842 10.1016/j.cej.2021.129021 10.1107/S0021889808042726 10.1039/C8CE00476E 10.3390/inorganics9030020 10.1039/D0CE00902D 10.1016/j.cclet.2017.08.033 10.1039/D0TA02991B 10.1016/j.micromeso.2019.109763 10.1021/acsami.8b12846 10.1039/C8NJ04331K 10.1039/C7TA00169J 10.1021/acsami.0c21840 10.1039/C8CC08700H 10.3390/chemosensors9040070 10.1039/D0QI00883D 10.3390/app10061925 10.1016/j.carbpol.2009.09.028 10.1016/j.apsusc.2019.144484 10.3390/molecules25071598 10.1016/j.ijhydene.2020.09.235 10.1021/acs.inorgchem.6b00928 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/d2ce01610a |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 21 |
ExternalDocumentID | 10_1039_D2CE01610A d2ce01610a |
GroupedDBID | -JG 0-7 0R~ 29F 5GY 6J9 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 E3Z EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF CITATION R56 7U5 8FD L7M |
ID | FETCH-LOGICAL-c240t-323d7d7acf77b862ef8f4f4bdfcda1d9f8c01081b29f03af0dc4c6e8619546b93 |
ISSN | 1466-8033 |
IngestDate | Mon Jun 30 05:30:46 EDT 2025 Tue Jul 01 02:07:35 EDT 2025 Tue Dec 17 20:58:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c240t-323d7d7acf77b862ef8f4f4bdfcda1d9f8c01081b29f03af0dc4c6e8619546b93 |
Notes | Electronic supplementary information (ESI) available: Tables S1-S4, Fig. S1-S11. CCDC For ESI and crystallographic data in CIF or other electronic format see DOI 2083244 https://doi.org/10.1039/d2ce01610a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3383-9112 0000-0002-0983-6280 |
PQID | 2791198981 |
PQPubID | 2047491 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_D2CE01610A rsc_primary_d2ce01610a proquest_journals_2791198981 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-27 |
PublicationDateYYYYMMDD | 2023-03-27 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (D2CE01610A/cit28/1) 2014; 83 Lim (D2CE01610A/cit2/1) 2020; 120 Phang (D2CE01610A/cit36/1) 2015; 54 Soboleva (D2CE01610A/cit33/1) 2008; 622 Li (D2CE01610A/cit17/1) 2021; 415 Wu (D2CE01610A/cit24/1) 2022; 210 Christou (D2CE01610A/cit38/1) 2019; 219 Karimi (D2CE01610A/cit8/1) 2019; 44 Rasheed (D2CE01610A/cit13/1) 2020; 25 Zheng (D2CE01610A/cit10/1) 2020; 34 Xing (D2CE01610A/cit19/1) 2019; 55 Zhang (D2CE01610A/cit9/1) 2018; 10 Wang (D2CE01610A/cit29/1) 2021; 46 Yamada (D2CE01610A/cit35/1) 2009; 131 Xie (D2CE01610A/cit18/1) 2018; 42 Chen (D2CE01610A/cit6/1) 2020; 7 Yang (D2CE01610A/cit15/1) 2018; 20 Cai (D2CE01610A/cit23/1) 2017; 5 Vallés-García (D2CE01610A/cit31/1) 2020; 8 Dolomanov (D2CE01610A/cit30/1) 2009; 42 Ahmadian-Alam (D2CE01610A/cit1/1) 2018; 126 Rao (D2CE01610A/cit16/1) 2017; 9 García-Valdivia (D2CE01610A/cit21/1) 2021; 9 Jhariat (D2CE01610A/cit7/1) 2020; 22 Yang (D2CE01610A/cit22/1) 2021; 143 Zhou (D2CE01610A/cit32/1) 2016; 55 Vinothkannan (D2CE01610A/cit4/1) 2019; 7 Dong (D2CE01610A/cit25/1) 2018; 10 Li (D2CE01610A/cit27/1) 2010; 79 Grant (D2CE01610A/cit37/1) 2021; 9 Pietrelli (D2CE01610A/cit26/1) 2020; 10 Chand (D2CE01610A/cit20/1) 2019; 25 Xu (D2CE01610A/cit34/1) 2013; 135 Shi (D2CE01610A/cit12/1) 2020; 504 Wang (D2CE01610A/cit3/1) 2021; 13 Shi (D2CE01610A/cit14/1) 2020; 44 Bai (D2CE01610A/cit11/1) 2020; 292 Wang (D2CE01610A/cit5/1) 2018; 29 |
References_xml | – volume: 7 start-page: 12847 year: 2019 ident: D2CE01610A/cit4/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b01757 – volume: 25 start-page: 1691 year: 2019 ident: D2CE01610A/cit20/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.201805177 – volume: 210 start-page: 76 year: 2022 ident: D2CE01610A/cit24/1 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.05.017 – volume: 34 start-page: e5981 year: 2020 ident: D2CE01610A/cit10/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.5981 – volume: 219 start-page: 298 year: 2019 ident: D2CE01610A/cit38/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.05.041 – volume: 9 start-page: 22597 year: 2017 ident: D2CE01610A/cit16/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05969 – volume: 10 start-page: 28656 year: 2018 ident: D2CE01610A/cit9/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09070 – volume: 126 start-page: 630 year: 2018 ident: D2CE01610A/cit1/1 publication-title: Renewable Energy doi: 10.1016/j.renene.2018.03.075 – volume: 54 start-page: 5142 year: 2015 ident: D2CE01610A/cit36/1 publication-title: Am. Ethnol. – volume: 131 start-page: 3144 year: 2009 ident: D2CE01610A/cit35/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808681m – volume: 143 start-page: 8838 year: 2021 ident: D2CE01610A/cit22/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03432 – volume: 83 start-page: 102 year: 2014 ident: D2CE01610A/cit28/1 publication-title: Polyhedron doi: 10.1016/j.poly.2014.04.058 – volume: 44 start-page: 28919 year: 2019 ident: D2CE01610A/cit8/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.09.096 – volume: 44 start-page: 10562 year: 2020 ident: D2CE01610A/cit14/1 publication-title: New J. Chem. doi: 10.1039/D0NJ02085K – volume: 622 start-page: 145 year: 2008 ident: D2CE01610A/cit33/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2008.05.017 – volume: 135 start-page: 7438 year: 2013 ident: D2CE01610A/cit34/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402727d – volume: 120 start-page: 8416 year: 2020 ident: D2CE01610A/cit2/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00842 – volume: 415 start-page: 129021 year: 2021 ident: D2CE01610A/cit17/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129021 – volume: 42 start-page: 339 year: 2009 ident: D2CE01610A/cit30/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889808042726 – volume: 20 start-page: 3066 year: 2018 ident: D2CE01610A/cit15/1 publication-title: CrystEngComm doi: 10.1039/C8CE00476E – volume: 9 start-page: 20 year: 2021 ident: D2CE01610A/cit21/1 publication-title: Inorganics doi: 10.3390/inorganics9030020 – volume: 22 start-page: 6425 year: 2020 ident: D2CE01610A/cit7/1 publication-title: CrystEngComm doi: 10.1039/D0CE00902D – volume: 29 start-page: 336 year: 2018 ident: D2CE01610A/cit5/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2017.08.033 – volume: 8 start-page: 17002 year: 2020 ident: D2CE01610A/cit31/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02991B – volume: 292 start-page: 109763 year: 2020 ident: D2CE01610A/cit11/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2019.109763 – volume: 10 start-page: 38209 year: 2018 ident: D2CE01610A/cit25/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12846 – volume: 42 start-page: 20197 year: 2018 ident: D2CE01610A/cit18/1 publication-title: New J. Chem. doi: 10.1039/C8NJ04331K – volume: 5 start-page: 12943 year: 2017 ident: D2CE01610A/cit23/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00169J – volume: 13 start-page: 7485 year: 2021 ident: D2CE01610A/cit3/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c21840 – volume: 55 start-page: 1241 year: 2019 ident: D2CE01610A/cit19/1 publication-title: Chem. Commun. doi: 10.1039/C8CC08700H – volume: 9 start-page: 70 year: 2021 ident: D2CE01610A/cit37/1 publication-title: Chemosensors doi: 10.3390/chemosensors9040070 – volume: 7 start-page: 3765 year: 2020 ident: D2CE01610A/cit6/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00883D – volume: 10 start-page: 1925 year: 2020 ident: D2CE01610A/cit26/1 publication-title: Appl. Sci. doi: 10.3390/app10061925 – volume: 79 start-page: 786 year: 2010 ident: D2CE01610A/cit27/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2009.09.028 – volume: 504 start-page: 144484 year: 2020 ident: D2CE01610A/cit12/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144484 – volume: 25 start-page: 1598 year: 2020 ident: D2CE01610A/cit13/1 publication-title: Molecules doi: 10.3390/molecules25071598 – volume: 46 start-page: 1163 year: 2021 ident: D2CE01610A/cit29/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.09.235 – volume: 55 start-page: 6271 year: 2016 ident: D2CE01610A/cit32/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00928 |
SSID | ssj0014110 |
Score | 2.3799717 |
Snippet | Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 23 |
SubjectTerms | Blending Chitosan Dicarboxylic acids Dimers Fuel cells Hydrogen bonds Membranes Metallic hydrogen Nitrogen atoms Oxygen atoms Polyvinylpyrrolidone Protons Supramolecular frameworks Trivalent chromium Water stability |
Title | A Cr() supramolecular network composite membrane with high water stability and proton conductivity |
URI | https://www.proquest.com/docview/2791198981 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeELeJjoEswQOoMqR2ro9RSDWmMoTUioqXyIntrQ9NpzTRNn49x4lzmZgQ8BJVkeKHc776XPz5Owi9TRWfZVxCbaJch9jct0hKhUtcGnjUkSx16lkEX87d05V9tnbWo9HNgLVUlemH7Oe990r-x6vwDvyqb8n-g2e7ReEF_Ab_whM8DM-_8nE4jcDg_maz0cX9vroq-LYddzvNG4J3TRrXzCw53cot1MaQVdbNVy1UPL3mWiQRMsSaI3trZAN2WmsDCmWtBVsPlximsFFxuy_j_EJfLen6M5cVmZvO84_LXdWBZZdfkDNzBKJb0z2bQOZkvfnt_XezyDeIqGRR5cOmBGWaldXc8TdsJt36aHmnNa_ETK9rwk6z19qu1kJudDDazbi5Bd2Cjg23VstigzCtT_HvDQEW0wqqgmZSZ7PWINC1h_vnX5P5arFIlvF6eYAOKRQYdIwOw3j5edGdQNmQF7Vytiz42K93N4Hpq5KDoh0ZU6cmy8fokakpcNgA5AkayfwpejhQmnyGZIij4h0A5T2-CxNsYII7mOAWJljDBGuY4BomuIMJBpjgBiZ4CJPnaDWPl9EpMRM2SAaZXEkYZcITHs-U56VQ20rlK1vZqVCZ4DMRKD8DM0NlQwNlMa4skdmZK31X6wS6acCO0Djf5fIFwjb3hHJk4EMOaUPSyqngsN_TIBVs5qZsgt60ZkuuGiGVpCZAsCD5RKO4Nm44QSetRRPzR9sn1IOIrOecziboCKzcfd875fjP371ED3qUnqBxWVTyFSSTZfra-P0XgEp8QA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cr%28iii%29+supramolecular+network+composite+membrane+with+high+water+stability+and+proton+conductivity&rft.jtitle=CrystEngComm&rft.au=Shu-Fang%2C+Zhou&rft.au=Hong-Jie%2C+Zhang&rft.au=Chen-Xi%2C+Zhang&rft.au=Wang%2C+Qing-Lun&rft.date=2023-03-27&rft.pub=Royal+Society+of+Chemistry&rft.eissn=1466-8033&rft.volume=25&rft.issue=13&rft.spage=2003&rft.epage=2010&rft_id=info:doi/10.1039%2Fd2ce01610a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |