A Cr() supramolecular network composite membrane with high water stability and proton conductivity

Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a composite membrane with the advantages of individual components. Chitosan (CS) has a strong binding capacity to Cr 3+ ions, and it combines w...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 25; no. 13; pp. 23 - 21
Main Authors Zhou, Shu-Fang, Zhang, Hong-Jie, Zhang, Chen-Xi, Wang, Qing-Lun
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 27.03.2023
Subjects
Online AccessGet full text
ISSN1466-8033
1466-8033
DOI10.1039/d2ce01610a

Cover

Loading…
Abstract Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a composite membrane with the advantages of individual components. Chitosan (CS) has a strong binding capacity to Cr 3+ ions, and it combines with polyvinylpyrrolidone (PVP) to form a rich network of hydrogen bonds. Hence, the composite membrane of blending hydrophilic polymer CS-PVP matrix and metal-hydrogen-organic frameworks (MHOFs) [Cr 2 (DBPZ) 2 (μ-OH) 2 ] 1 (H 2 DBPZ) = bis(3,5-dicarboxypyrazol-1-yl)dicarboxylic acid were fabricated. The Cr 3+ ion is six-coordinated by four oxygen atoms and two nitrogen atoms to form an octahedron configuration. Two DBPZ 2− ligands connected two Cr 3+ ions forming a dimeric unit, and an adjacent dimeric core are further connected by a hydrogen bond to form a 3D supramolecular framework. The proton conductivity of 1 @CS/PVP-10 reached up to 8.64 × 10 −2 S cm −1 at 363 K and 98% RH, which is about 10 times higher than that of 1 . The blending matrix membrane with highly efficient double proton conduction pathways has been synthesized. The value of 1 @CS/PVP-10 is ten times higher than that of 1 .
AbstractList Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a composite membrane with the advantages of individual components. Chitosan (CS) has a strong binding capacity to Cr 3+ ions, and it combines with polyvinylpyrrolidone (PVP) to form a rich network of hydrogen bonds. Hence, the composite membrane of blending hydrophilic polymer CS-PVP matrix and metal-hydrogen-organic frameworks (MHOFs) [Cr 2 (DBPZ) 2 (μ-OH) 2 ] 1 (H 2 DBPZ) = bis(3,5-dicarboxypyrazol-1-yl)dicarboxylic acid were fabricated. The Cr 3+ ion is six-coordinated by four oxygen atoms and two nitrogen atoms to form an octahedron configuration. Two DBPZ 2− ligands connected two Cr 3+ ions forming a dimeric unit, and an adjacent dimeric core are further connected by a hydrogen bond to form a 3D supramolecular framework. The proton conductivity of 1 @CS/PVP-10 reached up to 8.64 × 10 −2 S cm −1 at 363 K and 98% RH, which is about 10 times higher than that of 1 . The blending matrix membrane with highly efficient double proton conduction pathways has been synthesized. The value of 1 @CS/PVP-10 is ten times higher than that of 1 .
Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a composite membrane with the advantages of individual components. Chitosan (CS) has a strong binding capacity to Cr3+ ions, and it combines with polyvinylpyrrolidone (PVP) to form a rich network of hydrogen bonds. Hence, the composite membrane of blending hydrophilic polymer CS-PVP matrix and metal-hydrogen-organic frameworks (MHOFs) [Cr2(DBPZ)2(μ-OH)2] 1 (H2DBPZ) = bis(3,5-dicarboxypyrazol-1-yl)dicarboxylic acid were fabricated. The Cr3+ ion is six-coordinated by four oxygen atoms and two nitrogen atoms to form an octahedron configuration. Two DBPZ2− ligands connected two Cr3+ ions forming a dimeric unit, and an adjacent dimeric core are further connected by a hydrogen bond to form a 3D supramolecular framework. The proton conductivity of 1@CS/PVP-10 reached up to 8.64 × 10−2 S cm−1 at 363 K and 98% RH, which is about 10 times higher than that of 1.
Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a composite membrane with the advantages of individual components. Chitosan (CS) has a strong binding capacity to Cr 3+ ions, and it combines with polyvinylpyrrolidone (PVP) to form a rich network of hydrogen bonds. Hence, the composite membrane of blending hydrophilic polymer CS-PVP matrix and metal-hydrogen-organic frameworks (MHOFs) [Cr 2 (DBPZ) 2 (μ-OH) 2 ] 1 (H 2 DBPZ) = bis(3,5-dicarboxypyrazol-1-yl)dicarboxylic acid were fabricated. The Cr 3+ ion is six-coordinated by four oxygen atoms and two nitrogen atoms to form an octahedron configuration. Two DBPZ 2− ligands connected two Cr 3+ ions forming a dimeric unit, and an adjacent dimeric core are further connected by a hydrogen bond to form a 3D supramolecular framework. The proton conductivity of 1@CS/PVP-10 reached up to 8.64 × 10 −2 S cm −1 at 363 K and 98% RH, which is about 10 times higher than that of 1.
Author Zhou, Shu-Fang
Zhang, Chen-Xi
Zhang, Hong-Jie
Wang, Qing-Lun
AuthorAffiliation Nan kai University
College of Chemical Engineering and Materials Science
Tianjin University of Science and Technology
Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
College of Chemistry
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
AuthorAffiliation_xml – sequence: 0
  name: Nan kai University
– sequence: 0
  name: College of Chemical Engineering and Materials Science
– sequence: 0
  name: Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
– sequence: 0
  name: College of Chemistry
– sequence: 0
  name: Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
– sequence: 0
  name: Tianjin University of Science and Technology
Author_xml – sequence: 1
  givenname: Shu-Fang
  surname: Zhou
  fullname: Zhou, Shu-Fang
– sequence: 2
  givenname: Hong-Jie
  surname: Zhang
  fullname: Zhang, Hong-Jie
– sequence: 3
  givenname: Chen-Xi
  surname: Zhang
  fullname: Zhang, Chen-Xi
– sequence: 4
  givenname: Qing-Lun
  surname: Wang
  fullname: Wang, Qing-Lun
BookMark eNpNkE1LxDAQhoMouLt68S4EvKhQzTS1TY5LXT9gwYueS5oPt2ub1CR12X9vdUU9zTA8M_PyTNG-dVYjdALkCgjl1yqVmkAOROyhCWR5njBC6f6__hBNQ1gTAhkAmaB6jkt_foHD0HvRuVbLoRUeWx03zr9h6brehSZq3Omu9sJqvGniCq-a1xXeiKg9DlHUTdvELRZW4d676Oy4Z9UgY_Mxzo_QgRFt0Mc_dYZe7hbP5UOyfLp_LOfLRKYZiQlNqSpUIaQpiprlqTbMZCarlZFKgOKGSQKEQZ1yQ6gwRMlM5prlwG-yvOZ0hs52d8cM74MOsVq7wdvxZZUWHIAzzmCkLneU9C4Er03V-6YTflsBqb4cVrdpufh2OB_h0x3sg_zl_hzTT_1KcUQ
Cites_doi 10.1021/acssuschemeng.9b01757
10.1002/chem.201805177
10.1016/j.ijbiomac.2022.05.017
10.1002/aoc.5981
10.1016/j.carbpol.2019.05.041
10.1021/acsami.7b05969
10.1021/acsami.8b09070
10.1016/j.renene.2018.03.075
10.1021/ja808681m
10.1021/jacs.1c03432
10.1016/j.poly.2014.04.058
10.1016/j.ijhydene.2019.09.096
10.1039/D0NJ02085K
10.1016/j.jelechem.2008.05.017
10.1021/ja402727d
10.1021/acs.chemrev.9b00842
10.1016/j.cej.2021.129021
10.1107/S0021889808042726
10.1039/C8CE00476E
10.3390/inorganics9030020
10.1039/D0CE00902D
10.1016/j.cclet.2017.08.033
10.1039/D0TA02991B
10.1016/j.micromeso.2019.109763
10.1021/acsami.8b12846
10.1039/C8NJ04331K
10.1039/C7TA00169J
10.1021/acsami.0c21840
10.1039/C8CC08700H
10.3390/chemosensors9040070
10.1039/D0QI00883D
10.3390/app10061925
10.1016/j.carbpol.2009.09.028
10.1016/j.apsusc.2019.144484
10.3390/molecules25071598
10.1016/j.ijhydene.2020.09.235
10.1021/acs.inorgchem.6b00928
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/d2ce01610a
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 21
ExternalDocumentID 10_1039_D2CE01610A
d2ce01610a
GroupedDBID -JG
0-7
0R~
29F
5GY
6J9
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
E3Z
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
CITATION
R56
7U5
8FD
L7M
ID FETCH-LOGICAL-c240t-323d7d7acf77b862ef8f4f4bdfcda1d9f8c01081b29f03af0dc4c6e8619546b93
ISSN 1466-8033
IngestDate Mon Jun 30 05:30:46 EDT 2025
Tue Jul 01 02:07:35 EDT 2025
Tue Dec 17 20:58:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c240t-323d7d7acf77b862ef8f4f4bdfcda1d9f8c01081b29f03af0dc4c6e8619546b93
Notes Electronic supplementary information (ESI) available: Tables S1-S4, Fig. S1-S11. CCDC
For ESI and crystallographic data in CIF or other electronic format see DOI
2083244
https://doi.org/10.1039/d2ce01610a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3383-9112
0000-0002-0983-6280
PQID 2791198981
PQPubID 2047491
PageCount 8
ParticipantIDs crossref_primary_10_1039_D2CE01610A
rsc_primary_d2ce01610a
proquest_journals_2791198981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-27
PublicationDateYYYYMMDD 2023-03-27
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-27
  day: 27
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (D2CE01610A/cit28/1) 2014; 83
Lim (D2CE01610A/cit2/1) 2020; 120
Phang (D2CE01610A/cit36/1) 2015; 54
Soboleva (D2CE01610A/cit33/1) 2008; 622
Li (D2CE01610A/cit17/1) 2021; 415
Wu (D2CE01610A/cit24/1) 2022; 210
Christou (D2CE01610A/cit38/1) 2019; 219
Karimi (D2CE01610A/cit8/1) 2019; 44
Rasheed (D2CE01610A/cit13/1) 2020; 25
Zheng (D2CE01610A/cit10/1) 2020; 34
Xing (D2CE01610A/cit19/1) 2019; 55
Zhang (D2CE01610A/cit9/1) 2018; 10
Wang (D2CE01610A/cit29/1) 2021; 46
Yamada (D2CE01610A/cit35/1) 2009; 131
Xie (D2CE01610A/cit18/1) 2018; 42
Chen (D2CE01610A/cit6/1) 2020; 7
Yang (D2CE01610A/cit15/1) 2018; 20
Cai (D2CE01610A/cit23/1) 2017; 5
Vallés-García (D2CE01610A/cit31/1) 2020; 8
Dolomanov (D2CE01610A/cit30/1) 2009; 42
Ahmadian-Alam (D2CE01610A/cit1/1) 2018; 126
Rao (D2CE01610A/cit16/1) 2017; 9
García-Valdivia (D2CE01610A/cit21/1) 2021; 9
Jhariat (D2CE01610A/cit7/1) 2020; 22
Yang (D2CE01610A/cit22/1) 2021; 143
Zhou (D2CE01610A/cit32/1) 2016; 55
Vinothkannan (D2CE01610A/cit4/1) 2019; 7
Dong (D2CE01610A/cit25/1) 2018; 10
Li (D2CE01610A/cit27/1) 2010; 79
Grant (D2CE01610A/cit37/1) 2021; 9
Pietrelli (D2CE01610A/cit26/1) 2020; 10
Chand (D2CE01610A/cit20/1) 2019; 25
Xu (D2CE01610A/cit34/1) 2013; 135
Shi (D2CE01610A/cit12/1) 2020; 504
Wang (D2CE01610A/cit3/1) 2021; 13
Shi (D2CE01610A/cit14/1) 2020; 44
Bai (D2CE01610A/cit11/1) 2020; 292
Wang (D2CE01610A/cit5/1) 2018; 29
References_xml – volume: 7
  start-page: 12847
  year: 2019
  ident: D2CE01610A/cit4/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01757
– volume: 25
  start-page: 1691
  year: 2019
  ident: D2CE01610A/cit20/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201805177
– volume: 210
  start-page: 76
  year: 2022
  ident: D2CE01610A/cit24/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.05.017
– volume: 34
  start-page: e5981
  year: 2020
  ident: D2CE01610A/cit10/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.5981
– volume: 219
  start-page: 298
  year: 2019
  ident: D2CE01610A/cit38/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.05.041
– volume: 9
  start-page: 22597
  year: 2017
  ident: D2CE01610A/cit16/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05969
– volume: 10
  start-page: 28656
  year: 2018
  ident: D2CE01610A/cit9/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09070
– volume: 126
  start-page: 630
  year: 2018
  ident: D2CE01610A/cit1/1
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.03.075
– volume: 54
  start-page: 5142
  year: 2015
  ident: D2CE01610A/cit36/1
  publication-title: Am. Ethnol.
– volume: 131
  start-page: 3144
  year: 2009
  ident: D2CE01610A/cit35/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808681m
– volume: 143
  start-page: 8838
  year: 2021
  ident: D2CE01610A/cit22/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03432
– volume: 83
  start-page: 102
  year: 2014
  ident: D2CE01610A/cit28/1
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2014.04.058
– volume: 44
  start-page: 28919
  year: 2019
  ident: D2CE01610A/cit8/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.09.096
– volume: 44
  start-page: 10562
  year: 2020
  ident: D2CE01610A/cit14/1
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ02085K
– volume: 622
  start-page: 145
  year: 2008
  ident: D2CE01610A/cit33/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2008.05.017
– volume: 135
  start-page: 7438
  year: 2013
  ident: D2CE01610A/cit34/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402727d
– volume: 120
  start-page: 8416
  year: 2020
  ident: D2CE01610A/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00842
– volume: 415
  start-page: 129021
  year: 2021
  ident: D2CE01610A/cit17/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129021
– volume: 42
  start-page: 339
  year: 2009
  ident: D2CE01610A/cit30/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889808042726
– volume: 20
  start-page: 3066
  year: 2018
  ident: D2CE01610A/cit15/1
  publication-title: CrystEngComm
  doi: 10.1039/C8CE00476E
– volume: 9
  start-page: 20
  year: 2021
  ident: D2CE01610A/cit21/1
  publication-title: Inorganics
  doi: 10.3390/inorganics9030020
– volume: 22
  start-page: 6425
  year: 2020
  ident: D2CE01610A/cit7/1
  publication-title: CrystEngComm
  doi: 10.1039/D0CE00902D
– volume: 29
  start-page: 336
  year: 2018
  ident: D2CE01610A/cit5/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2017.08.033
– volume: 8
  start-page: 17002
  year: 2020
  ident: D2CE01610A/cit31/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02991B
– volume: 292
  start-page: 109763
  year: 2020
  ident: D2CE01610A/cit11/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2019.109763
– volume: 10
  start-page: 38209
  year: 2018
  ident: D2CE01610A/cit25/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12846
– volume: 42
  start-page: 20197
  year: 2018
  ident: D2CE01610A/cit18/1
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ04331K
– volume: 5
  start-page: 12943
  year: 2017
  ident: D2CE01610A/cit23/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00169J
– volume: 13
  start-page: 7485
  year: 2021
  ident: D2CE01610A/cit3/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c21840
– volume: 55
  start-page: 1241
  year: 2019
  ident: D2CE01610A/cit19/1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08700H
– volume: 9
  start-page: 70
  year: 2021
  ident: D2CE01610A/cit37/1
  publication-title: Chemosensors
  doi: 10.3390/chemosensors9040070
– volume: 7
  start-page: 3765
  year: 2020
  ident: D2CE01610A/cit6/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00883D
– volume: 10
  start-page: 1925
  year: 2020
  ident: D2CE01610A/cit26/1
  publication-title: Appl. Sci.
  doi: 10.3390/app10061925
– volume: 79
  start-page: 786
  year: 2010
  ident: D2CE01610A/cit27/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2009.09.028
– volume: 504
  start-page: 144484
  year: 2020
  ident: D2CE01610A/cit12/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144484
– volume: 25
  start-page: 1598
  year: 2020
  ident: D2CE01610A/cit13/1
  publication-title: Molecules
  doi: 10.3390/molecules25071598
– volume: 46
  start-page: 1163
  year: 2021
  ident: D2CE01610A/cit29/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.235
– volume: 55
  start-page: 6271
  year: 2016
  ident: D2CE01610A/cit32/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b00928
SSID ssj0014110
Score 2.3799717
Snippet Proton exchange membranes have attracted considerable attention as the core component of fuel cells. Among them, the blending matrix membrane will result in a...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 23
SubjectTerms Blending
Chitosan
Dicarboxylic acids
Dimers
Fuel cells
Hydrogen bonds
Membranes
Metallic hydrogen
Nitrogen atoms
Oxygen atoms
Polyvinylpyrrolidone
Protons
Supramolecular frameworks
Trivalent chromium
Water stability
Title A Cr() supramolecular network composite membrane with high water stability and proton conductivity
URI https://www.proquest.com/docview/2791198981
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeELeJjoEswQOoMqR2ro9RSDWmMoTUioqXyIntrQ9NpzTRNn49x4lzmZgQ8BJVkeKHc776XPz5Owi9TRWfZVxCbaJch9jct0hKhUtcGnjUkSx16lkEX87d05V9tnbWo9HNgLVUlemH7Oe990r-x6vwDvyqb8n-g2e7ReEF_Ab_whM8DM-_8nE4jcDg_maz0cX9vroq-LYddzvNG4J3TRrXzCw53cot1MaQVdbNVy1UPL3mWiQRMsSaI3trZAN2WmsDCmWtBVsPlximsFFxuy_j_EJfLen6M5cVmZvO84_LXdWBZZdfkDNzBKJb0z2bQOZkvfnt_XezyDeIqGRR5cOmBGWaldXc8TdsJt36aHmnNa_ETK9rwk6z19qu1kJudDDazbi5Bd2Cjg23VstigzCtT_HvDQEW0wqqgmZSZ7PWINC1h_vnX5P5arFIlvF6eYAOKRQYdIwOw3j5edGdQNmQF7Vytiz42K93N4Hpq5KDoh0ZU6cmy8fokakpcNgA5AkayfwpejhQmnyGZIij4h0A5T2-CxNsYII7mOAWJljDBGuY4BomuIMJBpjgBiZ4CJPnaDWPl9EpMRM2SAaZXEkYZcITHs-U56VQ20rlK1vZqVCZ4DMRKD8DM0NlQwNlMa4skdmZK31X6wS6acCO0Djf5fIFwjb3hHJk4EMOaUPSyqngsN_TIBVs5qZsgt60ZkuuGiGVpCZAsCD5RKO4Nm44QSetRRPzR9sn1IOIrOecziboCKzcfd875fjP371ED3qUnqBxWVTyFSSTZfra-P0XgEp8QA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cr%28iii%29+supramolecular+network+composite+membrane+with+high+water+stability+and+proton+conductivity&rft.jtitle=CrystEngComm&rft.au=Shu-Fang%2C+Zhou&rft.au=Hong-Jie%2C+Zhang&rft.au=Chen-Xi%2C+Zhang&rft.au=Wang%2C+Qing-Lun&rft.date=2023-03-27&rft.pub=Royal+Society+of+Chemistry&rft.eissn=1466-8033&rft.volume=25&rft.issue=13&rft.spage=2003&rft.epage=2010&rft_id=info:doi/10.1039%2Fd2ce01610a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon