Synthesis of hierarchically porous tantalum phosphate catalysts by a sol-gel method for transformation of glucose to 5-hydroxymethylfurfural

A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). The TaP sample formed the TaPO 5 phase after calcining at 600 °C (TaP-600) for 4...

Full description

Saved in:
Bibliographic Details
Published inCatalysis science & technology Vol. 15; no. 5; pp. 1567 - 158
Main Authors Huang, Kai, Huhe, Taoli, Liu, Haichao, Gao, Da-Ming, Zhai, Yao
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 03.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). The TaP sample formed the TaPO 5 phase after calcining at 600 °C (TaP-600) for 4 hours with a surface area of ca. 103 m 2 g −1 and an acidity of ca. 0.18 mmol NH 3 g −1 . The TaP-600 sample had a co-continuous macroporous structure with a regular and orderly pore arrangement, which was conducive to the diffusion of reactants and products, thereby reducing side reactions. The TaP-600 sample can afford an HMF yield of 25.6% by treating with 1.0 wt% glucose at 170 °C in pure water. Using a water-DMSO homogeneous system or a water/MIBK biphasic reaction system can protect HMF from further decomposition, obtaining a HMF yield of 63.8% and 67.1% (mol mol −1 ), respectively. The TaP-600 sample also showed high catalytic performance at high glucose concentration in the water/MIBK system, e.g. the HMF yields reached 27.5% and 23.7% at glucose concentrations of 15.0 wt% and 20.0 wt%, respectively. The productivity of HMF reached 6.6 × 10 −2 mol h −1 kg solution −1 at an initial glucose concentration of 20.0 wt% in the water/MIBK biphasic system with a catalyst loading (weight ratio of catalyst to glucose) of 10.0 wt%. The TaP-600 sample can retain most of its activity after three catalytic cycles giving an HMF yield of 17.9%. These results demonstrate the significant potential of TaP for industrial-scale HMF production. A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF).
AbstractList A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol–gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). The TaP sample formed the TaPO 5 phase after calcining at 600 °C (TaP-600) for 4 hours with a surface area of ca. 103 m 2 g −1 and an acidity of ca. 0.18 mmol NH 3 g −1 . The TaP-600 sample had a co-continuous macroporous structure with a regular and orderly pore arrangement, which was conducive to the diffusion of reactants and products, thereby reducing side reactions. The TaP-600 sample can afford an HMF yield of 25.6% by treating with 1.0 wt% glucose at 170 °C in pure water. Using a water–DMSO homogeneous system or a water/MIBK biphasic reaction system can protect HMF from further decomposition, obtaining a HMF yield of 63.8% and 67.1% (mol mol −1 ), respectively. The TaP-600 sample also showed high catalytic performance at high glucose concentration in the water/MIBK system, e.g. the HMF yields reached 27.5% and 23.7% at glucose concentrations of 15.0 wt% and 20.0 wt%, respectively. The productivity of HMF reached 6.6 × 10 −2 mol h −1 kg solution −1 at an initial glucose concentration of 20.0 wt% in the water/MIBK biphasic system with a catalyst loading (weight ratio of catalyst to glucose) of 10.0 wt%. The TaP-600 sample can retain most of its activity after three catalytic cycles giving an HMF yield of 17.9%. These results demonstrate the significant potential of TaP for industrial-scale HMF production.
A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol–gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). The TaP sample formed the TaPO5 phase after calcining at 600 °C (TaP-600) for 4 hours with a surface area of ca. 103 m2 g−1 and an acidity of ca. 0.18 mmolNH3 g−1. The TaP-600 sample had a co-continuous macroporous structure with a regular and orderly pore arrangement, which was conducive to the diffusion of reactants and products, thereby reducing side reactions. The TaP-600 sample can afford an HMF yield of 25.6% by treating with 1.0 wt% glucose at 170 °C in pure water. Using a water–DMSO homogeneous system or a water/MIBK biphasic reaction system can protect HMF from further decomposition, obtaining a HMF yield of 63.8% and 67.1% (mol mol−1), respectively. The TaP-600 sample also showed high catalytic performance at high glucose concentration in the water/MIBK system, e.g. the HMF yields reached 27.5% and 23.7% at glucose concentrations of 15.0 wt% and 20.0 wt%, respectively. The productivity of HMF reached 6.6 × 10−2 mol h−1 kgsolution−1 at an initial glucose concentration of 20.0 wt% in the water/MIBK biphasic system with a catalyst loading (weight ratio of catalyst to glucose) of 10.0 wt%. The TaP-600 sample can retain most of its activity after three catalytic cycles giving an HMF yield of 17.9%. These results demonstrate the significant potential of TaP for industrial-scale HMF production.
A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). The TaP sample formed the TaPO 5 phase after calcining at 600 °C (TaP-600) for 4 hours with a surface area of ca. 103 m 2 g −1 and an acidity of ca. 0.18 mmol NH 3 g −1 . The TaP-600 sample had a co-continuous macroporous structure with a regular and orderly pore arrangement, which was conducive to the diffusion of reactants and products, thereby reducing side reactions. The TaP-600 sample can afford an HMF yield of 25.6% by treating with 1.0 wt% glucose at 170 °C in pure water. Using a water-DMSO homogeneous system or a water/MIBK biphasic reaction system can protect HMF from further decomposition, obtaining a HMF yield of 63.8% and 67.1% (mol mol −1 ), respectively. The TaP-600 sample also showed high catalytic performance at high glucose concentration in the water/MIBK system, e.g. the HMF yields reached 27.5% and 23.7% at glucose concentrations of 15.0 wt% and 20.0 wt%, respectively. The productivity of HMF reached 6.6 × 10 −2 mol h −1 kg solution −1 at an initial glucose concentration of 20.0 wt% in the water/MIBK biphasic system with a catalyst loading (weight ratio of catalyst to glucose) of 10.0 wt%. The TaP-600 sample can retain most of its activity after three catalytic cycles giving an HMF yield of 17.9%. These results demonstrate the significant potential of TaP for industrial-scale HMF production. A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF).
Author Huhe, Taoli
Zhai, Yao
Gao, Da-Ming
Huang, Kai
Liu, Haichao
AuthorAffiliation Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization
National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization
Peking University
Beijing National Laboratory for Molecular Science
Changzhou University
College of Chemistry and Molecular Engineering
Institute of Urban and Rural Mining Research
School of Environmental Science and Engineering
AuthorAffiliation_xml – name: National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization
– name: Changzhou University
– name: Beijing National Laboratory for Molecular Science
– name: Peking University
– name: School of Environmental Science and Engineering
– name: Institute of Urban and Rural Mining Research
– name: Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization
– name: College of Chemistry and Molecular Engineering
Author_xml – sequence: 1
  givenname: Kai
  surname: Huang
  fullname: Huang, Kai
– sequence: 2
  givenname: Taoli
  surname: Huhe
  fullname: Huhe, Taoli
– sequence: 3
  givenname: Haichao
  surname: Liu
  fullname: Liu, Haichao
– sequence: 4
  givenname: Da-Ming
  surname: Gao
  fullname: Gao, Da-Ming
– sequence: 5
  givenname: Yao
  surname: Zhai
  fullname: Zhai, Yao
BookMark eNpFkU1LxDAQhoOs4LruxbsQ8CZUkyZNt0dZP3HBg3rwVNIk3XZNm5qkYP6DP9qsK-swMMPLM-_AzDGY9KZXAJxidIkRKa4kFQFhjNOPAzBNEaUJzRme7PuMHIG5cxsUgxYYLdIp-H4JvW-Uax00NWxaZbkVTSu41gEOxprRQc97z_XYwaExbmi4V1DwqATnHawC5NAZnayVhp3yjZGwNhZ6y3sXm4771vRb87UehXEKegOzpAnSmq-wHQi6Hm1Mrk_AYc21U_O_OgNvd7evy4dk9Xz_uLxeJSKlyCepRJmqCBb5gtBCiiovKpThgjDGKZKCEUlqVDHFJK9YzhdZITmuooRqKmlOZuB85ztY8zkq58uNGW0fV5YE52mRUcRYpC52lLDGOavqcrBtx20oMSq3By9v6PL99-BPET7bwdaJPff_EPIDR6eClg
Cites_doi 10.1021/acs.iecr.0c01044
10.1016/j.micromeso.2017.09.023
10.1016/j.jcat.2012.12.028
10.1038/s41929-018-0148-8
10.1016/j.cattod.2013.11.027
10.1007/s11426-016-9035-1
10.1002/cctc.201402794
10.1016/j.mcat.2021.112079
10.1016/j.gee.2022.09.012
10.1007/s10904-021-02062-6
10.1016/j.jtice.2022.104427
10.1021/ie061673e
10.1007/s13204-022-02620-5
10.1016/j.catcom.2013.08.023
10.1016/j.cej.2021.132756
10.1126/science.1126337
10.1016/j.cattod.2017.04.049
10.1021/acs.iecr.1c01121
10.1039/C7RA00701A
10.1039/D2RA02182J
10.1016/j.apcatb.2013.07.002
10.1016/j.micromeso.2020.110328
10.1070/RC2009v078n01ABEH003892
10.1016/j.fuel.2018.11.025
10.1016/S1381-1169(99)00248-4
10.1039/D0GC02770G
10.3390/catal9121073
10.1002/jctb.7282
10.1007/s10971-011-2652-z
10.1039/C9NJ01677E
10.1016/j.ijbiomac.2019.01.104
10.1016/j.apcata.2019.117267
10.1073/pnas.0912073107
10.1016/j.cej.2014.05.121
10.1039/C8CY00803E
10.1021/acscatal.6b03682
10.1016/j.jnoncrysol.2006.12.093
10.1039/C5CY02070K
10.1021/ja110482r
10.1016/j.apcatb.2017.01.065
10.1016/j.apcatb.2014.02.024
10.1039/C6CY00820H
10.1007/s10570-018-1717-3
10.1002/slct.201903356
10.1016/j.cattod.2023.114070
10.1021/acscatal.3c03153
10.1016/j.micromeso.2015.12.002
10.1021/jp210577t
10.1021/acs.chemrev.6b00311
10.1039/C6RA07830C
10.5458/jag.jag.JAG-2013_006
10.1002/slct.201901084
10.1039/c3gc42018c
10.1021/ie051088y
10.3390/ma14154247
10.1016/j.apcatb.2012.04.023
10.1039/C1GC15972K
10.1016/j.apcatb.2021.119938
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/d4cy01112k
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2044-4761
EndPage 158
ExternalDocumentID 10_1039_D4CY01112K
d4cy01112k
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACAYK
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
R7G
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c240t-2d05eb31c78349dcb79b0519366a40dc63d3f0b6e6dab67a859da1bf0b0f4d473
ISSN 2044-4753
IngestDate Mon Jun 30 12:26:06 EDT 2025
Tue Jul 01 05:20:57 EDT 2025
Tue May 27 12:02:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c240t-2d05eb31c78349dcb79b0519366a40dc63d3f0b6e6dab67a859da1bf0b0f4d473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9175-3371
0000-0002-4943-8068
PQID 3172954066
PQPubID 2047527
PageCount 14
ParticipantIDs rsc_primary_d4cy01112k
crossref_primary_10_1039_D4CY01112K
proquest_journals_3172954066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-03
PublicationDateYYYYMMDD 2025-03-03
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-03
  day: 03
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Catalysis science & technology
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhang (D4CY01112K/cit52/1) 2019; 4
Yan (D4CY01112K/cit51/1) 2019; 4
Agirrezabal-Telleria (D4CY01112K/cit39/1) 2014; 234
Tempelman (D4CY01112K/cit14/1) 2019; 588
Patrylak (D4CY01112K/cit56/1) 2023; 13
Armaroli (D4CY01112K/cit25/1) 2000; 151
Gines-Molina (D4CY01112K/cit47/1) 2019; 9
Adem (D4CY01112K/cit31/1) 2012; 116
Junior (D4CY01112K/cit16/1) 2022; 518
Zhu (D4CY01112K/cit28/1) 2016; 225
Yang (D4CY01112K/cit10/1) 2012; 14
Li (D4CY01112K/cit9/1) 2017; 7
Liu (D4CY01112K/cit5/1) 2020; 59
Zhang (D4CY01112K/cit3/1) 2019; 128
Rao (D4CY01112K/cit43/1) 2019; 43
Jiménez-Morales (D4CY01112K/cit17/1) 2014; 144
Gupta (D4CY01112K/cit21/1) 2017; 7
Fu (D4CY01112K/cit41/1) 2022; 9
Jiménez-Morales (D4CY01112K/cit34/1) 2012; 123–124
Zhang (D4CY01112K/cit54/1) 2022; 98
Rodriguez Quiroz (D4CY01112K/cit20/1) 2023; 13
Asghari (D4CY01112K/cit38/1) 2007; 46
Salak Asghari (D4CY01112K/cit8/1) 2006; 45
Teong (D4CY01112K/cit42/1) 2014; 16
Ordomsky (D4CY01112K/cit29/1) 2013; 300
Atanda (D4CY01112K/cit49/1) 2016; 6
Bounoukta (D4CY01112K/cit57/1) 2021; 286
Liu (D4CY01112K/cit24/1) 2022; 430
Atanda (D4CY01112K/cit40/1) 2015; 7
Eblagon (D4CY01112K/cit50/1) 2023; 418
Pinto (D4CY01112K/cit35/1) 2019; 239
Gao (D4CY01112K/cit46/1) 2014; 61
Wang (D4CY01112K/cit30/1) 2018; 258
Nakajima (D4CY01112K/cit22/1) 2011; 133
Epiphanova (D4CY01112K/cit26/1) 2011; 61
Mamo (D4CY01112K/cit13/1) 2016; 6
Li (D4CY01112K/cit44/1) 2022; 12
García-Sancho (D4CY01112K/cit48/1) 2017; 206
Carta (D4CY01112K/cit33/1) 2007; 353
Enomoto (D4CY01112K/cit12/1) 2018; 25
Román-Leshkov (D4CY01112K/cit11/1) 2006; 312
Jaiswal (D4CY01112K/cit4/1) 2021; 31
Izaak (D4CY01112K/cit27/1) 2009; 78
Gao (D4CY01112K/cit6/1) 2018; 8
Zhang (D4CY01112K/cit37/1) 2014; 43
Song (D4CY01112K/cit55/1) 2021; 60
Wang (D4CY01112K/cit7/1) 2017; 60
Villanueva (D4CY01112K/cit15/1) 2018; 302
Tomer (D4CY01112K/cit58/1) 2022; 136
Marques (D4CY01112K/cit32/1) 2021; 14
Binder (D4CY01112K/cit19/1) 2010; 107
Zhang (D4CY01112K/cit53/1) 2020; 305
Wu (D4CY01112K/cit1/1) 2018; 1
Jia (D4CY01112K/cit45/1) 2014; 254
Xingguang (D4CY01112K/cit18/1) 2016; 116
Hou (D4CY01112K/cit2/1) 2021; 23
Xing (D4CY01112K/cit36/1) 2016; 6
Jiménez-Morales (D4CY01112K/cit23/1) 2014; 154–155
References_xml – volume: 59
  start-page: 17218
  year: 2020
  ident: D4CY01112K/cit5/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c01044
– volume: 258
  start-page: 262
  year: 2018
  ident: D4CY01112K/cit30/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.09.023
– volume: 300
  start-page: 37
  year: 2013
  ident: D4CY01112K/cit29/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.12.028
– volume: 1
  start-page: 772
  year: 2018
  ident: D4CY01112K/cit1/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0148-8
– volume: 234
  start-page: 42
  year: 2014
  ident: D4CY01112K/cit39/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2013.11.027
– volume: 60
  start-page: 870
  year: 2017
  ident: D4CY01112K/cit7/1
  publication-title: Sci. China:Chem.
  doi: 10.1007/s11426-016-9035-1
– volume: 7
  start-page: 781
  year: 2015
  ident: D4CY01112K/cit40/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402794
– volume: 518
  start-page: 112079
  year: 2022
  ident: D4CY01112K/cit16/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2021.112079
– volume: 9
  start-page: 1016
  year: 2022
  ident: D4CY01112K/cit41/1
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2022.09.012
– volume: 31
  start-page: 4504
  year: 2021
  ident: D4CY01112K/cit4/1
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-021-02062-6
– volume: 136
  start-page: 104427
  year: 2022
  ident: D4CY01112K/cit58/1
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2022.104427
– volume: 46
  start-page: 7703
  year: 2007
  ident: D4CY01112K/cit38/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie061673e
– volume: 13
  start-page: 4795
  year: 2023
  ident: D4CY01112K/cit56/1
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-022-02620-5
– volume: 43
  start-page: 29
  year: 2014
  ident: D4CY01112K/cit37/1
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2013.08.023
– volume: 430
  start-page: 132756
  year: 2022
  ident: D4CY01112K/cit24/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132756
– volume: 312
  start-page: 1933
  year: 2006
  ident: D4CY01112K/cit11/1
  publication-title: Science
  doi: 10.1126/science.1126337
– volume: 302
  start-page: 100
  year: 2018
  ident: D4CY01112K/cit15/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2017.04.049
– volume: 60
  start-page: 5838
  year: 2021
  ident: D4CY01112K/cit55/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c01121
– volume: 7
  start-page: 14330
  year: 2017
  ident: D4CY01112K/cit9/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA00701A
– volume: 12
  start-page: 13251
  year: 2022
  ident: D4CY01112K/cit44/1
  publication-title: RSC Adv.
  doi: 10.1039/D2RA02182J
– volume: 144
  start-page: 22
  year: 2014
  ident: D4CY01112K/cit17/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2013.07.002
– volume: 305
  start-page: 110328
  year: 2020
  ident: D4CY01112K/cit53/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2020.110328
– volume: 78
  start-page: 77
  year: 2009
  ident: D4CY01112K/cit27/1
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RC2009v078n01ABEH003892
– volume: 239
  start-page: 290
  year: 2019
  ident: D4CY01112K/cit35/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.11.025
– volume: 151
  start-page: 233
  year: 2000
  ident: D4CY01112K/cit25/1
  publication-title: J. Mol. Catal. A:Chem.
  doi: 10.1016/S1381-1169(99)00248-4
– volume: 23
  start-page: 119
  year: 2021
  ident: D4CY01112K/cit2/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC02770G
– volume: 9
  start-page: 1073
  year: 2019
  ident: D4CY01112K/cit47/1
  publication-title: Catalysts
  doi: 10.3390/catal9121073
– volume: 98
  start-page: 773
  year: 2022
  ident: D4CY01112K/cit54/1
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.7282
– volume: 61
  start-page: 509
  year: 2011
  ident: D4CY01112K/cit26/1
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-011-2652-z
– volume: 43
  start-page: 12483
  year: 2019
  ident: D4CY01112K/cit43/1
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ01677E
– volume: 128
  start-page: 132
  year: 2019
  ident: D4CY01112K/cit3/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.01.104
– volume: 588
  start-page: 117268
  year: 2019
  ident: D4CY01112K/cit14/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2019.117267
– volume: 107
  start-page: 4516
  year: 2010
  ident: D4CY01112K/cit19/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0912073107
– volume: 254
  start-page: 333
  year: 2014
  ident: D4CY01112K/cit45/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.05.121
– volume: 8
  start-page: 3675
  year: 2018
  ident: D4CY01112K/cit6/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY00803E
– volume: 7
  start-page: 2430
  year: 2017
  ident: D4CY01112K/cit21/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03682
– volume: 353
  start-page: 1141
  year: 2007
  ident: D4CY01112K/cit33/1
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2006.12.093
– volume: 6
  start-page: 2766
  year: 2016
  ident: D4CY01112K/cit13/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY02070K
– volume: 133
  start-page: 4224
  year: 2011
  ident: D4CY01112K/cit22/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110482r
– volume: 206
  start-page: 617
  year: 2017
  ident: D4CY01112K/cit48/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2017.01.065
– volume: 154–155
  start-page: 190
  year: 2014
  ident: D4CY01112K/cit23/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2014.02.024
– volume: 6
  start-page: 6257
  year: 2016
  ident: D4CY01112K/cit49/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY00820H
– volume: 25
  start-page: 2249
  year: 2018
  ident: D4CY01112K/cit12/1
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1717-3
– volume: 4
  start-page: 13182
  year: 2019
  ident: D4CY01112K/cit51/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201903356
– volume: 418
  start-page: 114070
  year: 2023
  ident: D4CY01112K/cit50/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2023.114070
– volume: 13
  start-page: 14221
  year: 2023
  ident: D4CY01112K/cit20/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c03153
– volume: 225
  start-page: 122
  year: 2016
  ident: D4CY01112K/cit28/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2015.12.002
– volume: 116
  start-page: 13749
  year: 2012
  ident: D4CY01112K/cit31/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp210577t
– volume: 116
  start-page: 12328
  year: 2016
  ident: D4CY01112K/cit18/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00311
– volume: 6
  start-page: 59081
  year: 2016
  ident: D4CY01112K/cit36/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA07830C
– volume: 61
  start-page: 9
  year: 2014
  ident: D4CY01112K/cit46/1
  publication-title: J. Appl. Glycosci.
  doi: 10.5458/jag.jag.JAG-2013_006
– volume: 4
  start-page: 5724
  year: 2019
  ident: D4CY01112K/cit52/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201901084
– volume: 16
  start-page: 2015
  year: 2014
  ident: D4CY01112K/cit42/1
  publication-title: Green Chem.
  doi: 10.1039/c3gc42018c
– volume: 45
  start-page: 2163
  year: 2006
  ident: D4CY01112K/cit8/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie051088y
– volume: 14
  start-page: 4247
  year: 2021
  ident: D4CY01112K/cit32/1
  publication-title: Materials
  doi: 10.3390/ma14154247
– volume: 123–124
  start-page: 316
  year: 2012
  ident: D4CY01112K/cit34/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2012.04.023
– volume: 14
  start-page: 509
  year: 2012
  ident: D4CY01112K/cit10/1
  publication-title: Green Chem.
  doi: 10.1039/C1GC15972K
– volume: 286
  start-page: 119938
  year: 2021
  ident: D4CY01112K/cit57/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.119938
SSID ssj0000491082
Score 2.4031067
Snippet A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase...
A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol–gel method accompanied by phase...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 1567
SubjectTerms Acidity
Catalysts
Chemical synthesis
Decomposition reactions
Glucose
Hydroxymethylfurfural
Phase separation
Sol-gel processes
Tantalum
Title Synthesis of hierarchically porous tantalum phosphate catalysts by a sol-gel method for transformation of glucose to 5-hydroxymethylfurfural
URI https://www.proquest.com/docview/3172954066
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6uwe4IP5WFBZkCW6VlyR2kua4lJ-KslzYFcspsmNnu6JqqjY5hBNPwIWX4Xl4EsZx7KQUpIVLVFm1m2S-znwzHs8g9CwHK6KrfhMquEeYUmMy5oEgPIsElZHKoyYOefo-mp6ztxfhxWDwo5e1VJXiOPvyx3Ml_yNVGAO56lOy_yBZtygMwGeQL1xBwnC9low_1Evgb21JEd3UutkWgLeuQxbFWme36ibBHBTQaDUvNqs5MMtRE7GpN-VGU08-glu0GQ_0Ui3antIm_bDHag2vtBnuwFhDMq-lToLRE-pFXq1zXcKjz3Yn5pfg_uzpIQ20cieaP63aqPWMX3Vjc1MQmBcLN_juqmpsJdfJ_oXLHeKFSc8np9YQt3GMIGwSuWin7gKPMcJiUzr4WPXHTLl2p6_DHi7DnvIFVzTuGXI_ND2idoyER3WN1Zds8gmUmx_MOlNot_9_s5Aub7HZsadJ2s3dQwcBOCigYQ9OZi_efHTxPfC8fK_pVeYezFbHpcnzboFtPtQ5OXtr24GmYTpnt9Gt1kXBJwZvd9BALe-iGxPbGfAe-uZwh4scb-MOG9xhizvscIcd7rCoMceAu59fvwPisEEcBqDhbcTp5VvE4bLAf0HcfXT--tXZZEravh4kA_5YkkB6oRLUz3STl0RmIk5E40lEEWeezCIqae6JSEWSiyjm4zCR3Bcw5OVMspgeov1lsVQPEPbyPAZCrHO7NDWGrzMpgzgAgAUcPOchemrfbroy5VvSXSEO0ZF98Wn7996kQKz1HjhQ8iE6BGG4-ZJldTPv88Nrrf4I3ezwfoT2y3WlHgOTLcWTFjS_AJTWpA0
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+hierarchically+porous+tantalum+phosphate+catalysts+by+a+sol%E2%80%93gel+method+for+transformation+of+glucose+to+5-hydroxymethylfurfural&rft.jtitle=Catalysis+science+%26+technology&rft.au=Huang%2C+Kai&rft.au=Huhe%2C+Taoli&rft.au=Liu%2C+Haichao&rft.au=Gao%2C+Da-Ming&rft.date=2025-03-03&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=15&rft.issue=5&rft.spage=1567&rft.epage=1580&rft_id=info:doi/10.1039%2FD4CY01112K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4CY01112K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon