Synthesis of hierarchically porous tantalum phosphate catalysts by a sol-gel method for transformation of glucose to 5-hydroxymethylfurfural
A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). The TaP sample formed the TaPO 5 phase after calcining at 600 °C (TaP-600) for 4...
Saved in:
Published in | Catalysis science & technology Vol. 15; no. 5; pp. 1567 - 158 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
03.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). The TaP sample formed the TaPO
5
phase after calcining at 600 °C (TaP-600) for 4 hours with a surface area of
ca.
103 m
2
g
−1
and an acidity of
ca.
0.18 mmol
NH
3
g
−1
. The TaP-600 sample had a co-continuous macroporous structure with a regular and orderly pore arrangement, which was conducive to the diffusion of reactants and products, thereby reducing side reactions. The TaP-600 sample can afford an HMF yield of 25.6% by treating with 1.0 wt% glucose at 170 °C in pure water. Using a water-DMSO homogeneous system or a water/MIBK biphasic reaction system can protect HMF from further decomposition, obtaining a HMF yield of 63.8% and 67.1% (mol mol
−1
), respectively. The TaP-600 sample also showed high catalytic performance at high glucose concentration in the water/MIBK system,
e.g.
the HMF yields reached 27.5% and 23.7% at glucose concentrations of 15.0 wt% and 20.0 wt%, respectively. The productivity of HMF reached 6.6 × 10
−2
mol h
−1
kg
solution
−1
at an initial glucose concentration of 20.0 wt% in the water/MIBK biphasic system with a catalyst loading (weight ratio of catalyst to glucose) of 10.0 wt%. The TaP-600 sample can retain most of its activity after three catalytic cycles giving an HMF yield of 17.9%. These results demonstrate the significant potential of TaP for industrial-scale HMF production.
A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). |
---|---|
AbstractList | A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol–gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). The TaP sample formed the TaPO 5 phase after calcining at 600 °C (TaP-600) for 4 hours with a surface area of ca. 103 m 2 g −1 and an acidity of ca. 0.18 mmol NH 3 g −1 . The TaP-600 sample had a co-continuous macroporous structure with a regular and orderly pore arrangement, which was conducive to the diffusion of reactants and products, thereby reducing side reactions. The TaP-600 sample can afford an HMF yield of 25.6% by treating with 1.0 wt% glucose at 170 °C in pure water. Using a water–DMSO homogeneous system or a water/MIBK biphasic reaction system can protect HMF from further decomposition, obtaining a HMF yield of 63.8% and 67.1% (mol mol −1 ), respectively. The TaP-600 sample also showed high catalytic performance at high glucose concentration in the water/MIBK system, e.g. the HMF yields reached 27.5% and 23.7% at glucose concentrations of 15.0 wt% and 20.0 wt%, respectively. The productivity of HMF reached 6.6 × 10 −2 mol h −1 kg solution −1 at an initial glucose concentration of 20.0 wt% in the water/MIBK biphasic system with a catalyst loading (weight ratio of catalyst to glucose) of 10.0 wt%. The TaP-600 sample can retain most of its activity after three catalytic cycles giving an HMF yield of 17.9%. These results demonstrate the significant potential of TaP for industrial-scale HMF production. A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol–gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). The TaP sample formed the TaPO5 phase after calcining at 600 °C (TaP-600) for 4 hours with a surface area of ca. 103 m2 g−1 and an acidity of ca. 0.18 mmolNH3 g−1. The TaP-600 sample had a co-continuous macroporous structure with a regular and orderly pore arrangement, which was conducive to the diffusion of reactants and products, thereby reducing side reactions. The TaP-600 sample can afford an HMF yield of 25.6% by treating with 1.0 wt% glucose at 170 °C in pure water. Using a water–DMSO homogeneous system or a water/MIBK biphasic reaction system can protect HMF from further decomposition, obtaining a HMF yield of 63.8% and 67.1% (mol mol−1), respectively. The TaP-600 sample also showed high catalytic performance at high glucose concentration in the water/MIBK system, e.g. the HMF yields reached 27.5% and 23.7% at glucose concentrations of 15.0 wt% and 20.0 wt%, respectively. The productivity of HMF reached 6.6 × 10−2 mol h−1 kgsolution−1 at an initial glucose concentration of 20.0 wt% in the water/MIBK biphasic system with a catalyst loading (weight ratio of catalyst to glucose) of 10.0 wt%. The TaP-600 sample can retain most of its activity after three catalytic cycles giving an HMF yield of 17.9%. These results demonstrate the significant potential of TaP for industrial-scale HMF production. A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). The TaP sample formed the TaPO 5 phase after calcining at 600 °C (TaP-600) for 4 hours with a surface area of ca. 103 m 2 g −1 and an acidity of ca. 0.18 mmol NH 3 g −1 . The TaP-600 sample had a co-continuous macroporous structure with a regular and orderly pore arrangement, which was conducive to the diffusion of reactants and products, thereby reducing side reactions. The TaP-600 sample can afford an HMF yield of 25.6% by treating with 1.0 wt% glucose at 170 °C in pure water. Using a water-DMSO homogeneous system or a water/MIBK biphasic reaction system can protect HMF from further decomposition, obtaining a HMF yield of 63.8% and 67.1% (mol mol −1 ), respectively. The TaP-600 sample also showed high catalytic performance at high glucose concentration in the water/MIBK system, e.g. the HMF yields reached 27.5% and 23.7% at glucose concentrations of 15.0 wt% and 20.0 wt%, respectively. The productivity of HMF reached 6.6 × 10 −2 mol h −1 kg solution −1 at an initial glucose concentration of 20.0 wt% in the water/MIBK biphasic system with a catalyst loading (weight ratio of catalyst to glucose) of 10.0 wt%. The TaP-600 sample can retain most of its activity after three catalytic cycles giving an HMF yield of 17.9%. These results demonstrate the significant potential of TaP for industrial-scale HMF production. A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase separation for converting glucose to 5-hydroxymethylfurfural (HMF). |
Author | Huhe, Taoli Zhai, Yao Gao, Da-Ming Huang, Kai Liu, Haichao |
AuthorAffiliation | Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization Peking University Beijing National Laboratory for Molecular Science Changzhou University College of Chemistry and Molecular Engineering Institute of Urban and Rural Mining Research School of Environmental Science and Engineering |
AuthorAffiliation_xml | – name: National-local Joint Engineering Research Center of Biomass Refine and High-Quality Utilization – name: Changzhou University – name: Beijing National Laboratory for Molecular Science – name: Peking University – name: School of Environmental Science and Engineering – name: Institute of Urban and Rural Mining Research – name: Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization – name: College of Chemistry and Molecular Engineering |
Author_xml | – sequence: 1 givenname: Kai surname: Huang fullname: Huang, Kai – sequence: 2 givenname: Taoli surname: Huhe fullname: Huhe, Taoli – sequence: 3 givenname: Haichao surname: Liu fullname: Liu, Haichao – sequence: 4 givenname: Da-Ming surname: Gao fullname: Gao, Da-Ming – sequence: 5 givenname: Yao surname: Zhai fullname: Zhai, Yao |
BookMark | eNpFkU1LxDAQhoOs4LruxbsQ8CZUkyZNt0dZP3HBg3rwVNIk3XZNm5qkYP6DP9qsK-swMMPLM-_AzDGY9KZXAJxidIkRKa4kFQFhjNOPAzBNEaUJzRme7PuMHIG5cxsUgxYYLdIp-H4JvW-Uax00NWxaZbkVTSu41gEOxprRQc97z_XYwaExbmi4V1DwqATnHawC5NAZnayVhp3yjZGwNhZ6y3sXm4771vRb87UehXEKegOzpAnSmq-wHQi6Hm1Mrk_AYc21U_O_OgNvd7evy4dk9Xz_uLxeJSKlyCepRJmqCBb5gtBCiiovKpThgjDGKZKCEUlqVDHFJK9YzhdZITmuooRqKmlOZuB85ztY8zkq58uNGW0fV5YE52mRUcRYpC52lLDGOavqcrBtx20oMSq3By9v6PL99-BPET7bwdaJPff_EPIDR6eClg |
Cites_doi | 10.1021/acs.iecr.0c01044 10.1016/j.micromeso.2017.09.023 10.1016/j.jcat.2012.12.028 10.1038/s41929-018-0148-8 10.1016/j.cattod.2013.11.027 10.1007/s11426-016-9035-1 10.1002/cctc.201402794 10.1016/j.mcat.2021.112079 10.1016/j.gee.2022.09.012 10.1007/s10904-021-02062-6 10.1016/j.jtice.2022.104427 10.1021/ie061673e 10.1007/s13204-022-02620-5 10.1016/j.catcom.2013.08.023 10.1016/j.cej.2021.132756 10.1126/science.1126337 10.1016/j.cattod.2017.04.049 10.1021/acs.iecr.1c01121 10.1039/C7RA00701A 10.1039/D2RA02182J 10.1016/j.apcatb.2013.07.002 10.1016/j.micromeso.2020.110328 10.1070/RC2009v078n01ABEH003892 10.1016/j.fuel.2018.11.025 10.1016/S1381-1169(99)00248-4 10.1039/D0GC02770G 10.3390/catal9121073 10.1002/jctb.7282 10.1007/s10971-011-2652-z 10.1039/C9NJ01677E 10.1016/j.ijbiomac.2019.01.104 10.1016/j.apcata.2019.117267 10.1073/pnas.0912073107 10.1016/j.cej.2014.05.121 10.1039/C8CY00803E 10.1021/acscatal.6b03682 10.1016/j.jnoncrysol.2006.12.093 10.1039/C5CY02070K 10.1021/ja110482r 10.1016/j.apcatb.2017.01.065 10.1016/j.apcatb.2014.02.024 10.1039/C6CY00820H 10.1007/s10570-018-1717-3 10.1002/slct.201903356 10.1016/j.cattod.2023.114070 10.1021/acscatal.3c03153 10.1016/j.micromeso.2015.12.002 10.1021/jp210577t 10.1021/acs.chemrev.6b00311 10.1039/C6RA07830C 10.5458/jag.jag.JAG-2013_006 10.1002/slct.201901084 10.1039/c3gc42018c 10.1021/ie051088y 10.3390/ma14154247 10.1016/j.apcatb.2012.04.023 10.1039/C1GC15972K 10.1016/j.apcatb.2021.119938 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1039/d4cy01112k |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2044-4761 |
EndPage | 158 |
ExternalDocumentID | 10_1039_D4CY01112K d4cy01112k |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACAYK ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- OK1 R7G RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH AAYXX CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c240t-2d05eb31c78349dcb79b0519366a40dc63d3f0b6e6dab67a859da1bf0b0f4d473 |
ISSN | 2044-4753 |
IngestDate | Mon Jun 30 12:26:06 EDT 2025 Tue Jul 01 05:20:57 EDT 2025 Tue May 27 12:02:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c240t-2d05eb31c78349dcb79b0519366a40dc63d3f0b6e6dab67a859da1bf0b0f4d473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9175-3371 0000-0002-4943-8068 |
PQID | 3172954066 |
PQPubID | 2047527 |
PageCount | 14 |
ParticipantIDs | rsc_primary_d4cy01112k crossref_primary_10_1039_D4CY01112K proquest_journals_3172954066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-03 |
PublicationDateYYYYMMDD | 2025-03-03 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Catalysis science & technology |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (D4CY01112K/cit52/1) 2019; 4 Yan (D4CY01112K/cit51/1) 2019; 4 Agirrezabal-Telleria (D4CY01112K/cit39/1) 2014; 234 Tempelman (D4CY01112K/cit14/1) 2019; 588 Patrylak (D4CY01112K/cit56/1) 2023; 13 Armaroli (D4CY01112K/cit25/1) 2000; 151 Gines-Molina (D4CY01112K/cit47/1) 2019; 9 Adem (D4CY01112K/cit31/1) 2012; 116 Junior (D4CY01112K/cit16/1) 2022; 518 Zhu (D4CY01112K/cit28/1) 2016; 225 Yang (D4CY01112K/cit10/1) 2012; 14 Li (D4CY01112K/cit9/1) 2017; 7 Liu (D4CY01112K/cit5/1) 2020; 59 Zhang (D4CY01112K/cit3/1) 2019; 128 Rao (D4CY01112K/cit43/1) 2019; 43 Jiménez-Morales (D4CY01112K/cit17/1) 2014; 144 Gupta (D4CY01112K/cit21/1) 2017; 7 Fu (D4CY01112K/cit41/1) 2022; 9 Jiménez-Morales (D4CY01112K/cit34/1) 2012; 123–124 Zhang (D4CY01112K/cit54/1) 2022; 98 Rodriguez Quiroz (D4CY01112K/cit20/1) 2023; 13 Asghari (D4CY01112K/cit38/1) 2007; 46 Salak Asghari (D4CY01112K/cit8/1) 2006; 45 Teong (D4CY01112K/cit42/1) 2014; 16 Ordomsky (D4CY01112K/cit29/1) 2013; 300 Atanda (D4CY01112K/cit49/1) 2016; 6 Bounoukta (D4CY01112K/cit57/1) 2021; 286 Liu (D4CY01112K/cit24/1) 2022; 430 Atanda (D4CY01112K/cit40/1) 2015; 7 Eblagon (D4CY01112K/cit50/1) 2023; 418 Pinto (D4CY01112K/cit35/1) 2019; 239 Gao (D4CY01112K/cit46/1) 2014; 61 Wang (D4CY01112K/cit30/1) 2018; 258 Nakajima (D4CY01112K/cit22/1) 2011; 133 Epiphanova (D4CY01112K/cit26/1) 2011; 61 Mamo (D4CY01112K/cit13/1) 2016; 6 Li (D4CY01112K/cit44/1) 2022; 12 García-Sancho (D4CY01112K/cit48/1) 2017; 206 Carta (D4CY01112K/cit33/1) 2007; 353 Enomoto (D4CY01112K/cit12/1) 2018; 25 Román-Leshkov (D4CY01112K/cit11/1) 2006; 312 Jaiswal (D4CY01112K/cit4/1) 2021; 31 Izaak (D4CY01112K/cit27/1) 2009; 78 Gao (D4CY01112K/cit6/1) 2018; 8 Zhang (D4CY01112K/cit37/1) 2014; 43 Song (D4CY01112K/cit55/1) 2021; 60 Wang (D4CY01112K/cit7/1) 2017; 60 Villanueva (D4CY01112K/cit15/1) 2018; 302 Tomer (D4CY01112K/cit58/1) 2022; 136 Marques (D4CY01112K/cit32/1) 2021; 14 Binder (D4CY01112K/cit19/1) 2010; 107 Zhang (D4CY01112K/cit53/1) 2020; 305 Wu (D4CY01112K/cit1/1) 2018; 1 Jia (D4CY01112K/cit45/1) 2014; 254 Xingguang (D4CY01112K/cit18/1) 2016; 116 Hou (D4CY01112K/cit2/1) 2021; 23 Xing (D4CY01112K/cit36/1) 2016; 6 Jiménez-Morales (D4CY01112K/cit23/1) 2014; 154–155 |
References_xml | – volume: 59 start-page: 17218 year: 2020 ident: D4CY01112K/cit5/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c01044 – volume: 258 start-page: 262 year: 2018 ident: D4CY01112K/cit30/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.09.023 – volume: 300 start-page: 37 year: 2013 ident: D4CY01112K/cit29/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2012.12.028 – volume: 1 start-page: 772 year: 2018 ident: D4CY01112K/cit1/1 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0148-8 – volume: 234 start-page: 42 year: 2014 ident: D4CY01112K/cit39/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2013.11.027 – volume: 60 start-page: 870 year: 2017 ident: D4CY01112K/cit7/1 publication-title: Sci. China:Chem. doi: 10.1007/s11426-016-9035-1 – volume: 7 start-page: 781 year: 2015 ident: D4CY01112K/cit40/1 publication-title: ChemCatChem doi: 10.1002/cctc.201402794 – volume: 518 start-page: 112079 year: 2022 ident: D4CY01112K/cit16/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2021.112079 – volume: 9 start-page: 1016 year: 2022 ident: D4CY01112K/cit41/1 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2022.09.012 – volume: 31 start-page: 4504 year: 2021 ident: D4CY01112K/cit4/1 publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-021-02062-6 – volume: 136 start-page: 104427 year: 2022 ident: D4CY01112K/cit58/1 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2022.104427 – volume: 46 start-page: 7703 year: 2007 ident: D4CY01112K/cit38/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie061673e – volume: 13 start-page: 4795 year: 2023 ident: D4CY01112K/cit56/1 publication-title: Appl. Nanosci. doi: 10.1007/s13204-022-02620-5 – volume: 43 start-page: 29 year: 2014 ident: D4CY01112K/cit37/1 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.08.023 – volume: 430 start-page: 132756 year: 2022 ident: D4CY01112K/cit24/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132756 – volume: 312 start-page: 1933 year: 2006 ident: D4CY01112K/cit11/1 publication-title: Science doi: 10.1126/science.1126337 – volume: 302 start-page: 100 year: 2018 ident: D4CY01112K/cit15/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2017.04.049 – volume: 60 start-page: 5838 year: 2021 ident: D4CY01112K/cit55/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c01121 – volume: 7 start-page: 14330 year: 2017 ident: D4CY01112K/cit9/1 publication-title: RSC Adv. doi: 10.1039/C7RA00701A – volume: 12 start-page: 13251 year: 2022 ident: D4CY01112K/cit44/1 publication-title: RSC Adv. doi: 10.1039/D2RA02182J – volume: 144 start-page: 22 year: 2014 ident: D4CY01112K/cit17/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2013.07.002 – volume: 305 start-page: 110328 year: 2020 ident: D4CY01112K/cit53/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2020.110328 – volume: 78 start-page: 77 year: 2009 ident: D4CY01112K/cit27/1 publication-title: Russ. Chem. Rev. doi: 10.1070/RC2009v078n01ABEH003892 – volume: 239 start-page: 290 year: 2019 ident: D4CY01112K/cit35/1 publication-title: Fuel doi: 10.1016/j.fuel.2018.11.025 – volume: 151 start-page: 233 year: 2000 ident: D4CY01112K/cit25/1 publication-title: J. Mol. Catal. A:Chem. doi: 10.1016/S1381-1169(99)00248-4 – volume: 23 start-page: 119 year: 2021 ident: D4CY01112K/cit2/1 publication-title: Green Chem. doi: 10.1039/D0GC02770G – volume: 9 start-page: 1073 year: 2019 ident: D4CY01112K/cit47/1 publication-title: Catalysts doi: 10.3390/catal9121073 – volume: 98 start-page: 773 year: 2022 ident: D4CY01112K/cit54/1 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.7282 – volume: 61 start-page: 509 year: 2011 ident: D4CY01112K/cit26/1 publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-011-2652-z – volume: 43 start-page: 12483 year: 2019 ident: D4CY01112K/cit43/1 publication-title: New J. Chem. doi: 10.1039/C9NJ01677E – volume: 128 start-page: 132 year: 2019 ident: D4CY01112K/cit3/1 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.01.104 – volume: 588 start-page: 117268 year: 2019 ident: D4CY01112K/cit14/1 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2019.117267 – volume: 107 start-page: 4516 year: 2010 ident: D4CY01112K/cit19/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0912073107 – volume: 254 start-page: 333 year: 2014 ident: D4CY01112K/cit45/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.05.121 – volume: 8 start-page: 3675 year: 2018 ident: D4CY01112K/cit6/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY00803E – volume: 7 start-page: 2430 year: 2017 ident: D4CY01112K/cit21/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b03682 – volume: 353 start-page: 1141 year: 2007 ident: D4CY01112K/cit33/1 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2006.12.093 – volume: 6 start-page: 2766 year: 2016 ident: D4CY01112K/cit13/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY02070K – volume: 133 start-page: 4224 year: 2011 ident: D4CY01112K/cit22/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110482r – volume: 206 start-page: 617 year: 2017 ident: D4CY01112K/cit48/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2017.01.065 – volume: 154–155 start-page: 190 year: 2014 ident: D4CY01112K/cit23/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2014.02.024 – volume: 6 start-page: 6257 year: 2016 ident: D4CY01112K/cit49/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY00820H – volume: 25 start-page: 2249 year: 2018 ident: D4CY01112K/cit12/1 publication-title: Cellulose doi: 10.1007/s10570-018-1717-3 – volume: 4 start-page: 13182 year: 2019 ident: D4CY01112K/cit51/1 publication-title: ChemistrySelect doi: 10.1002/slct.201903356 – volume: 418 start-page: 114070 year: 2023 ident: D4CY01112K/cit50/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2023.114070 – volume: 13 start-page: 14221 year: 2023 ident: D4CY01112K/cit20/1 publication-title: ACS Catal. doi: 10.1021/acscatal.3c03153 – volume: 225 start-page: 122 year: 2016 ident: D4CY01112K/cit28/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.12.002 – volume: 116 start-page: 13749 year: 2012 ident: D4CY01112K/cit31/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp210577t – volume: 116 start-page: 12328 year: 2016 ident: D4CY01112K/cit18/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00311 – volume: 6 start-page: 59081 year: 2016 ident: D4CY01112K/cit36/1 publication-title: RSC Adv. doi: 10.1039/C6RA07830C – volume: 61 start-page: 9 year: 2014 ident: D4CY01112K/cit46/1 publication-title: J. Appl. Glycosci. doi: 10.5458/jag.jag.JAG-2013_006 – volume: 4 start-page: 5724 year: 2019 ident: D4CY01112K/cit52/1 publication-title: ChemistrySelect doi: 10.1002/slct.201901084 – volume: 16 start-page: 2015 year: 2014 ident: D4CY01112K/cit42/1 publication-title: Green Chem. doi: 10.1039/c3gc42018c – volume: 45 start-page: 2163 year: 2006 ident: D4CY01112K/cit8/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie051088y – volume: 14 start-page: 4247 year: 2021 ident: D4CY01112K/cit32/1 publication-title: Materials doi: 10.3390/ma14154247 – volume: 123–124 start-page: 316 year: 2012 ident: D4CY01112K/cit34/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2012.04.023 – volume: 14 start-page: 509 year: 2012 ident: D4CY01112K/cit10/1 publication-title: Green Chem. doi: 10.1039/C1GC15972K – volume: 286 start-page: 119938 year: 2021 ident: D4CY01112K/cit57/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.119938 |
SSID | ssj0000491082 |
Score | 2.4031067 |
Snippet | A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol-gel method accompanied by phase... A hierarchically porous and highly effective tantalum phosphate (TaP) solid acidic catalyst was synthesized using a sol–gel method accompanied by phase... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1567 |
SubjectTerms | Acidity Catalysts Chemical synthesis Decomposition reactions Glucose Hydroxymethylfurfural Phase separation Sol-gel processes Tantalum |
Title | Synthesis of hierarchically porous tantalum phosphate catalysts by a sol-gel method for transformation of glucose to 5-hydroxymethylfurfural |
URI | https://www.proquest.com/docview/3172954066 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6uwe4IP5WFBZkCW6VlyR2kua4lJ-KslzYFcspsmNnu6JqqjY5hBNPwIWX4Xl4EsZx7KQUpIVLVFm1m2S-znwzHs8g9CwHK6KrfhMquEeYUmMy5oEgPIsElZHKoyYOefo-mp6ztxfhxWDwo5e1VJXiOPvyx3Ml_yNVGAO56lOy_yBZtygMwGeQL1xBwnC9low_1Evgb21JEd3UutkWgLeuQxbFWme36ibBHBTQaDUvNqs5MMtRE7GpN-VGU08-glu0GQ_0Ui3antIm_bDHag2vtBnuwFhDMq-lToLRE-pFXq1zXcKjz3Yn5pfg_uzpIQ20cieaP63aqPWMX3Vjc1MQmBcLN_juqmpsJdfJ_oXLHeKFSc8np9YQt3GMIGwSuWin7gKPMcJiUzr4WPXHTLl2p6_DHi7DnvIFVzTuGXI_ND2idoyER3WN1Zds8gmUmx_MOlNot_9_s5Aub7HZsadJ2s3dQwcBOCigYQ9OZi_efHTxPfC8fK_pVeYezFbHpcnzboFtPtQ5OXtr24GmYTpnt9Gt1kXBJwZvd9BALe-iGxPbGfAe-uZwh4scb-MOG9xhizvscIcd7rCoMceAu59fvwPisEEcBqDhbcTp5VvE4bLAf0HcfXT--tXZZEravh4kA_5YkkB6oRLUz3STl0RmIk5E40lEEWeezCIqae6JSEWSiyjm4zCR3Bcw5OVMspgeov1lsVQPEPbyPAZCrHO7NDWGrzMpgzgAgAUcPOchemrfbroy5VvSXSEO0ZF98Wn7996kQKz1HjhQ8iE6BGG4-ZJldTPv88Nrrf4I3ezwfoT2y3WlHgOTLcWTFjS_AJTWpA0 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+hierarchically+porous+tantalum+phosphate+catalysts+by+a+sol%E2%80%93gel+method+for+transformation+of+glucose+to+5-hydroxymethylfurfural&rft.jtitle=Catalysis+science+%26+technology&rft.au=Huang%2C+Kai&rft.au=Huhe%2C+Taoli&rft.au=Liu%2C+Haichao&rft.au=Gao%2C+Da-Ming&rft.date=2025-03-03&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=15&rft.issue=5&rft.spage=1567&rft.epage=1580&rft_id=info:doi/10.1039%2FD4CY01112K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4CY01112K |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon |