Porous polymer in polymer structure created using carbon dots for high-performance gel polymer electrolytes
A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF-HFP as the porous framework and the flexible PEO, which served both as the filler and the liquid electrolyte absorber. For the first time, the polymeric porous structure was engineered using CDs,...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 13; no. 4; pp. 364 - 372 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF-HFP as the porous framework and the flexible PEO, which served both as the filler and the liquid electrolyte absorber. For the first time, the polymeric porous structure was engineered using CDs, which could be recycled through washing and reused in subsequent pore creation processes. The high porosity and robust structure of the PVDF-HFP framework ensured effective deposition of PEO and absorption of the electrolyte. The resulting gel polymer electrolytes (GPEs) exhibited excellent conductivity, a wide electrochemical stability window, and considerable lithium-ion transference numbers at room temperature. These GPEs were employed in lithium metal batteries (LMBs), which exhibited exceptional cycling stability exceeding 3000 h, high rate capability, and a coulombic efficiency of nearly 100%. Both SEM and XPS investigations of lithium anodes dismantled from LMBs after extended cycling revealed the formation of stable solid-electrolyte interphase (SEI) layers on the lithium surface, which effectively hindered dendrite growth and minimized anode corrosion. This research offers a solution for fabricating high-performance GPEs for LMBs with long cycle lifespans while also introducing a new technique for preparing porous polymer materials using CDs.
Porous PEO@PVDF-HFP, created using carbon dots for liquid electrolyte absorption, forms highly conductive gel polymer electrolytes, which are assembled into lithium metal batteries, demonstrating excellent cycling stability at room temperature. |
---|---|
AbstractList | A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF–HFP as the porous framework and the flexible PEO, which served both as the filler and the liquid electrolyte absorber. For the first time, the polymeric porous structure was engineered using CDs, which could be recycled through washing and reused in subsequent pore creation processes. The high porosity and robust structure of the PVDF–HFP framework ensured effective deposition of PEO and absorption of the electrolyte. The resulting gel polymer electrolytes (GPEs) exhibited excellent conductivity, a wide electrochemical stability window, and considerable lithium-ion transference numbers at room temperature. These GPEs were employed in lithium metal batteries (LMBs), which exhibited exceptional cycling stability exceeding 3000 h, high rate capability, and a coulombic efficiency of nearly 100%. Both SEM and XPS investigations of lithium anodes dismantled from LMBs after extended cycling revealed the formation of stable solid-electrolyte interphase (SEI) layers on the lithium surface, which effectively hindered dendrite growth and minimized anode corrosion. This research offers a solution for fabricating high-performance GPEs for LMBs with long cycle lifespans while also introducing a new technique for preparing porous polymer materials using CDs. A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF-HFP as the porous framework and the flexible PEO, which served both as the filler and the liquid electrolyte absorber. For the first time, the polymeric porous structure was engineered using CDs, which could be recycled through washing and reused in subsequent pore creation processes. The high porosity and robust structure of the PVDF-HFP framework ensured effective deposition of PEO and absorption of the electrolyte. The resulting gel polymer electrolytes (GPEs) exhibited excellent conductivity, a wide electrochemical stability window, and considerable lithium-ion transference numbers at room temperature. These GPEs were employed in lithium metal batteries (LMBs), which exhibited exceptional cycling stability exceeding 3000 h, high rate capability, and a coulombic efficiency of nearly 100%. Both SEM and XPS investigations of lithium anodes dismantled from LMBs after extended cycling revealed the formation of stable solid-electrolyte interphase (SEI) layers on the lithium surface, which effectively hindered dendrite growth and minimized anode corrosion. This research offers a solution for fabricating high-performance GPEs for LMBs with long cycle lifespans while also introducing a new technique for preparing porous polymer materials using CDs. Porous PEO@PVDF-HFP, created using carbon dots for liquid electrolyte absorption, forms highly conductive gel polymer electrolytes, which are assembled into lithium metal batteries, demonstrating excellent cycling stability at room temperature. |
Author | Ni, Jia-Wen Xiong, Huan-Ming Huang, Zun-Hui Song, Tian-Bing Sun, Hao-Wen |
AuthorAffiliation | Fudan University Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials |
AuthorAffiliation_xml | – name: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials – name: Fudan University |
Author_xml | – sequence: 1 givenname: Zun-Hui surname: Huang fullname: Huang, Zun-Hui – sequence: 2 givenname: Hao-Wen surname: Sun fullname: Sun, Hao-Wen – sequence: 3 givenname: Tian-Bing surname: Song fullname: Song, Tian-Bing – sequence: 4 givenname: Jia-Wen surname: Ni fullname: Ni, Jia-Wen – sequence: 5 givenname: Huan-Ming surname: Xiong fullname: Xiong, Huan-Ming |
BookMark | eNpFkM1Lw0AQxRdRsNZevAsL3oToZpPdZI-lfkJBD_UcJptJm5pm4-zm0P_eaKW-y7wHP97Au2CnneuQsatY3MUiMfdVGkDo3CRwwiZSKBFlqdGnR5_n52zm_VaMyoXQxkzY57sjN3jeu3a_Q-JNd7Q-0GDDQMgtIQSs-OCbbs0tUOk6Xrngee2Ib5r1JuqRRr-DziJfY3sswRZtoDEE9JfsrIbW4-zvTtnH0-Nq8RIt355fF_NlZGUqQiRLqyqIywylUmWupNVSS2OsTrQoAQyAVFlpIamN0AKMxDovS6UA0irVmEzZzaG3J_c1oA_F1g3UjS-LJFZZOkqpkbo9UJac94R10VOzA9oXsSh-9iwe0tX8d8_5CF8fYPL2yP3vnXwDlWN2Dw |
Cites_doi | 10.1039/D1EE00508A 10.1002/adma.202104872 10.1002/advs.202201297 10.1002/adsu.202100389 10.1002/aenm.201903966 10.1021/acsnano.5b05406 10.1002/smm2.1121 10.1002/aenm.202101544 10.1002/inf2.12166 10.1002/anie.202101537 10.1016/j.cej.2024.148779 10.1038/s41565-019-0465-3 10.1021/jacs.8b06051 10.1002/adma.202303193 10.1016/j.memsci.2020.118660 10.1021/accountsmr.2c00229 10.1002/anie.202409044 10.1002/admt.202202002 10.1002/advs.201801337 10.1002/smm2.1097 10.1002/advs.201500213 10.1016/j.ensm.2020.10.018 10.1007/s12598-021-01951-6 10.1038/s41565-022-01107-2 10.1002/smll.202205558 10.1016/j.nanoen.2017.07.033 10.1039/D0EE00342E 10.1002/advs.201700996 10.1002/inf2.12189 10.1021/acsenergylett.8b00526 10.1002/adma.201806197 10.1016/j.ssi.2006.01.032 10.1002/anie.201206791 10.1021/acsami.0c22077 10.3390/polym14061181 10.1039/D1EE02663A 10.1002/adfm.201701768 10.1016/j.ensm.2023.102832 10.1039/D1QM00096A 10.1002/aenm.201801219 10.1002/aenm.202200660 10.1002/aenm.201701482 10.1016/j.esci.2023.100182 10.1016/j.cej.2022.136802 10.1002/aenm.202100046 10.1038/nnano.2014.152 10.1039/D3EE02803H |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d4ta06893a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 372 |
ExternalDocumentID | 10_1039_D4TA06893A d4ta06893a |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c240t-2bc5da1b7e255b852c626299c6360baa9aa257bca3f9060a92ef8bb55aa4d46e3 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 12:00:30 EDT 2025 Tue Jul 01 03:28:27 EDT 2025 Tue May 27 12:02:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c240t-2bc5da1b7e255b852c626299c6360baa9aa257bca3f9060a92ef8bb55aa4d46e3 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d4ta06893a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3118-942X |
PQID | 3157444455 |
PQPubID | 2047523 |
PageCount | 9 |
ParticipantIDs | proquest_journals_3157444455 crossref_primary_10_1039_D4TA06893A rsc_primary_d4ta06893a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-21 |
PublicationDateYYYYMMDD | 2025-01-21 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Gao (D4TA06893A/cit11/1) 2022; 6 Yang (D4TA06893A/cit50/1) 2022; 433 Ding (D4TA06893A/cit22/1) 2016; 10 Zhao (D4TA06893A/cit26/1) 2024; 481 Yang (D4TA06893A/cit36/1) 2022; 14 Li (D4TA06893A/cit9/1) 2023; 10 Gou (D4TA06893A/cit18/1) 2023 Chen (D4TA06893A/cit34/1) 2018; 8 Tan (D4TA06893A/cit48/1) 2021; 11 Liu (D4TA06893A/cit54/1) 2021; 60 Ren (D4TA06893A/cit13/1) 2021; 34 Wan (D4TA06893A/cit16/1) 2019; 14 Li (D4TA06893A/cit1/1) 2021; 3 Wang (D4TA06893A/cit53/1) 2022; 445 Song (D4TA06893A/cit25/1) 2023; 19 Kim (D4TA06893A/cit14/1) 2017; 27 Fu (D4TA06893A/cit10/1) 2021; 5 Li (D4TA06893A/cit49/1) 2022; 17 Xu (D4TA06893A/cit37/1) 2023; 35 Sang (D4TA06893A/cit8/1) 2023; 4 Li (D4TA06893A/cit42/1) 2022; 12 Liu (D4TA06893A/cit15/1) 2019; 6 Yang (D4TA06893A/cit40/1) 2020; 13 Wei (D4TA06893A/cit24/1) 2019; 31 Vallan (D4TA06893A/cit23/1) 2018; 140 Luo (D4TA06893A/cit55/1) 2018; 8 Pei (D4TA06893A/cit12/1) 2022; 61 Cheng (D4TA06893A/cit3/1) 2016; 3 Qiu (D4TA06893A/cit6/1) 2023; 60 Yi (D4TA06893A/cit46/1) 2024; 4 Jia (D4TA06893A/cit45/1) 2023; 11 Cheng (D4TA06893A/cit51/1) 2018; 3 Xu (D4TA06893A/cit38/1) 2022; 3 Mou (D4TA06893A/cit32/1) 2021; 13 Liu (D4TA06893A/cit39/1) 2024; 63 Li (D4TA06893A/cit4/1) 2022; 17 Xu (D4TA06893A/cit33/1) 2021; 33 Liu (D4TA06893A/cit27/1) 2024; 8 Liu (D4TA06893A/cit17/1) 2022; 12 Ding (D4TA06893A/cit30/1) 2016; 10 Qu (D4TA06893A/cit31/1) 2012; 51 Hu (D4TA06893A/cit52/1) 2021; 14 Ma (D4TA06893A/cit28/1) 2018; 5 Huang (D4TA06893A/cit5/1) 2021; 14 Han (D4TA06893A/cit2/1) 2021; 3 Huang (D4TA06893A/cit7/1) 2022; 41 Xu (D4TA06893A/cit35/1) 2021; 617 He (D4TA06893A/cit21/1) 2017; 39 Li (D4TA06893A/cit29/1) 2023; 8 Xi (D4TA06893A/cit20/1) 2006; 177 Huang (D4TA06893A/cit47/1) 2022; 3 Ling (D4TA06893A/cit19/1) 2020; 10 Zheng (D4TA06893A/cit41/1) 2014; 9 Yue (D4TA06893A/cit43/1) 2024; 17 Park (D4TA06893A/cit44/1) 2021; 11 |
References_xml | – volume: 14 start-page: 4115 year: 2021 ident: D4TA06893A/cit52/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00508A – volume: 33 start-page: 2104872 year: 2021 ident: D4TA06893A/cit33/1 publication-title: Adv. Mater. doi: 10.1002/adma.202104872 – volume: 12 start-page: 2201297 year: 2022 ident: D4TA06893A/cit42/1 publication-title: Adv. Sci. doi: 10.1002/advs.202201297 – volume: 11 start-page: e2311312 year: 2023 ident: D4TA06893A/cit45/1 publication-title: Adv. Mater. – volume: 6 start-page: 2100389 year: 2022 ident: D4TA06893A/cit11/1 publication-title: Adv. Sustainable Syst. doi: 10.1002/adsu.202100389 – volume: 10 start-page: 1903966 year: 2020 ident: D4TA06893A/cit19/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903966 – volume: 10 start-page: 484 year: 2016 ident: D4TA06893A/cit22/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b05406 – volume: 3 start-page: 323 year: 2022 ident: D4TA06893A/cit47/1 publication-title: SmartMat doi: 10.1002/smm2.1121 – volume: 8 start-page: 241083 year: 2024 ident: D4TA06893A/cit27/1 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2101544 year: 2021 ident: D4TA06893A/cit44/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101544 – volume: 10 start-page: 484 year: 2016 ident: D4TA06893A/cit30/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b05406 – volume: 3 start-page: 155 year: 2021 ident: D4TA06893A/cit2/1 publication-title: InfoMat doi: 10.1002/inf2.12166 – volume: 60 start-page: 12931 year: 2021 ident: D4TA06893A/cit54/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202101537 – volume: 481 start-page: 148779 year: 2024 ident: D4TA06893A/cit26/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.148779 – volume: 10 start-page: 2505 year: 2023 ident: D4TA06893A/cit9/1 publication-title: Adv. Sci. – volume: 14 start-page: 705 year: 2019 ident: D4TA06893A/cit16/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0465-3 – volume: 140 start-page: 12862 year: 2018 ident: D4TA06893A/cit23/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06051 – volume: 35 start-page: 2303193 year: 2023 ident: D4TA06893A/cit37/1 publication-title: Adv. Mater. doi: 10.1002/adma.202303193 – volume: 617 start-page: 118660 year: 2021 ident: D4TA06893A/cit35/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118660 – volume: 4 start-page: 472 year: 2023 ident: D4TA06893A/cit8/1 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.2c00229 – volume: 63 start-page: e202409044 year: 2024 ident: D4TA06893A/cit39/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202409044 – volume: 8 start-page: 2202002 year: 2023 ident: D4TA06893A/cit29/1 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202202002 – volume: 6 start-page: 1801337 year: 2019 ident: D4TA06893A/cit15/1 publication-title: Adv. Sci. doi: 10.1002/advs.201801337 – volume: 3 start-page: 286 year: 2022 ident: D4TA06893A/cit38/1 publication-title: SmartMat doi: 10.1002/smm2.1097 – volume: 3 start-page: 1500213 year: 2016 ident: D4TA06893A/cit3/1 publication-title: Adv. Sci. doi: 10.1002/advs.201500213 – volume: 34 start-page: 515 year: 2021 ident: D4TA06893A/cit13/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.10.018 – volume: 41 start-page: 2826 year: 2022 ident: D4TA06893A/cit7/1 publication-title: Rare Met. doi: 10.1007/s12598-021-01951-6 – start-page: 23096777 year: 2023 ident: D4TA06893A/cit18/1 publication-title: Adv. Mater. – volume: 17 start-page: 613 year: 2022 ident: D4TA06893A/cit4/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01107-2 – volume: 19 start-page: 2205558 year: 2023 ident: D4TA06893A/cit25/1 publication-title: Small doi: 10.1002/smll.202205558 – volume: 61 start-page: 2205075 year: 2022 ident: D4TA06893A/cit12/1 publication-title: Angew. Chem., Int. Ed. – volume: 39 start-page: 590 year: 2017 ident: D4TA06893A/cit21/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.033 – volume: 13 start-page: 1318 year: 2020 ident: D4TA06893A/cit40/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00342E – volume: 5 start-page: 1700996 year: 2018 ident: D4TA06893A/cit28/1 publication-title: Adv. Sci. doi: 10.1002/advs.201700996 – volume: 3 start-page: 1333 year: 2021 ident: D4TA06893A/cit1/1 publication-title: InfoMat doi: 10.1002/inf2.12189 – volume: 3 start-page: 1564 year: 2018 ident: D4TA06893A/cit51/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00526 – volume: 31 start-page: 1806197 year: 2019 ident: D4TA06893A/cit24/1 publication-title: Adv. Mater. doi: 10.1002/adma.201806197 – volume: 177 start-page: 709 year: 2006 ident: D4TA06893A/cit20/1 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2006.01.032 – volume: 51 start-page: 12215 year: 2012 ident: D4TA06893A/cit31/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201206791 – volume: 433 start-page: 113193 year: 2022 ident: D4TA06893A/cit50/1 publication-title: Chem. Eng. J. – volume: 13 start-page: 8794 year: 2021 ident: D4TA06893A/cit32/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c22077 – volume: 14 start-page: 1181 year: 2022 ident: D4TA06893A/cit36/1 publication-title: Polymers doi: 10.3390/polym14061181 – volume: 14 start-page: 6021 year: 2021 ident: D4TA06893A/cit5/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02663A – volume: 27 start-page: 1701768 year: 2017 ident: D4TA06893A/cit14/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701768 – volume: 60 start-page: 102832 year: 2023 ident: D4TA06893A/cit6/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.102832 – volume: 5 start-page: 5211 year: 2021 ident: D4TA06893A/cit10/1 publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00096A – volume: 8 start-page: 1801219 year: 2018 ident: D4TA06893A/cit34/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801219 – volume: 12 start-page: 2200660 year: 2022 ident: D4TA06893A/cit17/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200660 – volume: 8 start-page: 1701482 year: 2018 ident: D4TA06893A/cit55/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701482 – volume: 4 start-page: 100182 year: 2024 ident: D4TA06893A/cit46/1 publication-title: eScience doi: 10.1016/j.esci.2023.100182 – volume: 17 start-page: 613 year: 2022 ident: D4TA06893A/cit49/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01107-2 – volume: 445 start-page: 136802 year: 2022 ident: D4TA06893A/cit53/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136802 – volume: 11 start-page: 2100046 year: 2021 ident: D4TA06893A/cit48/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100046 – volume: 9 start-page: 618 year: 2014 ident: D4TA06893A/cit41/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.152 – volume: 17 start-page: 1117 year: 2024 ident: D4TA06893A/cit43/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02803H |
SSID | ssj0000800699 |
Score | 2.4405615 |
Snippet | A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF-HFP as the porous framework and the flexible PEO, which... A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF–HFP as the porous framework and the flexible PEO, which... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 364 |
SubjectTerms | Anodes Cycles Electrochemistry Electrolytes Lithium Lithium batteries Lithium ions Polymers Porosity Porous materials Room temperature Stability X ray photoelectron spectroscopy |
Title | Porous polymer in polymer structure created using carbon dots for high-performance gel polymer electrolytes |
URI | https://www.proquest.com/docview/3157444455 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QscEK8VhQVZglvlJfUjTY4FFhUECImsWHGJbMddVZS0Kumh_Dx-GeNHnLC7h4UeIstpLMXzZfyNPQ-EXiiWK1WpnEgb_su5gU9Ks4SIRNJ0CoA2C7sP-fFTOj_j78_F-WDwu-e1tGvUif51bVzJ_0gV-kCuNkr2HyQbB4UOaIN84QoShuuNZPx5vbUerJv1av_DbJ1DeGj6tLD2cMCxQmCVOx9eK7cK5A2mqMvDMLbZismmFzxwYVZxkFAiZ7VvgqPhVRILfNe_6Fi3leNOxjMfBNTecUnFfYih26VvQ7asV-6-g1XYuP62q8l8t-wOq5xanMs1-dpFrX0JjsQFgJu8aldfd7ziYLmU8d9hR4Na50Hiw6S94qOJSGyOU6-XTb_PV7-Nmpv1EMp7atiaVb0lHfQYvXa5SJjNtvqGF7MkBeIWE652ObkvrZXRg9Gd3bO87J49QIcUTBU6RIez0-Ldh7jTZzl56gqZxhdr8-Sy_GU3wN_MqDN3DrZtLRrHeYq76E6QM5555N1DA1PfR7d7KSwfoO8egzhgBi_r2IwYxAGD2GEQewxii0EM2MCXMYgBg3GQPgYforO3p8XrOQkFPIgGotgQqrSo5ERNDRiuKhNUg_kM_EfbJHVKylxKWDGUlmyRJ2kic2oWmVJCSMkrnhp2hIb1ujaPEM6qLAfTWzMw6DnVWZ5NZAoEb5q5k-pshJ63k1dufJ6W8qqMRui4ndcyfMc_SzYRUw4_IUboCOY6Pl_xRrrn5OMbjf4E3ergfIyGMMvmKVDWRj0LmPgDg2Ga5w |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+polymer+in+polymer+structure+created+using+carbon+dots+for+high-performance+gel+polymer+electrolytes&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Huang%2C+Zun-Hui&rft.au=Sun%2C+Hao-Wen&rft.au=Song%2C+Tian-Bing&rft.au=Ni%2C+Jia-Wen&rft.date=2025-01-21&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=13&rft.issue=4&rft.spage=3064&rft.epage=3072&rft_id=info:doi/10.1039%2FD4TA06893A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4TA06893A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |