Porous polymer in polymer structure created using carbon dots for high-performance gel polymer electrolytes

A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF-HFP as the porous framework and the flexible PEO, which served both as the filler and the liquid electrolyte absorber. For the first time, the polymeric porous structure was engineered using CDs,...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 13; no. 4; pp. 364 - 372
Main Authors Huang, Zun-Hui, Sun, Hao-Wen, Song, Tian-Bing, Ni, Jia-Wen, Xiong, Huan-Ming
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF-HFP as the porous framework and the flexible PEO, which served both as the filler and the liquid electrolyte absorber. For the first time, the polymeric porous structure was engineered using CDs, which could be recycled through washing and reused in subsequent pore creation processes. The high porosity and robust structure of the PVDF-HFP framework ensured effective deposition of PEO and absorption of the electrolyte. The resulting gel polymer electrolytes (GPEs) exhibited excellent conductivity, a wide electrochemical stability window, and considerable lithium-ion transference numbers at room temperature. These GPEs were employed in lithium metal batteries (LMBs), which exhibited exceptional cycling stability exceeding 3000 h, high rate capability, and a coulombic efficiency of nearly 100%. Both SEM and XPS investigations of lithium anodes dismantled from LMBs after extended cycling revealed the formation of stable solid-electrolyte interphase (SEI) layers on the lithium surface, which effectively hindered dendrite growth and minimized anode corrosion. This research offers a solution for fabricating high-performance GPEs for LMBs with long cycle lifespans while also introducing a new technique for preparing porous polymer materials using CDs. Porous PEO@PVDF-HFP, created using carbon dots for liquid electrolyte absorption, forms highly conductive gel polymer electrolytes, which are assembled into lithium metal batteries, demonstrating excellent cycling stability at room temperature.
AbstractList A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF–HFP as the porous framework and the flexible PEO, which served both as the filler and the liquid electrolyte absorber. For the first time, the polymeric porous structure was engineered using CDs, which could be recycled through washing and reused in subsequent pore creation processes. The high porosity and robust structure of the PVDF–HFP framework ensured effective deposition of PEO and absorption of the electrolyte. The resulting gel polymer electrolytes (GPEs) exhibited excellent conductivity, a wide electrochemical stability window, and considerable lithium-ion transference numbers at room temperature. These GPEs were employed in lithium metal batteries (LMBs), which exhibited exceptional cycling stability exceeding 3000 h, high rate capability, and a coulombic efficiency of nearly 100%. Both SEM and XPS investigations of lithium anodes dismantled from LMBs after extended cycling revealed the formation of stable solid-electrolyte interphase (SEI) layers on the lithium surface, which effectively hindered dendrite growth and minimized anode corrosion. This research offers a solution for fabricating high-performance GPEs for LMBs with long cycle lifespans while also introducing a new technique for preparing porous polymer materials using CDs.
A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF-HFP as the porous framework and the flexible PEO, which served both as the filler and the liquid electrolyte absorber. For the first time, the polymeric porous structure was engineered using CDs, which could be recycled through washing and reused in subsequent pore creation processes. The high porosity and robust structure of the PVDF-HFP framework ensured effective deposition of PEO and absorption of the electrolyte. The resulting gel polymer electrolytes (GPEs) exhibited excellent conductivity, a wide electrochemical stability window, and considerable lithium-ion transference numbers at room temperature. These GPEs were employed in lithium metal batteries (LMBs), which exhibited exceptional cycling stability exceeding 3000 h, high rate capability, and a coulombic efficiency of nearly 100%. Both SEM and XPS investigations of lithium anodes dismantled from LMBs after extended cycling revealed the formation of stable solid-electrolyte interphase (SEI) layers on the lithium surface, which effectively hindered dendrite growth and minimized anode corrosion. This research offers a solution for fabricating high-performance GPEs for LMBs with long cycle lifespans while also introducing a new technique for preparing porous polymer materials using CDs. Porous PEO@PVDF-HFP, created using carbon dots for liquid electrolyte absorption, forms highly conductive gel polymer electrolytes, which are assembled into lithium metal batteries, demonstrating excellent cycling stability at room temperature.
Author Ni, Jia-Wen
Xiong, Huan-Ming
Huang, Zun-Hui
Song, Tian-Bing
Sun, Hao-Wen
AuthorAffiliation Fudan University
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
AuthorAffiliation_xml – name: Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
– name: Fudan University
Author_xml – sequence: 1
  givenname: Zun-Hui
  surname: Huang
  fullname: Huang, Zun-Hui
– sequence: 2
  givenname: Hao-Wen
  surname: Sun
  fullname: Sun, Hao-Wen
– sequence: 3
  givenname: Tian-Bing
  surname: Song
  fullname: Song, Tian-Bing
– sequence: 4
  givenname: Jia-Wen
  surname: Ni
  fullname: Ni, Jia-Wen
– sequence: 5
  givenname: Huan-Ming
  surname: Xiong
  fullname: Xiong, Huan-Ming
BookMark eNpFkM1Lw0AQxRdRsNZevAsL3oToZpPdZI-lfkJBD_UcJptJm5pm4-zm0P_eaKW-y7wHP97Au2CnneuQsatY3MUiMfdVGkDo3CRwwiZSKBFlqdGnR5_n52zm_VaMyoXQxkzY57sjN3jeu3a_Q-JNd7Q-0GDDQMgtIQSs-OCbbs0tUOk6Xrngee2Ib5r1JuqRRr-DziJfY3sswRZtoDEE9JfsrIbW4-zvTtnH0-Nq8RIt355fF_NlZGUqQiRLqyqIywylUmWupNVSS2OsTrQoAQyAVFlpIamN0AKMxDovS6UA0irVmEzZzaG3J_c1oA_F1g3UjS-LJFZZOkqpkbo9UJac94R10VOzA9oXsSh-9iwe0tX8d8_5CF8fYPL2yP3vnXwDlWN2Dw
Cites_doi 10.1039/D1EE00508A
10.1002/adma.202104872
10.1002/advs.202201297
10.1002/adsu.202100389
10.1002/aenm.201903966
10.1021/acsnano.5b05406
10.1002/smm2.1121
10.1002/aenm.202101544
10.1002/inf2.12166
10.1002/anie.202101537
10.1016/j.cej.2024.148779
10.1038/s41565-019-0465-3
10.1021/jacs.8b06051
10.1002/adma.202303193
10.1016/j.memsci.2020.118660
10.1021/accountsmr.2c00229
10.1002/anie.202409044
10.1002/admt.202202002
10.1002/advs.201801337
10.1002/smm2.1097
10.1002/advs.201500213
10.1016/j.ensm.2020.10.018
10.1007/s12598-021-01951-6
10.1038/s41565-022-01107-2
10.1002/smll.202205558
10.1016/j.nanoen.2017.07.033
10.1039/D0EE00342E
10.1002/advs.201700996
10.1002/inf2.12189
10.1021/acsenergylett.8b00526
10.1002/adma.201806197
10.1016/j.ssi.2006.01.032
10.1002/anie.201206791
10.1021/acsami.0c22077
10.3390/polym14061181
10.1039/D1EE02663A
10.1002/adfm.201701768
10.1016/j.ensm.2023.102832
10.1039/D1QM00096A
10.1002/aenm.201801219
10.1002/aenm.202200660
10.1002/aenm.201701482
10.1016/j.esci.2023.100182
10.1016/j.cej.2022.136802
10.1002/aenm.202100046
10.1038/nnano.2014.152
10.1039/D3EE02803H
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d4ta06893a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 372
ExternalDocumentID 10_1039_D4TA06893A
d4ta06893a
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c240t-2bc5da1b7e255b852c626299c6360baa9aa257bca3f9060a92ef8bb55aa4d46e3
ISSN 2050-7488
IngestDate Mon Jun 30 12:00:30 EDT 2025
Tue Jul 01 03:28:27 EDT 2025
Tue May 27 12:02:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c240t-2bc5da1b7e255b852c626299c6360baa9aa257bca3f9060a92ef8bb55aa4d46e3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4ta06893a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3118-942X
PQID 3157444455
PQPubID 2047523
PageCount 9
ParticipantIDs proquest_journals_3157444455
crossref_primary_10_1039_D4TA06893A
rsc_primary_d4ta06893a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-21
PublicationDateYYYYMMDD 2025-01-21
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Gao (D4TA06893A/cit11/1) 2022; 6
Yang (D4TA06893A/cit50/1) 2022; 433
Ding (D4TA06893A/cit22/1) 2016; 10
Zhao (D4TA06893A/cit26/1) 2024; 481
Yang (D4TA06893A/cit36/1) 2022; 14
Li (D4TA06893A/cit9/1) 2023; 10
Gou (D4TA06893A/cit18/1) 2023
Chen (D4TA06893A/cit34/1) 2018; 8
Tan (D4TA06893A/cit48/1) 2021; 11
Liu (D4TA06893A/cit54/1) 2021; 60
Ren (D4TA06893A/cit13/1) 2021; 34
Wan (D4TA06893A/cit16/1) 2019; 14
Li (D4TA06893A/cit1/1) 2021; 3
Wang (D4TA06893A/cit53/1) 2022; 445
Song (D4TA06893A/cit25/1) 2023; 19
Kim (D4TA06893A/cit14/1) 2017; 27
Fu (D4TA06893A/cit10/1) 2021; 5
Li (D4TA06893A/cit49/1) 2022; 17
Xu (D4TA06893A/cit37/1) 2023; 35
Sang (D4TA06893A/cit8/1) 2023; 4
Li (D4TA06893A/cit42/1) 2022; 12
Liu (D4TA06893A/cit15/1) 2019; 6
Yang (D4TA06893A/cit40/1) 2020; 13
Wei (D4TA06893A/cit24/1) 2019; 31
Vallan (D4TA06893A/cit23/1) 2018; 140
Luo (D4TA06893A/cit55/1) 2018; 8
Pei (D4TA06893A/cit12/1) 2022; 61
Cheng (D4TA06893A/cit3/1) 2016; 3
Qiu (D4TA06893A/cit6/1) 2023; 60
Yi (D4TA06893A/cit46/1) 2024; 4
Jia (D4TA06893A/cit45/1) 2023; 11
Cheng (D4TA06893A/cit51/1) 2018; 3
Xu (D4TA06893A/cit38/1) 2022; 3
Mou (D4TA06893A/cit32/1) 2021; 13
Liu (D4TA06893A/cit39/1) 2024; 63
Li (D4TA06893A/cit4/1) 2022; 17
Xu (D4TA06893A/cit33/1) 2021; 33
Liu (D4TA06893A/cit27/1) 2024; 8
Liu (D4TA06893A/cit17/1) 2022; 12
Ding (D4TA06893A/cit30/1) 2016; 10
Qu (D4TA06893A/cit31/1) 2012; 51
Hu (D4TA06893A/cit52/1) 2021; 14
Ma (D4TA06893A/cit28/1) 2018; 5
Huang (D4TA06893A/cit5/1) 2021; 14
Han (D4TA06893A/cit2/1) 2021; 3
Huang (D4TA06893A/cit7/1) 2022; 41
Xu (D4TA06893A/cit35/1) 2021; 617
He (D4TA06893A/cit21/1) 2017; 39
Li (D4TA06893A/cit29/1) 2023; 8
Xi (D4TA06893A/cit20/1) 2006; 177
Huang (D4TA06893A/cit47/1) 2022; 3
Ling (D4TA06893A/cit19/1) 2020; 10
Zheng (D4TA06893A/cit41/1) 2014; 9
Yue (D4TA06893A/cit43/1) 2024; 17
Park (D4TA06893A/cit44/1) 2021; 11
References_xml – volume: 14
  start-page: 4115
  year: 2021
  ident: D4TA06893A/cit52/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00508A
– volume: 33
  start-page: 2104872
  year: 2021
  ident: D4TA06893A/cit33/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104872
– volume: 12
  start-page: 2201297
  year: 2022
  ident: D4TA06893A/cit42/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201297
– volume: 11
  start-page: e2311312
  year: 2023
  ident: D4TA06893A/cit45/1
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2100389
  year: 2022
  ident: D4TA06893A/cit11/1
  publication-title: Adv. Sustainable Syst.
  doi: 10.1002/adsu.202100389
– volume: 10
  start-page: 1903966
  year: 2020
  ident: D4TA06893A/cit19/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903966
– volume: 10
  start-page: 484
  year: 2016
  ident: D4TA06893A/cit22/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05406
– volume: 3
  start-page: 323
  year: 2022
  ident: D4TA06893A/cit47/1
  publication-title: SmartMat
  doi: 10.1002/smm2.1121
– volume: 8
  start-page: 241083
  year: 2024
  ident: D4TA06893A/cit27/1
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2101544
  year: 2021
  ident: D4TA06893A/cit44/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101544
– volume: 10
  start-page: 484
  year: 2016
  ident: D4TA06893A/cit30/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05406
– volume: 3
  start-page: 155
  year: 2021
  ident: D4TA06893A/cit2/1
  publication-title: InfoMat
  doi: 10.1002/inf2.12166
– volume: 60
  start-page: 12931
  year: 2021
  ident: D4TA06893A/cit54/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202101537
– volume: 481
  start-page: 148779
  year: 2024
  ident: D4TA06893A/cit26/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.148779
– volume: 10
  start-page: 2505
  year: 2023
  ident: D4TA06893A/cit9/1
  publication-title: Adv. Sci.
– volume: 14
  start-page: 705
  year: 2019
  ident: D4TA06893A/cit16/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0465-3
– volume: 140
  start-page: 12862
  year: 2018
  ident: D4TA06893A/cit23/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06051
– volume: 35
  start-page: 2303193
  year: 2023
  ident: D4TA06893A/cit37/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202303193
– volume: 617
  start-page: 118660
  year: 2021
  ident: D4TA06893A/cit35/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118660
– volume: 4
  start-page: 472
  year: 2023
  ident: D4TA06893A/cit8/1
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.2c00229
– volume: 63
  start-page: e202409044
  year: 2024
  ident: D4TA06893A/cit39/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202409044
– volume: 8
  start-page: 2202002
  year: 2023
  ident: D4TA06893A/cit29/1
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202202002
– volume: 6
  start-page: 1801337
  year: 2019
  ident: D4TA06893A/cit15/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801337
– volume: 3
  start-page: 286
  year: 2022
  ident: D4TA06893A/cit38/1
  publication-title: SmartMat
  doi: 10.1002/smm2.1097
– volume: 3
  start-page: 1500213
  year: 2016
  ident: D4TA06893A/cit3/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500213
– volume: 34
  start-page: 515
  year: 2021
  ident: D4TA06893A/cit13/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.10.018
– volume: 41
  start-page: 2826
  year: 2022
  ident: D4TA06893A/cit7/1
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01951-6
– start-page: 23096777
  year: 2023
  ident: D4TA06893A/cit18/1
  publication-title: Adv. Mater.
– volume: 17
  start-page: 613
  year: 2022
  ident: D4TA06893A/cit4/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01107-2
– volume: 19
  start-page: 2205558
  year: 2023
  ident: D4TA06893A/cit25/1
  publication-title: Small
  doi: 10.1002/smll.202205558
– volume: 61
  start-page: 2205075
  year: 2022
  ident: D4TA06893A/cit12/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 39
  start-page: 590
  year: 2017
  ident: D4TA06893A/cit21/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.033
– volume: 13
  start-page: 1318
  year: 2020
  ident: D4TA06893A/cit40/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00342E
– volume: 5
  start-page: 1700996
  year: 2018
  ident: D4TA06893A/cit28/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700996
– volume: 3
  start-page: 1333
  year: 2021
  ident: D4TA06893A/cit1/1
  publication-title: InfoMat
  doi: 10.1002/inf2.12189
– volume: 3
  start-page: 1564
  year: 2018
  ident: D4TA06893A/cit51/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00526
– volume: 31
  start-page: 1806197
  year: 2019
  ident: D4TA06893A/cit24/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806197
– volume: 177
  start-page: 709
  year: 2006
  ident: D4TA06893A/cit20/1
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2006.01.032
– volume: 51
  start-page: 12215
  year: 2012
  ident: D4TA06893A/cit31/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201206791
– volume: 433
  start-page: 113193
  year: 2022
  ident: D4TA06893A/cit50/1
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 8794
  year: 2021
  ident: D4TA06893A/cit32/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c22077
– volume: 14
  start-page: 1181
  year: 2022
  ident: D4TA06893A/cit36/1
  publication-title: Polymers
  doi: 10.3390/polym14061181
– volume: 14
  start-page: 6021
  year: 2021
  ident: D4TA06893A/cit5/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02663A
– volume: 27
  start-page: 1701768
  year: 2017
  ident: D4TA06893A/cit14/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701768
– volume: 60
  start-page: 102832
  year: 2023
  ident: D4TA06893A/cit6/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.102832
– volume: 5
  start-page: 5211
  year: 2021
  ident: D4TA06893A/cit10/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D1QM00096A
– volume: 8
  start-page: 1801219
  year: 2018
  ident: D4TA06893A/cit34/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801219
– volume: 12
  start-page: 2200660
  year: 2022
  ident: D4TA06893A/cit17/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200660
– volume: 8
  start-page: 1701482
  year: 2018
  ident: D4TA06893A/cit55/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701482
– volume: 4
  start-page: 100182
  year: 2024
  ident: D4TA06893A/cit46/1
  publication-title: eScience
  doi: 10.1016/j.esci.2023.100182
– volume: 17
  start-page: 613
  year: 2022
  ident: D4TA06893A/cit49/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01107-2
– volume: 445
  start-page: 136802
  year: 2022
  ident: D4TA06893A/cit53/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136802
– volume: 11
  start-page: 2100046
  year: 2021
  ident: D4TA06893A/cit48/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100046
– volume: 9
  start-page: 618
  year: 2014
  ident: D4TA06893A/cit41/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.152
– volume: 17
  start-page: 1117
  year: 2024
  ident: D4TA06893A/cit43/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02803H
SSID ssj0000800699
Score 2.4405615
Snippet A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF-HFP as the porous framework and the flexible PEO, which...
A new polymer in polymer structure was constructed, incorporating two distinct polymers: the rigid PVDF–HFP as the porous framework and the flexible PEO, which...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 364
SubjectTerms Anodes
Cycles
Electrochemistry
Electrolytes
Lithium
Lithium batteries
Lithium ions
Polymers
Porosity
Porous materials
Room temperature
Stability
X ray photoelectron spectroscopy
Title Porous polymer in polymer structure created using carbon dots for high-performance gel polymer electrolytes
URI https://www.proquest.com/docview/3157444455
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa63QscEK8VhQVZglvlJfUjTY4FFhUECImsWHGJbMddVZS0Kumh_Dx-GeNHnLC7h4UeIstpLMXzZfyNPQ-EXiiWK1WpnEgb_su5gU9Ks4SIRNJ0CoA2C7sP-fFTOj_j78_F-WDwu-e1tGvUif51bVzJ_0gV-kCuNkr2HyQbB4UOaIN84QoShuuNZPx5vbUerJv1av_DbJ1DeGj6tLD2cMCxQmCVOx9eK7cK5A2mqMvDMLbZismmFzxwYVZxkFAiZ7VvgqPhVRILfNe_6Fi3leNOxjMfBNTecUnFfYih26VvQ7asV-6-g1XYuP62q8l8t-wOq5xanMs1-dpFrX0JjsQFgJu8aldfd7ziYLmU8d9hR4Na50Hiw6S94qOJSGyOU6-XTb_PV7-Nmpv1EMp7atiaVb0lHfQYvXa5SJjNtvqGF7MkBeIWE652ObkvrZXRg9Gd3bO87J49QIcUTBU6RIez0-Ldh7jTZzl56gqZxhdr8-Sy_GU3wN_MqDN3DrZtLRrHeYq76E6QM5555N1DA1PfR7d7KSwfoO8egzhgBi_r2IwYxAGD2GEQewxii0EM2MCXMYgBg3GQPgYforO3p8XrOQkFPIgGotgQqrSo5ERNDRiuKhNUg_kM_EfbJHVKylxKWDGUlmyRJ2kic2oWmVJCSMkrnhp2hIb1ujaPEM6qLAfTWzMw6DnVWZ5NZAoEb5q5k-pshJ63k1dufJ6W8qqMRui4ndcyfMc_SzYRUw4_IUboCOY6Pl_xRrrn5OMbjf4E3ergfIyGMMvmKVDWRj0LmPgDg2Ga5w
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+polymer+in+polymer+structure+created+using+carbon+dots+for+high-performance+gel+polymer+electrolytes&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Huang%2C+Zun-Hui&rft.au=Sun%2C+Hao-Wen&rft.au=Song%2C+Tian-Bing&rft.au=Ni%2C+Jia-Wen&rft.date=2025-01-21&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=13&rft.issue=4&rft.spage=3064&rft.epage=3072&rft_id=info:doi/10.1039%2FD4TA06893A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4TA06893A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon