Study on Ant Colony Optimization for Fuel Loading Pattern Problem

Modified ant colony optimization (ACO) was applied to the in-core fuel loading pattern (LP) optimization problem to minimize the power peaking factor (PPF) in the modeled 1/4 symmetry PWR core. Loading order was found to be important in ACO. Three different loading orders with and without the adjace...

Full description

Saved in:
Bibliographic Details
Published inNihon Genshiryoku Gakkai wabun ronbunshi = Transactions of the Atomic Energy Society of Japan Vol. 12; no. 1; pp. 103 - 112
Main Authors KISHI, Hironori, KITADA, Takanori
Format Journal Article
LanguageEnglish
Japanese
Published Atomic Energy Society of Japan 2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modified ant colony optimization (ACO) was applied to the in-core fuel loading pattern (LP) optimization problem to minimize the power peaking factor (PPF) in the modeled 1/4 symmetry PWR core. Loading order was found to be important in ACO. Three different loading orders with and without the adjacent effect between fuel assemblies (FAs) were compared, and it was found that the loading order from the central core is preferable because many selections of FAs to be inserted are available in the core center region. LPs were determined from pheromone trail and heuristic information, which is a priori knowledge based on the feature of the problem. Three types of heuristic information were compared to obtain the desirable performance of searching LPs with low PPF. Moreover, mutation operation, such as the genetic algorithm (GA), was introduced into the ACO algorithm to avoid searching similar LPs because heuristic information used in ACO tends to localize the searching space in the LP problem. The performance of ACO with some improvement was compared with those of simulated annealing and GA. In conclusion, good performance can be achieved by setting proper heuristic information and mutation operation parameter in ACO.
AbstractList Modified ant colony optimization (ACO) was applied to the in-core fuel loading pattern (LP) optimization problem to minimize the power peaking factor (PPF) in the modeled 1/4 symmetry PWR core. Loading order was found to be important in ACO. Three different loading orders with and without the adjacent effect between fuel assemblies (FAs) were compared, and it was found that the loading order from the central core is preferable because many selections of FAs to be inserted are available in the core center region. LPs were determined from pheromone trail and heuristic information, which is a priori knowledge based on the feature of the problem. Three types of heuristic information were compared to obtain the desirable performance of searching LPs with low PPF. Moreover, mutation operation, such as the genetic algorithm (GA), was introduced into the ACO algorithm to avoid searching similar LPs because heuristic information used in ACO tends to localize the searching space in the LP problem. The performance of ACO with some improvement was compared with those of simulated annealing and GA. In conclusion, good performance can be achieved by setting proper heuristic information and mutation operation parameter in ACO.
Author KITADA, Takanori
KISHI, Hironori
Author_xml – sequence: 1
  fullname: KISHI, Hironori
  organization: Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University
– sequence: 2
  fullname: KITADA, Takanori
  organization: Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University
BookMark eNo90D1PwzAQBmALgUQpHdkzsqT4bCdxxiqifKhSKwGz5SSXkiqxi-0M5deT0qrLnXT33A3vHbk21iAhD0DnnLPsKWj0u_k7sDkFeUUmDGQas5zDNZkAF1nMZJbfkpn3O0opY8AzEBOy-AhDfYisiRYmRIXtrDlE631o-_ZXh3acN9ZFywG7aGV13ZpttNEhoDPRxtmyw_6e3DS68zg79yn5Wj5_Fq_xav3yVixWccUElTFLUmBNgkKiRFZmed00WAGXAJI2sq7yhJdpCpSKRNISWJ3SUmeSikxnTZrzKXk8_d07-zOgD6pvfYVdpw3awStIEqCCCilGGp9o5az3Dhu1d22v3UEBVce01H9aakxLjWmNvjj5nQ96ixetXWirDs96xHAs56vLtvrWTqHhf2GtdkY
Cites_doi 10.1016/j.pnucene.2008.07.002
10.1016/S0306-4549(01)00118-9
10.1016/j.plrev.2005.10.001
10.1016/j.anucene.2010.08.011
10.13182/NSE98-A1963
10.1016/j.anucene.2011.01.009
10.1016/j.anucene.2011.12.002
10.13182/NSE02-A2293
10.1016/j.anucene.2008.03.002
10.13182/NT95-1-9
10.1016/j.anucene.2009.04.004
ContentType Journal Article
Copyright 2013 Atomic Energy Society of Japan
Copyright_xml – notice: 2013 Atomic Energy Society of Japan
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.3327/taesj.J12.018
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2186-2931
EndPage 112
ExternalDocumentID 10_3327_taesj_J12_018
article_taesj_12_1_12_J12_018_article_char_en
GroupedDBID ACIWK
AFRAH
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c2408-25612f5e48e8e2b79dffec1381180f8dc953b661004580b12d60ba78047a7f693
ISSN 1347-2879
IngestDate Fri Apr 12 10:05:21 EDT 2024
Fri Aug 23 01:00:10 EDT 2024
Wed Apr 05 13:03:04 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2408-25612f5e48e8e2b79dffec1381180f8dc953b661004580b12d60ba78047a7f693
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/taesj/12/1/12_J12.018/_article/-char/en
PQID 1551040484
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1551040484
crossref_primary_10_3327_taesj_J12_018
jstage_primary_article_taesj_12_1_12_J12_018_article_char_en
PublicationCentury 2000
PublicationDate 2013-00-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013-00-00
PublicationDecade 2010
PublicationTitle Nihon Genshiryoku Gakkai wabun ronbunshi = Transactions of the Atomic Energy Society of Japan
PublicationTitleAlternate Trans. At. Energy Soc. Jpn.
PublicationYear 2013
Publisher Atomic Energy Society of Japan
Publisher_xml – name: Atomic Energy Society of Japan
References 3) C. Lin, J. Yang, K. Lin, Z. Wang, “Pressurized water reactor loading pattern design using the simple tabu search,” Nucl. Sci. Eng., 129, 61-71 (1998).
2) P. W. Poon, G. T. Parks, “Application of genetic algorithms to in-core nuclear fuel management Optimization,” Proc. Joint Int. Conf. Mathematical Methods and Supercomputing in Nuclear Applications, Karlsruhe, Germany, Apr. 19-23, 2, 778 (1993).
6) F. Hoareau, “Loading pattern optimization using ant colony algorithm,” Int. Conf. on the Physics of Reactors “Nuclear Power : A Sustainable Resource” Interlaken, Switzerland, Sept. 14-19 (2008), [CD-ROM].
7) C. Wang, C. Lin, “Automatic boiling water reactor loading pattern design using ant colony optimization algorithm,” Ann. Nucl. Energy, 36, 1151-1158 (2009).
4) L. Machado, R. Schirru, “The Ant-Q algorithm applied to the nuclear reload problem,” Ann. Nucl. Energy, 29, 1455-1470 (2002).
14) C. Blum, “Ant colony optimization : Introduction and recent trends,” Phys. Life Rev., 2, 353-373 (2005).
15) E. Aiyoshi, K. Yasuda, Metahyu-risuthikusutoouyou, Denki-gakkai, Tokyo, ISBN978-4-88686-261-7 (2007), [in Japanese].
11) A. A. M. Meneses, M. D. Machado, R. Schirru, “Particle swarm optimization applied to the nuclear reload problem of a pressurized water reactor,” Prog. Nucl. Energy, 51, 319-326 (2009).
10) C. Wang, C. Lin, “Automatic pressurized water reactor loading pattern design using ant colony algorithms,” Ann. Nucl. Energy, 43, 91-98 (2012).
5) A. M. M. Lima, R. Schirru, F. C. Silva et al., “A nuclear reactor core fuel reload optimization using artificial ant colony connective networks,” Ann. Nucl. Energy, 35, 1606-1612 (2008).
13) M. Dorigo, L. M. Gambardella, “Ant colony system : A cooperative learning approach to the traveling salesman problem,” IEEE Trans. Evolutionary Computat., 1[1], 53-66 (1997).
12) I. Maghali, S. Oliveira, R. Schirru, “Swarm intelligence of artificial bees applied to in-core fuel management optimization,” Ann. Nucl. Energy, 38, 1039-1045 (2011).
17) Y. Kobayashi, E. Aiyoshi, “Optimization of boiling water reactor loading pattern using two-stage genetic algorithm,” Nucl. Sci. Eng., 142, 119-139 (2002).
9) H. Kishi, T. Kitada, “Applicability of ACO to fuel loading pattern optimization in PWR,” Proc. Fall Meeting of AESJ, Kitakyushu, Japan, Sept. 19-22, N03 (2011), [in Japanese], [CD-ROM].
1) D. J. Kropaczek, P. J. Turinsky, “In-core nuclear fuel management optimization for pressurized water reactors utilizing simulated annealing,” Nucl. Technol., 95, 9-32 (1991).
8) J. Esquivel-Estrada, J. J. Ortiz-Servin, J. A. Castillo et al., “Azcaxalli : A system based on ant colony optimization algorithms, applied to fuel reloads design in a boiling water reactor,” Ann. Nucl. Energy, 38, 103-111 (2011).
16) T. B. Fowler, D. R. Vondy, G. W. Cunningham, Nuclear Reactor Core Analysis Code : CITATION, USAEC Report ORNL-TM-2496, Revision 2 (1971).
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
References_xml – ident: 2
– ident: 11
  doi: 10.1016/j.pnucene.2008.07.002
– ident: 4
  doi: 10.1016/S0306-4549(01)00118-9
– ident: 14
  doi: 10.1016/j.plrev.2005.10.001
– ident: 8
  doi: 10.1016/j.anucene.2010.08.011
– ident: 13
– ident: 16
– ident: 3
  doi: 10.13182/NSE98-A1963
– ident: 15
– ident: 12
  doi: 10.1016/j.anucene.2011.01.009
– ident: 10
  doi: 10.1016/j.anucene.2011.12.002
– ident: 6
– ident: 9
– ident: 17
  doi: 10.13182/NSE02-A2293
– ident: 5
  doi: 10.1016/j.anucene.2008.03.002
– ident: 1
  doi: 10.13182/NT95-1-9
– ident: 7
  doi: 10.1016/j.anucene.2009.04.004
SSID ssj0002213714
ssib003171133
ssib002670214
ssib002227771
Score 1.895347
Snippet Modified ant colony optimization (ACO) was applied to the in-core fuel loading pattern (LP) optimization problem to minimize the power peaking factor (PPF) in...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Publisher
StartPage 103
SubjectTerms Ant colony optimization
fuel management
Fuels
genetic algorithm
Genetic algorithms
Heuristic
loading pattern
Mathematical models
Mutations
optimization
PWR-type reactor
reactor fueling
Searching
Simulated annealing
Title Study on Ant Colony Optimization for Fuel Loading Pattern Problem
URI https://www.jstage.jst.go.jp/article/taesj/12/1/12_J12.018/_article/-char/en
https://search.proquest.com/docview/1551040484
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the Atomic Energy Society of Japan, 2013, Vol.12(1), pp.103-112
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgAYkL4inKS0YCLlFKbKdJKnFZQcuqKl0hUqm3yE6c3baQoDYRgl_PjO2WdJfDwsWtbKtKZqbzsGe-IeQVK7QIVK79shhCgBJhsXIuBr4SRRyWGqyKucH_NItO5uFkMVhcqC5pVD__9de6kv_hKswBX7FK9h84u_9RmIDvwF8YgcMwXonHXywidIUQAHgEAJG8dwo64JsrrjQ5hONWf_WmtcmVR0R-PAHE-gDsI9N1TWfLc0TY0Ji_tflZr1vvo1yv5dL7IVVbeZu6gg9Y816LDxYT3dZEbHdpBscNVjh7I1tNuEsHhcUJGOTOZf_23HbKxgK7erP8s9DIwriyqVzL_Yo7kbClpE59CsR9SGx7mL42c9j0ygengh3oXH5JtqwCZYHo2GJm911U80JwvGhupN6u-hM8zXU6_ABOe3aajefTaZaOFul1coMjEiDe2n_uxFecx3HHH-ZRjBhyHYUXM9f_xph2zhkiHJog3r2pxW3FJ3p78DwHfs7NFbj6Z5ftvXFi0rvkjos-6LEVpXvk2kreJ7dMFnC-fQA2FgWK1hUFgaJWoGhXoCgIFEWBok6gqBMo6gTqIZmPR-n7E9_12PBzBLfzOXZHLQc6THSiuYqHBaYRMfDjWBKUSZEPB0KBD4eufxIoxosoUBJRq2IZl9FQPCJHVV3px4RylchCJCrKSxXCkipYWMTDnGmeB0LnPfJmR5Hsu4VSySAERdJlhnQZkC4D0vXIO0uv_Tb3D3PbYBfDwW3fr2KdIqiFHnm5o3IGuhIvwGSl63abYXgARitMwidX2POU3Oam9wmetz0jR82m1c_BA23UCyNFvwF5j4Y9
link.rule.ids 315,783,787,4033,27937,27938,27939
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+Ant+Colony+Optimization+for+Fuel+Loading+Pattern+Problem&rft.jtitle=Nihon+Genshiryoku+Gakkai+wabun+ronbunshi+%3D+Transactions+of+the+Atomic+Energy+Society+of+Japan&rft.au=Kishi%2C+Hironori&rft.au=Kitada%2C+Takanori&rft.date=2013&rft.issn=1347-2879&rft.eissn=2186-2931&rft.volume=12&rft.issue=1&rft.spage=103&rft.epage=112&rft_id=info:doi/10.3327%2Ftaesj.J12.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-2879&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-2879&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-2879&client=summon