Sensor Systems for Greenhouse Microclimate Monitoring and Control: a Review
Purpose Sensors are the primary component of a monitoring and control system. Effective monitoring and control of the microclimatic environment in a greenhouse is the key necessity for protecting crops from adverse environments. Moreover,the greenhouse microclimate is influenced by various factors....
Saved in:
Published in | Journal of Biosystems Engineering, 45(4) Vol. 45; no. 4; pp. 341 - 361 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.12.2020
한국농업기계학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-1266 2234-1862 |
DOI | 10.1007/s42853-020-00075-6 |
Cover
Loading…
Abstract | Purpose
Sensors are the primary component of a monitoring and control system. Effective monitoring and control of the microclimatic environment in a greenhouse is the key necessity for protecting crops from adverse environments. Moreover,the greenhouse microclimate is influenced by various factors. In the large-scale greenhouse facilities, several sensors and actuators are needed to control the system. Manual monitoring and control of such a large and complex system is labor-intensive and impractical. Therefore, an automatic monitoring and control system in the greenhouse becomes indispensable. In addition, microclimatic parameters such as temperature, humidity, and solar irradiance in the greenhouse are non-linearly interlinked, thereby forming a non-linear multivariate system. Thus, an appropriately designed sensor system is needed for monitoring and controlling the greenhouse microclimate.
Methods
Research articles on greenhouse microclimate monitoring and control published in the last 6 years were considered. The sensor devices and technologies applied to control particular environmental parameters in the greenhouse and their key achievements were systematically reviewed. In addition, different approaches to determine the optimum number of sensors and their placement inside the greenhouse were investigated.
Results
It was found that spatially installed sensor devices above the plant height reflect the actual information of the environment getting by plant. Furthermore, both hardware and software-based sensing techniques control the greenhouse microclimate optimally. The proper positioning of sensors and their protection from harsh environmental factors is also essential.
Conclusions
It can be concluded that modern sensor devices and systems are driving the greenhouse monitoring and control system toward an intelligent, real-time, remotely accessible, and fully automatic system. |
---|---|
AbstractList | Purpose Sensors are the primary component of a monitoring and control system. Effective monitoring and control of the microclimatic environment in a greenhouse is the key necessity for protecting crops from adverse environments. Moreover,the greenhouse microclimate is influenced by various factors. In the large-scale greenhouse facilities, several sensors and actuators are needed to control the system. Manual monitoring and control of such a large and complex system is labor-intensive and impractical. Therefore, an automatic monitoring and control system in the greenhouse becomes indispensable. In addition, microclimatic parameters such as temperature, humidity, and solar irradiance in the greenhouse are non-linearly interlinked, thereby forming a non-linear multivariate system. Thus, an appropriately designed sensor system is needed for monitoring and controlling the greenhouse microclimate.
Methods Research articles on greenhouse microclimate monitoring and control published in the last 6 years were considered. The sensor devices and technologies applied to control particular environmental parameters in the greenhouse and their key achievements were systematically reviewed. In addition, different approaches to determine the optimum number of sensors and their placement inside the greenhouse were investigated.
Results It was found that spatially installed sensor devices above the plant height reflect the actual information of the environment getting by plant. Furthermore, both hardware and software-based sensing techniques control the greenhouse microclimate optimally. The proper positioning of sensors and their protection from harsh environmental factors is also essential.
Conclusions It can be concluded that modern sensor devices and systems are driving the greenhouse monitoring and control system toward an intelligent, real-time, remotely accessible, and fully automatic system. KCI Citation Count: 0 Purpose Sensors are the primary component of a monitoring and control system. Effective monitoring and control of the microclimatic environment in a greenhouse is the key necessity for protecting crops from adverse environments. Moreover,the greenhouse microclimate is influenced by various factors. In the large-scale greenhouse facilities, several sensors and actuators are needed to control the system. Manual monitoring and control of such a large and complex system is labor-intensive and impractical. Therefore, an automatic monitoring and control system in the greenhouse becomes indispensable. In addition, microclimatic parameters such as temperature, humidity, and solar irradiance in the greenhouse are non-linearly interlinked, thereby forming a non-linear multivariate system. Thus, an appropriately designed sensor system is needed for monitoring and controlling the greenhouse microclimate. Methods Research articles on greenhouse microclimate monitoring and control published in the last 6 years were considered. The sensor devices and technologies applied to control particular environmental parameters in the greenhouse and their key achievements were systematically reviewed. In addition, different approaches to determine the optimum number of sensors and their placement inside the greenhouse were investigated. Results It was found that spatially installed sensor devices above the plant height reflect the actual information of the environment getting by plant. Furthermore, both hardware and software-based sensing techniques control the greenhouse microclimate optimally. The proper positioning of sensors and their protection from harsh environmental factors is also essential. Conclusions It can be concluded that modern sensor devices and systems are driving the greenhouse monitoring and control system toward an intelligent, real-time, remotely accessible, and fully automatic system. |
Author | Park, Jaesung Khan, Fawad Sihalath, Thavisack Kim, Hyeon Tae Arulmozhi, Elanchezhian Jaihuni, Mustafa Bhujel, Anil Lee, Deoghyun Basak, Jayanta Kumar |
Author_xml | – sequence: 1 givenname: Anil surname: Bhujel fullname: Bhujel, Anil organization: Department of Bio-systems Engineering, Institute of Smart Farm, Gyeongsang National University, Government of Nepal, Ministry of Communication and Information Technology – sequence: 2 givenname: Jayanta Kumar surname: Basak fullname: Basak, Jayanta Kumar organization: Department of Bio-systems Engineering, Institute of Smart Farm, Gyeongsang National University – sequence: 3 givenname: Fawad surname: Khan fullname: Khan, Fawad organization: Department of Bio-systems Engineering, Institute of Smart Farm, Gyeongsang National University – sequence: 4 givenname: Elanchezhian surname: Arulmozhi fullname: Arulmozhi, Elanchezhian organization: Department of Bio-systems Engineering, Institute of Smart Farm, Gyeongsang National University – sequence: 5 givenname: Mustafa surname: Jaihuni fullname: Jaihuni, Mustafa organization: Department of Bio-systems Engineering, Institute of Smart Farm, Gyeongsang National University – sequence: 6 givenname: Thavisack surname: Sihalath fullname: Sihalath, Thavisack organization: Department of Bio-systems Engineering, Institute of Smart Farm, Gyeongsang National University – sequence: 7 givenname: Deoghyun surname: Lee fullname: Lee, Deoghyun organization: Department of Bio-systems Engineering, Institute of Smart Farm, Gyeongsang National University – sequence: 8 givenname: Jaesung surname: Park fullname: Park, Jaesung organization: Smart Farm Research Center, Gyeongsang National University – sequence: 9 givenname: Hyeon Tae surname: Kim fullname: Kim, Hyeon Tae email: bioani@gnu.ac.kr organization: Department of Bio-systems Engineering, Institute of Smart Farm, Gyeongsang National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002684802$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE1PAjEQhhujiYj8AU979bDaj6XteiNEkYgxATw3ZXeKhaUl7aLh31vAkwdOM5O8z2TmuUGXzjtA6I7gB4KxeIwFlX2WY4pznOZ-zi9Qh1JW5ERyeok6RDCZE8r5NerFuEohRoRkfd5BbzNw0Ydsto8tbGJmUj8KAO7L7yJk77YKvmrsRrdp8M62Pli3zLSrs6F3bfDNU6azKXxb-LlFV0Y3EXp_tYs-X57nw9d88jEaDweTvKIF5rk0XEqqMRima9AEwJC-EMAZLApZYkGKqsBQGkxrQkRpdF2T9OLCQEUAF6yL7k97XTBqXVnltT3WpVfroAbT-ViVoqCC85SVp2z6I8YARlW21a093K5towhWB4fq5FAlh-roUB1Q-g_dhiQi7M9D7ATF7UEUBLXyu-CSjnPUL0a_hbI |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107139 crossref_primary_10_1080_21642583_2024_2306825 crossref_primary_10_1016_j_scs_2022_104259 crossref_primary_10_3390_atmos13081258 crossref_primary_10_1016_j_apenergy_2023_121190 crossref_primary_10_3390_agriengineering6040267 crossref_primary_10_3390_app14146158 crossref_primary_10_3390_encyclopedia5010035 crossref_primary_10_3390_crops2040024 crossref_primary_10_1016_j_asej_2023_102509 crossref_primary_10_3390_agriculture12101705 crossref_primary_10_3390_su162410958 crossref_primary_10_1038_s41598_025_94432_0 crossref_primary_10_1016_j_sbsr_2024_100688 crossref_primary_10_2139_ssrn_4943130 crossref_primary_10_3390_heritage7110300 crossref_primary_10_3390_en15103834 crossref_primary_10_1016_j_atech_2024_100446 crossref_primary_10_3389_fhort_2024_1425285 crossref_primary_10_3390_math11143052 crossref_primary_10_3389_fpls_2022_920284 crossref_primary_10_1016_j_atech_2023_100296 crossref_primary_10_1016_j_compag_2024_108652 crossref_primary_10_3390_app122412557 crossref_primary_10_1016_j_measen_2023_100727 crossref_primary_10_3390_s23031250 crossref_primary_10_1016_j_inpa_2024_04_002 |
Cites_doi | 10.1007/978-981-13-3338-5 10.1016/j.ifacol.2019.12.518 10.5120/16672-6673 10.1109/ICAMIMIA.2015.7507993 10.1016/j.procs.2019.09.001 10.1079/9781780641034.0000 10.1016/j.biosystemseng.2019.10.005 10.1016/j.procs.2017.11.042 10.3390/en13020435 10.1016/j.ifacol.2015.07.062 10.3389/fpls.2015.00704 10.3390/s18113786 10.1016/j.rser.2011.07.030 10.1016/j.jclepro.2017.02.197 10.3390/s20072078 10.1109/ICITBS.2015.126 10.23919/ChiCC.2017.8028786 10.1016/j.compchemeng.2006.05.030 10.1016/j.eaef.2014.02.003 10.1016/j.compag.2020.105287 10.3390/en12091749 10.1088/1757-899X/396/1/012027 10.1016/j.procs.2017.08.300 10.17979/spudc.9788497497565.0875 10.1002/9780470866931.ch6 10.1109/EBCCSP.2016.7605236 10.12785/ijcds/080210 10.1007/978-1-4302-6014-1_4 10.21273/HORTSCI12676-17 10.1007/s42853-019-00014-0 10.1016/j.inpa.2016.06.002 10.1080/03772063.2014.999834 10.1007/s00271-006-0034-z 10.1016/j.ifacol.2018.08.099 10.1016/j.compag.2018.11.014 10.1109/ICCAR.2017.7942739 10.1515/intag-2017-0005 10.1109/ISAMSR.2016.7810003 10.1016/j.jhydrol.2007.06.032 10.1016/j.compag.2017.03.003 10.3390/s20072028 10.1016/j.biosystemseng.2016.11.005 10.1109/SSD.2014.6808765 10.1109/ICUFN.2017.7993788 10.1109/ICCAR.2018.8384696 10.1016/j.procs.2015.08.249 10.1016/j.csi.2011.03.004 10.1109/IMCEC.2018.8469309 10.1109/VTCSpring.2017.8108182 10.1109/COMSNETS48256.2020.9027392 10.1016/j.inpa.2018.02.002 10.3390/en10070927 10.1109/ICARA.2015.7081156 10.5307/jbe.2017.42.1.023 10.1109/WiSPNET.2018.8538702 10.1016/j.compag.2019.104877 10.1109/CATCON.2017.8280184 10.1016/j.njas.2014.05.007 10.5296/npa.v10i4.14155 10.15666/aeer/1802_21412161 10.3303/CET1546124 10.1016/j.biosystemseng.2018.10.017 10.3389/fpls.2018.02002 10.1016/j.ifacol.2019.12.520 10.1016/j.icte.2017.12.005 10.1016/j.compag.2018.12.039 10.1016/j.inpa.2018.01.002 10.1007/s11947-008-0154-y 10.5593/sgem2017/62/S27.089 10.1016/j.crcon.2018.08.002 10.1109/IMPACT.2018.8625804 10.1016/j.ifacol.2016.10.068 10.1016/j.ifacol.2018.08.108 10.1016/j.icte.2017.03.004 10.5815/ijieeb.2017.03.01 10.1109/CYBER.2015.7288044 10.1016/j.inpa.2018.01.003 10.1109/ICSGEA.2017.47 10.1016/j.inpa.2018.01.001 10.1007/978-981-13-1882-5 10.1109/CSSE.2008.1528 10.1109/ICICT.2017.8320190 10.1016/j.eaef.2013.12.009 10.1109/ICAwST.2017.8256458 10.3390/s19010060 10.5307/JBE.2018.43.1.072 10.1109/ATC.2018.8587487 |
ContentType | Journal Article |
Copyright | The Korean Society for Agricultural Machinery 2021 |
Copyright_xml | – notice: The Korean Society for Agricultural Machinery 2021 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s42853-020-00075-6 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 2234-1862 |
EndPage | 361 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9742766 10_1007_s42853_020_00075_6 |
GrantInformation_xml | – fundername: Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries grantid: 716001-7 funderid: http://dx.doi.org/10.13039/501100003668 |
GroupedDBID | .UV 0R~ 406 9ZL AACDK AAHNG AAJBT AASML AATNV ABAKF ABECU ABKCH ABMQK ABTEG ABTKH ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADTPH ADURQ AEFQL AEMSY AESKC AGMZJ AGQEE AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AXYYD DPUIP EBLON EBS EJD FIGPU FNLPD IKXTQ IWAJR JDI JZLTJ LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AAUYE ABFTV ABTMW ACYCR ADKNI ADYFF AFQWF AGDGC AMKLP AMYLF GGCAI |
ID | FETCH-LOGICAL-c2406-8f6882a0ef3adea1eef1577e63eb4890714c40e9f02d1179fadd1428bfec1e043 |
ISSN | 1738-1266 |
IngestDate | Tue Nov 21 21:40:43 EST 2023 Tue Jul 01 03:07:59 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Fri Feb 21 02:49:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Soft sensing WSN Greenhouse microclimate Microclimate monitoring Sensor |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2406-8f6882a0ef3adea1eef1577e63eb4890714c40e9f02d1179fadd1428bfec1e043 |
PageCount | 21 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9742766 crossref_citationtrail_10_1007_s42853_020_00075_6 crossref_primary_10_1007_s42853_020_00075_6 springer_journals_10_1007_s42853_020_00075_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201200 2020-12-00 2020-12 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of Biosystems Engineering, 45(4) |
PublicationTitleAbbrev | J. Biosyst. Eng |
PublicationYear | 2020 |
Publisher | Springer Singapore 한국농업기계학회 |
Publisher_xml | – name: Springer Singapore – name: 한국농업기계학회 |
References | PrasadBVGChakravortySEffects of climate change on vegetable cultivation-a reviewNature Environment and Pollution Technology2015144923929 NelsonPVGreenhouse operation and management2003Upper Saddle River, NJPrentice Hall Datasheet4u TGS4161. TGS 4161 CO2 sensor. Available https://www. datasheet4u.com/datasheet-pdf-file/842954/Figaro/TGS4161/1. Accessed 6 Feb 2020. Soil PT100. PT100 Soil temperature and moisture sensor. Available https://www.soil.co.uk/products/temperature-sensors/pt100-resistance-temperature-sensor/. Accessed 8 Feb 2020. Chang, Y. S., Chen, Y. H., & Zhou, S. K. (2019). A smart lighting system for greenhouses based on Narrowband-IoT communication. In Proceedings of Technical Papers - International Microsystems, Packaging, Assembly, and Circuits Technology Conference, IMPACT, 2018-October (pp. 275–278). Taipei, Taiwan: IEEE. https://doi.org/10.1109/IMPACT.2018.8625804. Liao, M. S., Chen, S. F., Chou, C. Y., Chen, H. Y., Yeh, S. H., Chang, Y. C., & Jiang, J. A. (2017). On precisely relating the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system. Computers and Electronics in Agriculture,136, 125–139. https://doi.org/10.1016/j.compag.2017.03.003. Saha, T., Jewel, K. H., Mostakim, M. N., Bhuiyan, M. H., Ali, N. S., Rahman, M. K., et al. (2017). Construction and development of an automated greenhouse system using Arduino Uno. International Journal of Information Engineering and Electronic Business, 9(3), 1–8. https://doi.org/10.5815/ijieeb.2017.03.01. Adafruit DHT11. DHT11 basic temperature-humidity sensor. Available https://www.adafruit.com/product/386. Accessed 2 Feb 2020. Huynh, T. (2015). Thermal sensors. In Smart Sensor Systems (pp. 5–42). Berlin: Springer. https://doi.org/10.1002/9780470866931.ch6. Al-Aubidy, K. M., Ali, M. M., Derbas, A. M., & Al-Mutairi, A. W. (2014). Real-time monitoring and intelligent control for greenhouses based on wireless sensor network. In 2014 IEEE 11th International Multi-Conference on Systems, Signals and Devices (SSD 2014) (pp. 1–7). Barcelona, Spain: IEEE. https://doi.org/10.1109/SSD.2014.6808765. Mouser FC-22. FC-22 Soil moisture sensor. Available https://www.mouser.com/ds/2/744/Seeed_101020008-1217463.pdf. Accessed 7 Feb 2020. BonachelaSGonzálezAMFernándezMDIrrigation scheduling of plastic greenhouse vegetable crops based on historical weather dataIrrigation Science2006251536210.1007/s00271-006-0034-z Adept AVT. AVT Marlin F145-C2 Camera. Available https://www.adept.net.au/cameras/avt/pdf/MARLIN_F_145B_C.pdf. Accessed 9 Feb 2020. Ramli, M. R., Daely, P. T., Kim, D. S., & Lee, J. M. (2020). IoT-based adaptive network mechanism for reliable smart farm system. Computers and Electronics in Agriculture,170, 105287. https://doi.org/10.1016/j.compag.2020.105287. Funnykit H-550. H550 CO2 sensor. Available https://www.funnykit.co.kr/bemarket/datasheet/H-550.pdf. Accessed 7 Feb 2020. Enercorp 310. Arisense 310 CO2 sensor. Available https://www.enercorp.com/enercorp-pdf/air-quality/48.pdf. Accessed 7 Feb 2020. TME HS220. HS220 Humidity sensor. Available https:// www.tme.eu/en/details/sy-hs-220/humidity-sensors/syhitech. Accessed 4 Feb 2020. Bajer, L., & Krejcar, O. (2015). Design and realization of low cost control for greenhouse environment with remote control. IFAC-PapersOnLine,48(4), 368–373. https://doi.org/10.1016/j.ifacol.2015.07.062. Artofcircuits FC-28. FC-28 Soil moisture sensor. Available https://www.artofcircuits.com/product/fc-28-soil-moisture-sensor-analog-and-digital-outputs. Accessed 7 Feb 2020. Adafruit DHT22. DHT22 temperature-humidity sensor + extras. Available https://www.adafruit.com/product/385. Accessed 2 Feb 2020. Sensirion humidity sensor. Digital humidity sensor. Available https://www.sensirion.com/en/environmental-sensors/humidity-sensors. Accessed 2 Feb 2020. Zou, Z., Bie, Y., & Zhou, M. (2018). Design of an intelligent control system for greenhouse. In Proceedings of 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2018, (Imcec) (pp. 1632–1635). Xi’an, China: IEEE. https://doi.org/10.1109/IMCEC.2018.8469309. Neethirajan, S., Jayas, D. S., & Sadistap, S. (2009). Carbon dioxide (CO2) sensors for the agri-food industry-a review. Food and Bioprocess Technology, 2(2), 115–121. https://doi.org/10.1007/s11947-008-0154-y. Sensirion SHT71. Digital humidity sensor. Available https://www.sensirion.com/en/environmental-sensors/humidity-sensors. Accessed 3 Feb 2020. Datasheets DS18B20. DS18B20 Soil temperature and moisture sensor. Available https://www.datasheets.maximintegrated.com/en/ds/DS18B20-PAR.pdf. Accessed 8 Feb 2020. Savvas, D., Gianquinto, G. P., Tüzel, Y., & Gruda, N. (2013). Good agricultural practices for greenhouse vegetable crops. FAO Plant Production and Protection Paper, 217. http://www.fao.org/3/a-i3284e.pdf. Accessed 16 Feb 2020. BogenaHRHuismanJAOberdörsterCVereeckenHEvaluation of a low-cost soil water content sensor for wireless network applicationsJournal of Hydrology20073441–2324210.1016/j.jhydrol.2007.06.032 Mukazhanov, Y., Kamshat, Z., Assel, O., Shayhmetov, N., & Alimbaev, C. (2017). Microclimate control in greenhouses. In: International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(62), pp. 699–704,. https://doi.org/10.5593/sgem2017/62/S27.089. TES 133R. 133R solar irradiance sensor. Available https://www.tes.com.tw/en/product_detail.asp?seq=285. Accessed 8 Feb 2020. AhamedMSGuoHTaninoKEnergy saving techniques for reducing the heating cost of conventional greenhousesBiosystems Engineering201917893310.1016/j.biosystemseng.2018.10.017 DattaSTaghvaeianSOchsnerTEMoriasiDGowdaPSteinerJLPerformance assessment of five different soil moisture sensors under irrigated field conditions in OklahomaSensors (Switzerland)2018181111710.3390/s18113786 Memsic MDA300. MDA 300 wireless sensor board. Available https://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0052-04_a_mda300-t.pdf. Accessed 2 Feb 2020. Mouser BH1750. BH1750 Light sensor. Available https://www.mouser.com/ds/2/348/bh1750fvi-e-186247.pdf. Accessed 6 Feb 2020. FDS-100 Soil sensor. FDS-100 Soil moisture sensor. Available https://www.bjgxhy.en.alibaba.com/?spm=a2700.details.cordpanyb.4.14a64a0dAYuVfj. Accessed 8 Feb 2020. MartinovićGSimonJGreenhouse microclimatic environment controlled by a mobile measuring stationNJAS - Wageningen Journal of Life Sciences201470617010.1016/j.njas.2014.05.007 Pahuja, R., Verma, H. K., & Uddin, M. (2017). An intelligent wireless sensor and actuator network system for greenhouse microenvironment control and assessment. Journal of Biosystems Engineering, 42(1), 23–43. https://doi.org/10.5307/jbe.2017.42.1.023. Wang, J., Zhou, J., Gu, R., Chen, M., & Li, P. (2018). Manage system for internet of things of greenhouse based on GWT. Information Processing in Agriculture, 5(2), 269–278. https://doi.org/10.1016/j.inpa.2018.01.002. KaburuanERJayadiRHarisnoA design of IoT-based monitoring system for intelligence indoor micro-climate horticulture farming in IndonesiaProcedia Computer Science201915745946410.1016/j.procs.2019.09.001 Zytemp TN9. TN9 Thermal camera. Available https://www.zytemp.com/products/files/TN9_UserManual_012.pdf. Accessed 9 Feb 2020. Hongkang, W., Li, L., Yong, W., Fanjia, M., Haihua, W., & Sigrimis, N. A. (2018). Recurrent neural network model for prediction of microclimate in solar greenhouse. IFAC-PapersOnLine, 51(17), 790–795. https://doi.org/10.1016/j.ifacol.2018.08.099. SinhaRSWeiYHwangSHA survey on LPWA technology: LoRa and NB-IoTICT Express201731142110.1016/j.icte.2017.03.004 CodeluppiGCilfoneADavoliLFerrariGLoraFarM: a LoRaWAN-based smart farming modular IoT architectureSensors2020207202810.3390/s20072028 Nxp MPX4115. MPX4115 Air pressure sensor. Available https://www.nxp.com/files-static/sensors/doc/data_sheet/MPX4115.pdf. Accessed 9 Feb 2020. Deltaohm 9009t. HD900TR humidity sensor. Available https://www.deltaohm.com/en/product/hd9008t-9009t-serie-meteorological-temperature-and-rh-transmitter. Accessed 3 Feb 2020. Noh, D. H., An, S. Y., & Kim, J. (2017). Implementation of optimal greenhouse control: multiple influences approach. International Conference on Ubiquitous and Future Networks, ICUFN (pp. 261–265). Milan, Italy: IEEE. https://doi.org/10.1109/ICUFN.2017.7993788. TakiMAbdanan MehdizadehSRohaniARahnamaMRahmati-JoneidabadMApplied machine learning in greenhouse simulation; new application and analysisInformation Processing in Agriculture20185225326810.1016/j.inpa.2018.01.003 ChandrasekaranNSomanahRRughooDDreepaulRKTyagarajaSCundenMDemkahMDigital transformation from leveraging blockchain technology, artificial intelligence, machine learning and deep learningAdv. Intell. Syst. Comput.201986327128310.1007/978-981-13-3338-5 Sushanth, G., & Sujatha, S. (2018). IOT based smart agriculture system. 2018 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2018 (pp. 1–4). IEEE: Chennai, India. https://doi.org/10.1109/WiSPNET.2018.8538702. Jaihuni, M., Basak, J. K., Khan, F., Okyere, F. G., Arulmozhi, E., Bhujel, A., et al. (2020). A partially amended hybrid Bi-Gru—ARIMA model (PAHM) for predicting solar irradiance in short and very-short terms. Energies,13(2), 435. https://doi.org/10.3390/en13020435. XuJDaiFXuYYaoCLiCWireless power supply technology for uniform magnetic field of intelligent greenhouse sensorsComputers and Electronics in Agriculture2019156April 201820320810.1016/j.compag.2018.11.014 ZhangYChenDWangSTianLA promising trend for field information collection: an air-ground multi-sensor monitoring systemInformation Processing in Agriculture20185222423310.1016/j.inpa.2018.02.002 WuYLiLLiMZhangMSunHSygrimisNLaiWRemote-control system for greenhouse based on open source hardwareIFAC-PapersOnLine2019523017818310.1016/j.ifacol.2019.12.518 Takeya, S., Muromachi, S., Maekawa, T., Yamamoto, Y., Mimachi, H., Kinoshita, T., Murayama, T., Umeda, H., Ahn, D. H., Iwasaki, Y., H TC Jermin Jeaunita (75_CR36) 2019; 8 A Kochhar (75_CR42) 2019; 163 PV Nelson (75_CR65) 2003 Y Kaneda (75_CR39) 2015; 60 75_CR72 75_CR74 NL Panwar (75_CR68) 2011; 15 75_CR76 75_CR78 75_CR77 S Datta (75_CR22) 2018; 18 75_CR79 Liang-Ying (75_CR50) 2015 JD Borrero (75_CR14) 2020; 20 B Mohammadi (75_CR61) 2018; 5 K Mekki (75_CR60) 2019; 5 75_CR133 JS Wilson (75_CR93) 2005 75_CR132 75_CR135 75_CR134 G Martinović (75_CR58) 2014; 70 75_CR131 A Elanchezhian (75_CR23) 2020; 18 75_CR130 T Achouak (75_CR2) 2019; 10 75_CR81 75_CR80 75_CR83 75_CR85 75_CR84 MH Liang (75_CR51) 2018; 51 75_CR87 75_CR1 75_CR89 YC Chiu (75_CR20) 2014; 7 75_CR88 75_CR129 75_CR7 75_CR6 75_CR9 75_CR126 75_CR125 75_CR128 75_CR127 75_CR122 RS Sinha (75_CR82) 2017; 3 75_CR121 75_CR124 75_CR123 N Chandrasekaran (75_CR16) 2019; 863 75_CR120 A Pawlowski (75_CR69) 2016 G Codeluppi (75_CR21) 2020; 20 L Zhang (75_CR97) 2015; 46 SY Lee (75_CR48) 2019; 188 E Kaiser (75_CR38) 2019; 9 75_CR52 75_CR54 CH Guzmán (75_CR29) 2019; 19 75_CR56 75_CR55 75_CR57 M Taki (75_CR86) 2018; 5 75_CR119 75_CR59 75_CR118 75_CR115 ER Kaburuan (75_CR37) 2019; 157 T Li (75_CR49) 2015; 6 75_CR114 75_CR117 75_CR116 75_CR111 75_CR110 75_CR113 75_CR112 JY Kim (75_CR41) 2018; 43 Y Zhang (75_CR98) 2018; 5 Y Wu (75_CR94) 2019; 52 CK Lee (75_CR47) 2019; 12 75_CR63 75_CR62 75_CR64 75_CR67 75_CR66 G Aiello (75_CR4) 2018; 172 B Lin (75_CR53) 2007; 31 75_CR108 A Khanna (75_CR40) 2019; 157 75_CR107 75_CR109 75_CR104 75_CR103 75_CR106 75_CR105 75_CR100 JK Basak (75_CR11) 2019; 44 75_CR102 75_CR101 S Rodríguez (75_CR75) 2017; 121 J Xu (75_CR95) 2019; 156 MA Akkaş (75_CR5) 2017; 113 75_CR30 J Bao (75_CR10) 2018; 1 75_CR32 75_CR31 75_CR34 75_CR33 75_CR35 SHKV Lata (75_CR45) 2017 Aqeel-Ur-Rehman (75_CR8) 2014; 36 75_CR43 75_CR44 MS Ahamed (75_CR3) 2019; 178 IC Yang (75_CR96) 2014; 7 HR Bogena (75_CR12) 2007; 344 75_CR92 K Radha-Manohar (75_CR71) 2007 75_CR91 DR Vimla (75_CR90) 2019; 863 S Bonachela (75_CR13) 2006; 25 75_CR99 75_CR15 75_CR18 75_CR17 75_CR19 75_CR25 75_CR24 75_CR27 75_CR26 BVG Prasad (75_CR70) 2015; 14 75_CR28 M Lauridsen (75_CR46) 2017 JC Ramos-Fernández (75_CR73) 2016; 49 |
References_xml | – reference: AielloGGiovinoIValloneMCataniaPArgentoAA decision support system based on multisensor data fusion for sustainable greenhouse managementJournal of Cleaner Production20181724057406510.1016/j.jclepro.2017.02.197 – reference: Funnykit H-550. H550 CO2 sensor. Available https://www.funnykit.co.kr/bemarket/datasheet/H-550.pdf. Accessed 7 Feb 2020. – reference: Liu, L., & Zhang, Y. (2017). Design of greenhouse environment monitoring system based on Wireless Sensor Network. 2017 3rd International Conference on Control, Automation and Robotics, ICCAR 2017 (pp. 463–466). Nagoya, Japan: IEEE. https://doi.org/10.1109/ICCAR.2017.7942739. – reference: Artofcircuits FC-28. FC-28 Soil moisture sensor. Available https://www.artofcircuits.com/product/fc-28-soil-moisture-sensor-analog-and-digital-outputs. Accessed 7 Feb 2020. – reference: Hongkang, W., Li, L., Yong, W., Fanjia, M., Haihua, W., & Sigrimis, N. A. (2018). Recurrent neural network model for prediction of microclimate in solar greenhouse. IFAC-PapersOnLine, 51(17), 790–795. https://doi.org/10.1016/j.ifacol.2018.08.099. – reference: Saha, T., Jewel, K. H., Mostakim, M. N., Bhuiyan, M. H., Ali, N. S., Rahman, M. K., et al. (2017). Construction and development of an automated greenhouse system using Arduino Uno. International Journal of Information Engineering and Electronic Business, 9(3), 1–8. https://doi.org/10.5815/ijieeb.2017.03.01. – reference: KhannaAKaurSEvolution of Internet of Things (IoT) and its significant impact in the field of Precision AgricultureComputers and Electronics in Agriculture2019157November 201821823110.1016/j.compag.2018.12.039 – reference: Ramli, M. R., Daely, P. T., Kim, D. S., & Lee, J. M. (2020). IoT-based adaptive network mechanism for reliable smart farm system. Computers and Electronics in Agriculture,170, 105287. https://doi.org/10.1016/j.compag.2020.105287. – reference: ZhangYChenDWangSTianLA promising trend for field information collection: an air-ground multi-sensor monitoring systemInformation Processing in Agriculture20185222423310.1016/j.inpa.2018.02.002 – reference: LauridsenMNguyenHVejlgaardBKovacsIZMogensenPSorensenMCoverage comparison of GPRS, NB-IoT, LoRa, and SigFox in a 7800 km areaIEEE Vehicular Technology Conference, 2017-June20172610.1109/VTCSpring.2017.8108182 – reference: KanedaYIbayashiHOishiNMinenoHGreenhouse environmental control system based on SW-SVRProcedia Computer Science201560186086910.1016/j.procs.2015.08.249 – reference: Component LDR. Light Dependent Resistor. Available https://www.components101.com/ldr-datasheet. Accessed 5 Feb 2020. – reference: BonachelaSGonzálezAMFernándezMDIrrigation scheduling of plastic greenhouse vegetable crops based on historical weather dataIrrigation Science2006251536210.1007/s00271-006-0034-z – reference: ChiuYCYangPYGriftTEA wireless communication system for automated greenhouse operationsEngineering in Agriculture, Environment and Food201472788510.1016/j.eaef.2014.02.003 – reference: United Nations, Department of Economic and Social Affairs, Population Division. (2019). World Population Prospects 2019: Highlights (ST/ESA/SER.A/423). https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf. Accessed 10 Jan 2020. – reference: Wang, J., Zhou, J., Gu, R., Chen, M., & Li, P. (2018). Manage system for internet of things of greenhouse based on GWT. Information Processing in Agriculture, 5(2), 269–278. https://doi.org/10.1016/j.inpa.2018.01.002. – reference: Savvas, D., Gianquinto, G. P., Tüzel, Y., & Gruda, N. (2013). Good agricultural practices for greenhouse vegetable crops. FAO Plant Production and Protection Paper, 217. http://www.fao.org/3/a-i3284e.pdf. Accessed 16 Feb 2020. – reference: KimJYSangcheol KimJLComparative analysis of TTAK.KO-06.0288-Part3 and development of an open-source communication library for greenhouse control systemJournal of Biosystems Engineering2018431728010.5307/JBE.2018.43.1.072 – reference: Mouser MCP9700. MCP9700A Temperature sensor. Available https://www.mouser.com/catalog/specsheets/intersil_fn3171.pdf. Accessed 4 Feb 2020. – reference: Türk, A. M., Gurel, U., Turk, A. M., & Sora Gunal, E. (2016). An automation system design for greenhouses by using DIY platforms. In The International Conference On Science, Ecology And Technology (Iconsete’2015 – Vienna) (pp. 257–266). Vienna, Austria. – reference: WilsonJSSensor Technology Handbook2005Burlington, MA 01803, USAElsevier Inc. – reference: BorreroJDZabaloAAn autonomous wireless device for real-time monitoring of water needsSensors (Switzerland)202020711610.3390/s20072078 – reference: Al-Aubidy, K. M., Ali, M. M., Derbas, A. M., & Al-Mutairi, A. W. (2014). Real-time monitoring and intelligent control for greenhouses based on wireless sensor network. In 2014 IEEE 11th International Multi-Conference on Systems, Signals and Devices (SSD 2014) (pp. 1–7). Barcelona, Spain: IEEE. https://doi.org/10.1109/SSD.2014.6808765. – reference: Vu, V. A., Cong Trinh, D., Truvant, T. C., & Dang Bui, T. (2018). Design of automatic irrigation system for greenhouse based on LoRa technology. International Conference on Advanced Technologies for Communications, 2018-October (pp. 72–77). IEEE: Ho Chi Minh City, Vietnam. https://doi.org/10.1109/ATC.2018.8587487. – reference: XuJDaiFXuYYaoCLiCWireless power supply technology for uniform magnetic field of intelligent greenhouse sensorsComputers and Electronics in Agriculture2019156April 201820320810.1016/j.compag.2018.11.014 – reference: Mukazhanov, Y., Kamshat, Z., Assel, O., Shayhmetov, N., & Alimbaev, C. (2017). Microclimate control in greenhouses. In: International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(62), pp. 699–704,. https://doi.org/10.5593/sgem2017/62/S27.089. – reference: NelsonPVGreenhouse operation and management2003Upper Saddle River, NJPrentice Hall – reference: MartinovićGSimonJGreenhouse microclimatic environment controlled by a mobile measuring stationNJAS - Wageningen Journal of Life Sciences201470617010.1016/j.njas.2014.05.007 – reference: Rehman, A. U., Abbasi, A. Z., & Shaikh, Z. A. (2008). Building a smart university using RFID technology. Proceedings - International Conference on Computer Science and Software Engineering, CSSE 2008, 5 (pp. 641–644). Hubei, China: IEEE. https://doi.org/10.1109/CSSE.2008.1528. – reference: RodríguezSGualotuñaTGriloCA system for the monitoring and predicting of data in precision agriculture in a rose greenhouse based on wireless sensor networksProcedia Computer Science201712130631310.1016/j.procs.2017.11.042 – reference: Bajer, L., & Krejcar, O. (2015). Design and realization of low cost control for greenhouse environment with remote control. IFAC-PapersOnLine,48(4), 368–373. https://doi.org/10.1016/j.ifacol.2015.07.062. – reference: FDS-100 Soil sensor. FDS-100 Soil moisture sensor. Available https://www.bjgxhy.en.alibaba.com/?spm=a2700.details.cordpanyb.4.14a64a0dAYuVfj. Accessed 8 Feb 2020. – reference: TES 133R. 133R solar irradiance sensor. Available https://www.tes.com.tw/en/product_detail.asp?seq=285. Accessed 8 Feb 2020. – reference: Datasheets DS18B20. DS18B20 Soil temperature and moisture sensor. Available https://www.datasheets.maximintegrated.com/en/ds/DS18B20-PAR.pdf. Accessed 8 Feb 2020. – reference: Dwyer 657. DWYER 657 Humidity sensor. Available https:// www.dwyer-inst.com/Product/AirQuality/Humidity-TemperatureTransmitters/Model657-1#specs. Accessed 4 Feb 2020. – reference: Deltaohm 9009t. HD900TR humidity sensor. Available https://www.deltaohm.com/en/product/hd9008t-9009t-serie-meteorological-temperature-and-rh-transmitter. Accessed 3 Feb 2020. – reference: Hang, Z., Linda, S., Wangliang, L., Chuang, L., & Kaiyan, W. (2017). Application of multi-sensor data fusion technique in greenhouse environmental monitoring. Proceedings - 2017 International Conference on Smart Grid and Electrical Automation, ICSGEA 2017, 2017-Janua (pp. 51–55). Changsha, China: IEEE. https://doi.org/10.1109/ICSGEA.2017.47. – reference: TME 808. 808H5V5 Humidity sensor. Available https://www.tme.eu/en/details/sens-808h5v5/humidity-sensors. Accessed 4 Feb 2020. – reference: Liang-YingGuoYFZhao-WeiGreenhouse environment monitoring system design based on WSN and GPRS networks2015 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, IEEE-CYBER 20152015ChinaShenyang79579810.1109/CYBER.2015.7288044 – reference: LiTYangQAdvantages of diffuse light for horticultural production and perspectives for further researchFrontiers in Plant Science20156september1510.3389/fpls.2015.00704 – reference: Chen, Y., & Chien, H. (2017). IoT-based green house system with splunk data analysis. Proceedings - 2017 IEEE 8th International Conference on Awareness Science and Technology, iCAST 2017, 2018-Janua (iCAST) (pp. 260–263). IEEE: Taichung, Taiwan. https://doi.org/10.1109/ICAwST.2017.8256458. – reference: LeeSYLeeIBYeoUHKimRWKimJGOptimal sensor placement for monitoring and controlling greenhouse internal environmentsBiosystems Engineering201918819020610.1016/j.biosystemseng.2019.10.005 – reference: Pahuja, R., Verma, H. K., & Uddin, M. (2017). An intelligent wireless sensor and actuator network system for greenhouse microenvironment control and assessment. Journal of Biosystems Engineering, 42(1), 23–43. https://doi.org/10.5307/jbe.2017.42.1.023. – reference: ElanchezhianABasakJKParkJKhanFOkyereFGLeeYEvaluating different models used for predicting the indoor microclimatic parameters of a greenhouseApplied Ecology and Environmental Research20201822141216110.15666/aeer/1802_21412161 – reference: DattaSTaghvaeianSOchsnerTEMoriasiDGowdaPSteinerJLPerformance assessment of five different soil moisture sensors under irrigated field conditions in OklahomaSensors (Switzerland)2018181111710.3390/s18113786 – reference: Sushanth, G., & Sujatha, S. (2018). IOT based smart agriculture system. 2018 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2018 (pp. 1–4). IEEE: Chennai, India. https://doi.org/10.1109/WiSPNET.2018.8538702. – reference: AchouakTKhelifaBGarcíaLParraLLloretJFatehBSensor network proposal for greenhouse automation placed at the south of AlgeriaNetwork Protocols and Algorithms20191045310.5296/npa.v10i4.14155 – reference: Bdtic 29010. ISL 29010 Light sensor. Available https://www.bdtic.com/en/intersil/ISL29010. Accessed 5 Feb 2020. – reference: Garg, A., Munoth, P., & Goyal, R. (2016). Application of soil moisture sensors in agriculture: a review. In Proceedings of International Conference on Hydraulics, Water Resources and Coastal Engineering (Hydro2016), CWPRS (pp. 1662–1672). Pune, India: HYDRO-2016. – reference: Abas, M. A., & Dahlui, M. (2016). Development of greenhouse autonomous control system for Home Agriculture project. In ICAMIMIA 2015 - International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation, Proceeding - In conjunction with Industrial Mechatronics and Automation Exhibition, IMAE, 2015(Icamimia) (pp. 12–17, Surabaya, Indonesia). https://doi.org/10.1109/ICAMIMIA.2015.7507993. – reference: Mouser MQ5. MQ5 CO2 sensor. Available https://www.mouser.com/ds/2/744/Seeed_101020056-1217478.pdf. Accessed 7 Feb 2020. – reference: Chacko, S., & Job, M. D. (2018). Security mechanisms and vulnerabilities in LPWAN. In IOP Conference Series: Materials Science and Engineering, 396(1). Kerala State, India: IOP Science. https://doi.org/10.1088/1757-899X/396/1/012027. – reference: PawlowskiASanchezJAGuzmanJLRodriguezFBerenguelMDormidoSEvent-based control for a greenhouse irrigation system2016 2nd International Conference on Event-Based Control, Communication, and Signal Processing, EBCCSP 2016 - Proceedings. Krakow, Poland201610.1109/EBCCSP.2016.7605236 – reference: Nxp MPX4115. MPX4115 Air pressure sensor. Available https://www.nxp.com/files-static/sensors/doc/data_sheet/MPX4115.pdf. Accessed 9 Feb 2020. – reference: Erazo, M., Rivas, D., Perez, M., Galarza, O., Bautista, V., Huerta, M., & Rojo, J. L. (2015). Design and implementation of a wireless sensor network for rose greenhouses monitoring. In: ICARA 2015 - Proceedings of the 2015 6th International Conference on Automation, Robotics and Applications, pp. 256–261. Queenstown, New Zealand: IEEE. https://doi.org/10.1109/ICARA.2015.7081156. – reference: Mouser FC-22. FC-22 Soil moisture sensor. Available https://www.mouser.com/ds/2/744/Seeed_101020008-1217463.pdf. Accessed 7 Feb 2020. – reference: Henderson, S., Gholami, D., & Zheng, Y. (2018). Soil moisture sensor-based systems are suitable for monitoring and controlling irrigation of greenhouse crops. HortScience, 53(4), 552–559. https://doi.org/10.21273/HORTSCI12676-17. – reference: ZhangLLiCJiaYXiaoZDesign of greenhouse environment remote monitoring system based on Android platformChemical Engineering Transactions20154673974410.3303/CET1546124 – reference: Taki, M., Ajabshirchi, Y., Ranjbar, S. F., Rohani, A., & Matloobi, M. (2016). Modeling and experimental validation of heat transfer and energy consumption in an innovative greenhouse structure. Information Processing in Agriculture, 3(3), 157–174. https://doi.org/10.1016/j.inpa.2016.06.002. – reference: Datasheet4u TGS4161. TGS 4161 CO2 sensor. Available https://www. datasheet4u.com/datasheet-pdf-file/842954/Figaro/TGS4161/1. Accessed 6 Feb 2020. – reference: Apogeeinstruments SU-100. SU-100 Solar irradiance sensor. Available https://www.apogeeinstruments.com/su-100-ss-uv-sensor/#product-tab-description. Accessed 7 Feb 2020. – reference: Gonzales Perez, I., & Calderon Godoy, A. J. (2018). Neural networks-based models for greenhouse climate control. XXXIX Jornadas de Automática, (September) (pp. 875–879). Spain: Badajoz. https://doi.org/10.17979/spudc.9788497497565.0875. – reference: Zou, Z., Bie, Y., & Zhou, M. (2018). Design of an intelligent control system for greenhouse. In Proceedings of 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2018, (Imcec) (pp. 1632–1635). Xi’an, China: IEEE. https://doi.org/10.1109/IMCEC.2018.8469309. – reference: Huynh, T. (2015). Thermal sensors. In Smart Sensor Systems (pp. 5–42). Berlin: Springer. https://doi.org/10.1002/9780470866931.ch6. – reference: KochharAKumarNWireless sensor networks for greenhouses: an end-to-end reviewComputers and Electronics in Agriculture2019163June10487710.1016/j.compag.2019.104877 – reference: Easte S505. S505 Light sensor. Available https://www.eastel33.com/index.php/Product/product_con.html?id=10#. Accessed 6 Feb 2020. – reference: GuzmánCHCarreraJLDuránHABerumenJOrtizAAGuiretteOAImplementation of virtual sensors for monitoring temperature in greenhouses using CFD and controlSensors20191916010.3390/s19010060 – reference: Hamamatsu S1087. S1087-01 Light sensor. Available https://www.hamamatsu.com/resources/pdf/ssd/s1087_etc_kspd1039e.pdf. Accessed 6 Feb 2020. – reference: Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of wireless sensor networks towards the Internet of Things: a survey. In SoftCOM 2011, 19th International Conference on Software, Telecommunications and Computer Networks (pp. 1–6). Split, Croatia: http://www.scopus.com/inward/record.url?eid=2-s2.0-81455142290&partnerID=40&md5=8089ed723b1c1056c9a6ae8fa767fa4f. Accessed 22 Jan 2020. – reference: Aqeel-Ur-RehmanAbbasiAZIslamNShaikhZAA review of wireless sensors and networks’ applications in agricultureComputer Standards and Interfaces201436226327010.1016/j.csi.2011.03.004 – reference: BasakJKQasimWOkyereFGKhanFLeeJParkJKimHTRegression analysis to estimate morphology parameters of pepper plant in a controlled greenhouse systemJournal of Biosystems Engineering2019442576810.1007/s42853-019-00014-0 – reference: ChandrasekaranNSomanahRRughooDDreepaulRKTyagarajaSCundenMDemkahMDigital transformation from leveraging blockchain technology, artificial intelligence, machine learning and deep learningAdv. Intell. Syst. Comput.201986327128310.1007/978-981-13-3338-5 – reference: Soil PT100. PT100 Soil temperature and moisture sensor. Available https://www.soil.co.uk/products/temperature-sensors/pt100-resistance-temperature-sensor/. Accessed 8 Feb 2020. – reference: TME HS220. HS220 Humidity sensor. Available https:// www.tme.eu/en/details/sy-hs-220/humidity-sensors/syhitech. Accessed 4 Feb 2020. – reference: BogenaHRHuismanJAOberdörsterCVereeckenHEvaluation of a low-cost soil water content sensor for wireless network applicationsJournal of Hydrology20073441–2324210.1016/j.jhydrol.2007.06.032 – reference: CodeluppiGCilfoneADavoliLFerrariGLoraFarM: a LoRaWAN-based smart farming modular IoT architectureSensors2020207202810.3390/s20072028 – reference: Sri Jahnavi, V., & Ahamed, S. F. (2015). Smart wireless sensor network for automated greenhouse. IETE Journal of Research, 61(2), 180–185. https://doi.org/10.1080/03772063.2014.999834. – reference: Zytemp TN9. TN9 Thermal camera. Available https://www.zytemp.com/products/files/TN9_UserManual_012.pdf. Accessed 9 Feb 2020. – reference: Ferentinos, K. P., Katsoulas, N., Tzounis, A., Bartzanas, T., & Kittas, C. (2017). Wireless sensor networks for greenhouse climate and plant condition assessment. Biosystems Engineering, 153, 70–81. https://doi.org/10.1016/j.biosystemseng.2016.11.005. – reference: Radha-ManoharKIgathinathaneCGreenhouse technology and management20072HyderabadBS Publications10.1079/9781780641034.0000 – reference: Adafruit AM2302. AM2302 (Wired DHT22) temperature-humidity sensor. Available https://www.adafruit.com/product/393. Accessed 2 Feb 2020. – reference: Mouser SHT75. SHT75 humidity sensor. Available https:// www.mouser.com/ds/2/682/ Sensirion_Humidity_SHT7x_Datasheet_V5-469726.pdf. Accessed 3 Feb 2020. – reference: MekkiKBajicEChaxelFMeyerFA comparative study of LPWAN technologies for large-scale IoT deploymentICT Express2019511710.1016/j.icte.2017.12.005 – reference: Enercorp 310. Arisense 310 CO2 sensor. Available https://www.enercorp.com/enercorp-pdf/air-quality/48.pdf. Accessed 7 Feb 2020. – reference: Lutron. MCH-383SD Temperature, humidity, and CO2 data logger. Available https://www.lutron.com.tw/ugC_ShowroomItem_Detail.asp?hidKindID=1&hidTypeID=83&hidCatID=&hidShowID=1198&hidPrdType=&txtSrhData. Accessed 4 Feb 2020. – reference: FAO. (2018). The future of food and agriculture – alternative pathways to 2050. http://www.fao.org/3/I8429EN/i8429en.pdf. Accessed 12 Jan 2020. – reference: Labs, S. (2013). The evolution of wireless sensor networks, 1.0, 1–5. Silicon Labs. https://www.silabs.com/documents/public/white-papers/evolution-of-wireless-sensor-networks.pdf. Accessed on 07 June 2020. – reference: McGrath, M. J., Scanaill, C. N., McGrath, M. J., & Scanaill, C. N. (2013). Sensor network topologies and design considerations. Sensor Technologies, (pp. 79–95). Berkeley, CA: Apress. https://doi.org/10.1007/978-1-4302-6014-1_4. – reference: Takeya, S., Muromachi, S., Maekawa, T., Yamamoto, Y., Mimachi, H., Kinoshita, T., Murayama, T., Umeda, H., Ahn, D. H., Iwasaki, Y., Hashimoto, H., Yamaguchi, T., Okaya, K., & Matsuo, S. (2017). Design of ecological CO2 enrichment system for greenhouse production using TBAB + CO2 semi-clathrate hydrate. Energies, 10(7), 1–11. https://doi.org/10.3390/en10070927. – reference: Aosong AM2301. AM2301A temperature and humidity sensor module. Available https://www.aosong.com/products-28.html. Accessed 3 Feb 2020. – reference: Kuglestadt, T. (2015). RTDs and thermistors in building automation, (April), 1–11. Texas Instrumentation. https://www.semiee.com/file/TI/TI-LMT90-NOTES.pdf. Accessed on 25 March 2020. – reference: LiangMHHeYFChenLJDuSFGreenhouse environment dynamic monitoring system based on WIFIIFAC-PapersOnLine2018511773674010.1016/j.ifacol.2018.08.108 – reference: Liu, D., Cao, X., Huang, C., & Ji, L. (2016). Intelligent agriculture greenhouse environment monitoring system based on IOT technology. In Proceedings - 2015 International Conference on Intelligent Transportation, Big Data and Smart City, ICITBS 2015, 487–490. Halong Bay, Vietnam: IEEE. https://doi.org/10.1109/ICITBS.2015.126. – reference: Adept F145B. AVT Marlin F145-B2 Camera. Available https://www.adept.net.au/cameras/avt/pdf/MARLIN_F_145B_C.pdf. Accessed 9 Feb 2020. – reference: YangICHsiehKWTsaiCYHuangYIChenYLChenSDevelopment of an automation system for greenhouse seedling production management using radio-frequency-identification and local remote sensing techniquesEngineering in Agriculture, Environment and Food201471525810.1016/j.eaef.2013.12.009 – reference: Siddiqui, M. F., Ur Rehman Khan, A., Kanwal, N., Mehdi, H., Noor, A., & Khan, M. A. (2018). Automation and monitoring of greenhouse. 2017 International Conference on Information and Communication Technologies, ICICT 2017, 2017-Decem (pp. 197–201). IEEE: Karachi, Pakistan. https://doi.org/10.1109/ICICT.2017.8320190. – reference: Memsic MDA300. MDA 300 wireless sensor board. Available https://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0052-04_a_mda300-t.pdf. Accessed 2 Feb 2020. – reference: TakiMAbdanan MehdizadehSRohaniARahnamaMRahmati-JoneidabadMApplied machine learning in greenhouse simulation; new application and analysisInformation Processing in Agriculture20185225326810.1016/j.inpa.2018.01.003 – reference: Ti LM35. LM35 Temperature sensor. Available https://www.ti.com/lit/ds/symlink/lm35.pdf. Accessed 4 Feb 2020. – reference: Noh, D. H., An, S. Y., & Kim, J. (2017). Implementation of optimal greenhouse control: multiple influences approach. International Conference on Ubiquitous and Future Networks, ICUFN (pp. 261–265). Milan, Italy: IEEE. https://doi.org/10.1109/ICUFN.2017.7993788. – reference: Chang, Y. S., Chen, Y. H., & Zhou, S. K. (2019). A smart lighting system for greenhouses based on Narrowband-IoT communication. In Proceedings of Technical Papers - International Microsystems, Packaging, Assembly, and Circuits Technology Conference, IMPACT, 2018-October (pp. 275–278). Taipei, Taiwan: IEEE. https://doi.org/10.1109/IMPACT.2018.8625804. – reference: PrasadBVGChakravortySEffects of climate change on vegetable cultivation-a reviewNature Environment and Pollution Technology2015144923929 – reference: Sensirion humidity sensor. Digital humidity sensor. Available https://www.sensirion.com/en/environmental-sensors/humidity-sensors. Accessed 2 Feb 2020. – reference: AhamedMSGuoHTaninoKEnergy saving techniques for reducing the heating cost of conventional greenhousesBiosystems Engineering201917893310.1016/j.biosystemseng.2018.10.017 – reference: BaoJLuW-HZhaoJBiXTGreenhouses for CO2 sequestration from atmosphereCarbon Resources Conversion20181218319010.1016/j.crcon.2018.08.002 – reference: AkkaşMASokulluRAn IoT-based greenhouse monitoring system with Micaz motesProcedia Computer Science201711360360810.1016/j.procs.2017.08.300 – reference: MohammadiBRanjbarSFAjabshirchiYApplication of dynamic model to predict some inside environment variables in a semi-solar greenhouseInformation Processing in Agriculture20185227928810.1016/j.inpa.2018.01.001 – reference: SinhaRSWeiYHwangSHA survey on LPWA technology: LoRa and NB-IoTICT Express201731142110.1016/j.icte.2017.03.004 – reference: Apogeeinstruments SQ-110. SQ-110 Solar irradiance sensor. Available https://www.apogeeinstruments.com/sq-110-ss-sun-calibration-quantum-sensor/. Accessed 9 Feb 2020. – reference: Neethirajan, S., Jayas, D. S., & Sadistap, S. (2009). Carbon dioxide (CO2) sensors for the agri-food industry-a review. Food and Bioprocess Technology, 2(2), 115–121. https://doi.org/10.1007/s11947-008-0154-y. – reference: Liu, L., & Jiang, W. (2018). Design of vegetable greenhouse monitoring system based on ZigBee and GPRS. Proceedings - 2018 4th International Conference on Control, Automation and Robotics, ICCAR 2018 (pp. 336–339). Auckland, New Zealand: IEEE. https://doi.org/10.1109/ICCAR.2018.8384696. – reference: LataSHKVSelection of sensor number and locations in intelligent greenhouse2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)2017IndiaRupnagar510.1109/CATCON.2017.8280184 – reference: LeeCKChungMShinK-YImY-HYoonS-WA study of the effects of enhanced uniformity control of greenhouse environment variables on crop growthEnergies201912174910.3390/en12091749 – reference: Adafruit DHT22. DHT22 temperature-humidity sensor + extras. Available https://www.adafruit.com/product/385. Accessed 2 Feb 2020. – reference: S.Asolkar, P., & S. Bhadade, U. (2014). Analyzing and predicting the green house parameters of crops. International Journal of Computer Applications, 95(15), 28–39. https://doi.org/10.5120/16672-6673. – reference: Liao, M. S., Chen, S. F., Chou, C. Y., Chen, H. Y., Yeh, S. H., Chang, Y. C., & Jiang, J. A. (2017). On precisely relating the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system. Computers and Electronics in Agriculture,136, 125–139. https://doi.org/10.1016/j.compag.2017.03.003. – reference: KaiserEOuzounisTGidayHSchipperRHeuvelinkEMarcelisLFMAdding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimumFrontiers in Plant Science20199January11110.3389/fpls.2018.02002 – reference: Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., & Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. International Agrophysics, 32(2), 287–302. https://doi.org/10.1515/intag-2017-0005. – reference: Jermin JeaunitaTCSarasvathiVFault tolerant sensor node placement for IoT based large scale automated greenhouse systemInternational Journal of Computing and Digital Systems20198218919710.12785/ijcds/080210 – reference: VimlaDRKhedoKKBhoyrooVA flexible and reliable wireless sensor network architecture for precision agriculture in a tomato greenhouseAdv. Intell. Syst. Comput.201986327128310.1007/978-981-13-3338-5 – reference: LinBReckeBKnudsenJKHJørgensenSBA systematic approach for soft sensor developmentComputers and Chemical Engineering2007315–641942510.1016/j.compchemeng.2006.05.030 – reference: Adafruit DHT11. DHT11 basic temperature-humidity sensor. Available https://www.adafruit.com/product/386. Accessed 2 Feb 2020. – reference: Ismail, M. T., Ismail, M. N., Sameon, S. S., Zin, Z. M., & Mohd, N. (2017). Wireless sensor network: smart greenhouse prototype with smart design. 2nd International Symposium on Agent, Multi-Agent Systems and Robotics, ISAMSR 2016, (August) (pp. 57–62). Bangi, Malaysia: IEEE. https://doi.org/10.1109/ISAMSR.2016.7810003. – reference: Chen, F., Qin, L., Li, X., Wu, G., & Shi, C. (2017). Design and implementation of ZigBee wireless sensor and control network system in greenhouse. 2017 36th Chinese Control Conference, CCC (pp. 8982–8986). IEEE: Dalian, China. https://doi.org/10.23919/ChiCC.2017.8028786. – reference: Jaihuni, M., Basak, J. K., Khan, F., Okyere, F. G., Arulmozhi, E., Bhujel, A., et al. (2020). A partially amended hybrid Bi-Gru—ARIMA model (PAHM) for predicting solar irradiance in short and very-short terms. Energies,13(2), 435. https://doi.org/10.3390/en13020435. – reference: Mouser BH1750. BH1750 Light sensor. Available https://www.mouser.com/ds/2/348/bh1750fvi-e-186247.pdf. Accessed 6 Feb 2020. – reference: Anandamurugan, S., & Rajasekaran, T. (2019). Challenges and applications of wireless sensor networks in smart farming—a survey. In Proceedings of ICBDCC18 (pp. 353–361). Singapore: Springer. https://doi.org/10.1007/978-981-13-1882-5. – reference: Adept AVT. AVT Marlin F145-C2 Camera. Available https://www.adept.net.au/cameras/avt/pdf/MARLIN_F_145B_C.pdf. Accessed 9 Feb 2020. – reference: PanwarNLKaushikSCKothariSSolar greenhouse an option for renewable and sustainable farmingRenewable and Sustainable Energy Reviews20111583934394510.1016/j.rser.2011.07.030 – reference: Ramos-FernándezJCBalmatJFMárquez-VeraMALafontFPesselNEspinoza-QuesadaESFuzzy modeling vapor pressure deficit to monitoring microclimate in greenhousesIFAC-PapersOnLine2016491637137410.1016/j.ifacol.2016.10.068 – reference: Sensirion SHT71. Digital humidity sensor. Available https://www.sensirion.com/en/environmental-sensors/humidity-sensors. Accessed 3 Feb 2020. – reference: Muñoz, M., Guzmán, J. L., Sánchez, J. A., Rodríguez, F., & Torres, M. (2019). Greenhouse models as a service (GMaaS) for simulation and control. IFAC-PapersOnLine, 52(30), 190–195. https://doi.org/10.1016/j.ifacol.2019.12.520. – reference: WuYLiLLiMZhangMSunHSygrimisNLaiWRemote-control system for greenhouse based on open source hardwareIFAC-PapersOnLine2019523017818310.1016/j.ifacol.2019.12.518 – reference: KaburuanERJayadiRHarisnoA design of IoT-based monitoring system for intelligence indoor micro-climate horticulture farming in IndonesiaProcedia Computer Science201915745946410.1016/j.procs.2019.09.001 – reference: Singh, R. K., Berkvens, R., & Weyn, M. (2020). Energy Efficient Wireless Communication for IoT Enabled Greenhouses. In 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), 2020 (pp. 885–887). Bengaluru, India: IEEE. https://doi.org/10.1109/COMSNETS48256.2020.9027392. – volume: 863 start-page: 271 year: 2019 ident: 75_CR90 publication-title: Adv. Intell. Syst. Comput. doi: 10.1007/978-981-13-3338-5 – volume: 52 start-page: 178 issue: 30 year: 2019 ident: 75_CR94 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.12.518 – ident: 75_CR76 doi: 10.5120/16672-6673 – ident: 75_CR1 doi: 10.1109/ICAMIMIA.2015.7507993 – volume: 157 start-page: 459 year: 2019 ident: 75_CR37 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.09.001 – ident: 75_CR104 – volume-title: Greenhouse technology and management year: 2007 ident: 75_CR71 doi: 10.1079/9781780641034.0000 – volume: 188 start-page: 190 year: 2019 ident: 75_CR48 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2019.10.005 – volume: 121 start-page: 306 year: 2017 ident: 75_CR75 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2017.11.042 – ident: 75_CR127 – ident: 75_CR35 doi: 10.3390/en13020435 – ident: 75_CR9 doi: 10.1016/j.ifacol.2015.07.062 – ident: 75_CR44 – volume: 6 start-page: 1 issue: september year: 2015 ident: 75_CR49 publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2015.00704 – volume: 18 start-page: 1 issue: 11 year: 2018 ident: 75_CR22 publication-title: Sensors (Switzerland) doi: 10.3390/s18113786 – volume: 15 start-page: 3934 issue: 8 year: 2011 ident: 75_CR68 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2011.07.030 – volume: 172 start-page: 4057 year: 2018 ident: 75_CR4 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.02.197 – ident: 75_CR133 – volume: 20 start-page: 1 issue: 7 year: 2020 ident: 75_CR14 publication-title: Sensors (Switzerland) doi: 10.3390/s20072078 – ident: 75_CR56 doi: 10.1109/ICITBS.2015.126 – ident: 75_CR110 – ident: 75_CR118 – ident: 75_CR124 – ident: 75_CR18 doi: 10.23919/ChiCC.2017.8028786 – volume: 31 start-page: 419 issue: 5–6 year: 2007 ident: 75_CR53 publication-title: Computers and Chemical Engineering doi: 10.1016/j.compchemeng.2006.05.030 – volume: 7 start-page: 78 issue: 2 year: 2014 ident: 75_CR20 publication-title: Engineering in Agriculture, Environment and Food doi: 10.1016/j.eaef.2014.02.003 – ident: 75_CR72 doi: 10.1016/j.compag.2020.105287 – volume: 12 start-page: 1749 year: 2019 ident: 75_CR47 publication-title: Energies doi: 10.3390/en12091749 – ident: 75_CR15 doi: 10.1088/1757-899X/396/1/012027 – ident: 75_CR107 – volume: 113 start-page: 603 year: 2017 ident: 75_CR5 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2017.08.300 – volume: 863 start-page: 271 year: 2019 ident: 75_CR16 publication-title: Adv. Intell. Syst. Comput. doi: 10.1007/978-981-13-3338-5 – ident: 75_CR113 – ident: 75_CR28 doi: 10.17979/spudc.9788497497565.0875 – ident: 75_CR33 doi: 10.1002/9780470866931.ch6 – volume-title: 2016 2nd International Conference on Event-Based Control, Communication, and Signal Processing, EBCCSP 2016 - Proceedings. Krakow, Poland year: 2016 ident: 75_CR69 doi: 10.1109/EBCCSP.2016.7605236 – ident: 75_CR78 – volume: 8 start-page: 189 issue: 2 year: 2019 ident: 75_CR36 publication-title: International Journal of Computing and Digital Systems doi: 10.12785/ijcds/080210 – ident: 75_CR59 doi: 10.1007/978-1-4302-6014-1_4 – volume-title: Sensor Technology Handbook year: 2005 ident: 75_CR93 – ident: 75_CR31 doi: 10.21273/HORTSCI12676-17 – ident: 75_CR130 – volume: 44 start-page: 57 issue: 2 year: 2019 ident: 75_CR11 publication-title: Journal of Biosystems Engineering doi: 10.1007/s42853-019-00014-0 – ident: 75_CR87 doi: 10.1016/j.inpa.2016.06.002 – ident: 75_CR83 doi: 10.1080/03772063.2014.999834 – ident: 75_CR125 – volume: 25 start-page: 53 issue: 1 year: 2006 ident: 75_CR13 publication-title: Irrigation Science doi: 10.1007/s00271-006-0034-z – ident: 75_CR102 – ident: 75_CR32 doi: 10.1016/j.ifacol.2018.08.099 – volume: 156 start-page: 203 issue: April 2018 year: 2019 ident: 75_CR95 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.11.014 – ident: 75_CR55 doi: 10.1109/ICCAR.2017.7942739 – ident: 75_CR79 doi: 10.1515/intag-2017-0005 – ident: 75_CR34 doi: 10.1109/ISAMSR.2016.7810003 – volume: 344 start-page: 32 issue: 1–2 year: 2007 ident: 75_CR12 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2007.06.032 – ident: 75_CR52 doi: 10.1016/j.compag.2017.03.003 – volume: 20 start-page: 2028 issue: 7 year: 2020 ident: 75_CR21 publication-title: Sensors doi: 10.3390/s20072028 – ident: 75_CR131 – ident: 75_CR116 – ident: 75_CR122 – ident: 75_CR26 doi: 10.1016/j.biosystemseng.2016.11.005 – ident: 75_CR6 doi: 10.1109/SSD.2014.6808765 – ident: 75_CR66 doi: 10.1109/ICUFN.2017.7993788 – ident: 75_CR54 doi: 10.1109/ICCAR.2018.8384696 – volume: 60 start-page: 860 issue: 1 year: 2015 ident: 75_CR39 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.08.249 – ident: 75_CR105 – volume: 36 start-page: 263 issue: 2 year: 2014 ident: 75_CR8 publication-title: Computer Standards and Interfaces doi: 10.1016/j.csi.2011.03.004 – ident: 75_CR99 doi: 10.1109/IMCEC.2018.8469309 – start-page: 2 volume-title: IEEE Vehicular Technology Conference, 2017-June year: 2017 ident: 75_CR46 doi: 10.1109/VTCSpring.2017.8108182 – ident: 75_CR81 doi: 10.1109/COMSNETS48256.2020.9027392 – ident: 75_CR111 – volume: 5 start-page: 224 issue: 2 year: 2018 ident: 75_CR98 publication-title: Information Processing in Agriculture doi: 10.1016/j.inpa.2018.02.002 – ident: 75_CR85 doi: 10.3390/en10070927 – ident: 75_CR24 doi: 10.1109/ICARA.2015.7081156 – ident: 75_CR119 – ident: 75_CR67 doi: 10.5307/jbe.2017.42.1.023 – ident: 75_CR84 doi: 10.1109/WiSPNET.2018.8538702 – volume: 163 start-page: 104877 issue: June year: 2019 ident: 75_CR42 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2019.104877 – ident: 75_CR100 – start-page: 5 volume-title: 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON) year: 2017 ident: 75_CR45 doi: 10.1109/CATCON.2017.8280184 – volume: 70 start-page: 61 year: 2014 ident: 75_CR58 publication-title: NJAS - Wageningen Journal of Life Sciences doi: 10.1016/j.njas.2014.05.007 – ident: 75_CR123 – volume: 10 start-page: 53 issue: 4 year: 2019 ident: 75_CR2 publication-title: Network Protocols and Algorithms doi: 10.5296/npa.v10i4.14155 – volume: 18 start-page: 2141 issue: 2 year: 2020 ident: 75_CR23 publication-title: Applied Ecology and Environmental Research doi: 10.15666/aeer/1802_21412161 – volume: 46 start-page: 739 year: 2015 ident: 75_CR97 publication-title: Chemical Engineering Transactions doi: 10.3303/CET1546124 – volume: 178 start-page: 9 year: 2019 ident: 75_CR3 publication-title: Biosystems Engineering doi: 10.1016/j.biosystemseng.2018.10.017 – ident: 75_CR25 – volume: 9 start-page: 1 issue: January year: 2019 ident: 75_CR38 publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2018.02002 – ident: 75_CR63 doi: 10.1016/j.ifacol.2019.12.520 – volume: 5 start-page: 1 issue: 1 year: 2019 ident: 75_CR60 publication-title: ICT Express doi: 10.1016/j.icte.2017.12.005 – ident: 75_CR108 – volume-title: Greenhouse operation and management year: 2003 ident: 75_CR65 – ident: 75_CR114 – volume: 157 start-page: 218 issue: November 2018 year: 2019 ident: 75_CR40 publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.12.039 – ident: 75_CR92 doi: 10.1016/j.inpa.2018.01.002 – ident: 75_CR89 – ident: 75_CR64 doi: 10.1007/s11947-008-0154-y – ident: 75_CR62 doi: 10.5593/sgem2017/62/S27.089 – ident: 75_CR103 – volume: 1 start-page: 183 issue: 2 year: 2018 ident: 75_CR10 publication-title: Carbon Resources Conversion doi: 10.1016/j.crcon.2018.08.002 – ident: 75_CR120 – ident: 75_CR128 – ident: 75_CR17 doi: 10.1109/IMPACT.2018.8625804 – ident: 75_CR43 – volume: 49 start-page: 371 issue: 16 year: 2016 ident: 75_CR73 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.10.068 – volume: 51 start-page: 736 issue: 17 year: 2018 ident: 75_CR51 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.108 – ident: 75_CR134 – volume: 3 start-page: 14 issue: 1 year: 2017 ident: 75_CR82 publication-title: ICT Express doi: 10.1016/j.icte.2017.03.004 – ident: 75_CR57 – ident: 75_CR117 – ident: 75_CR77 doi: 10.5815/ijieeb.2017.03.01 – ident: 75_CR88 – start-page: 795 volume-title: 2015 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, IEEE-CYBER 2015 year: 2015 ident: 75_CR50 doi: 10.1109/CYBER.2015.7288044 – volume: 5 start-page: 253 issue: 2 year: 2018 ident: 75_CR86 publication-title: Information Processing in Agriculture doi: 10.1016/j.inpa.2018.01.003 – ident: 75_CR121 – ident: 75_CR106 – ident: 75_CR129 – ident: 75_CR30 doi: 10.1109/ICSGEA.2017.47 – ident: 75_CR27 – ident: 75_CR112 – ident: 75_CR135 – volume: 5 start-page: 279 issue: 2 year: 2018 ident: 75_CR61 publication-title: Information Processing in Agriculture doi: 10.1016/j.inpa.2018.01.001 – volume: 14 start-page: 923 issue: 4 year: 2015 ident: 75_CR70 publication-title: Nature Environment and Pollution Technology – ident: 75_CR7 doi: 10.1007/978-981-13-1882-5 – ident: 75_CR126 – ident: 75_CR74 doi: 10.1109/CSSE.2008.1528 – ident: 75_CR80 doi: 10.1109/ICICT.2017.8320190 – ident: 75_CR101 – volume: 7 start-page: 52 issue: 1 year: 2014 ident: 75_CR96 publication-title: Engineering in Agriculture, Environment and Food doi: 10.1016/j.eaef.2013.12.009 – ident: 75_CR19 doi: 10.1109/ICAwST.2017.8256458 – volume: 19 start-page: 60 issue: 1 year: 2019 ident: 75_CR29 publication-title: Sensors doi: 10.3390/s19010060 – volume: 43 start-page: 72 issue: 1 year: 2018 ident: 75_CR41 publication-title: Journal of Biosystems Engineering doi: 10.5307/JBE.2018.43.1.072 – ident: 75_CR109 – ident: 75_CR115 – ident: 75_CR91 doi: 10.1109/ATC.2018.8587487 – ident: 75_CR132 |
SSID | ssj0003178356 ssib035520942 ssib007138302 ssib016108101 ssib001535042 |
Score | 2.3276324 |
SecondaryResourceType | review_article |
Snippet | Purpose
Sensors are the primary component of a monitoring and control system. Effective monitoring and control of the microclimatic environment in a greenhouse... Purpose Sensors are the primary component of a monitoring and control system. Effective monitoring and control of the microclimatic environment in a greenhouse... |
SourceID | nrf crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 341 |
SubjectTerms | Agriculture Control Engineering Environmental Engineering/Biotechnology Mechatronics Review Robotics 농학 |
Title | Sensor Systems for Greenhouse Microclimate Monitoring and Control: a Review |
URI | https://link.springer.com/article/10.1007/s42853-020-00075-6 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002684802 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Biosystems Engineering, 2020, 45(4), 187, pp.341-361 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeEFcxbrIQbyUoFyfpeGunVQPEXrZJe7PsxFm7lgT1IsT-Cf-Wz5dctsLEeEkby7Xani_H57PP-UzIO4Ak0jJXXiGY8JgMck-CdXh-nobKz5M4Nsf5fD1Ojs7Y5_P4vNf71cla2qzlh-zqj3Ul_2NVtMGuukr2DpZtBkUD3sO-uMLCuP6TjU_AQatlrTpuMgZNHs0UdF7pjHjMTosZYtL62W1KEg9shrotde7sD2yHqXJWrdz4qtUubFj8dHPp9vnLNlljLFZibnNwf8JyYmASuRvfPrWLrhPxQ-Qt4DaLb9WVOWJ4cLgAFqcKdw67blkivJniUS9LDk70yd6gEqrjZFM42SBMnAS2aUOUwrxgeN0zW6FJh0DWcbORFctyM3Zk5dy3JgOb_7ECwYr1XrWpoE9j74bydkOFjHiz6czRmZvOPNkhuyEYiN8nu6PJeHxcOyvEaSGocdgs6CEQQzRrqtnq3-eKtEyp5ta3uBYI7ZTLYmsv3oQ4pw_JA2d0OrJAe0R6qnxM7o8ulk6fReGuo1_5hHyxAKQOgBQApC0AaReAtAUgBQCpA-BHKqiF31NyNjk8PTjy3OkcXqajQG9YJGBnwldFJHIlAqWKIE5TlURKsuG-LozLmK_2Cz_Mte5ggZlUy_vJQmWB8ln0jPTLqlTPCZVSYCrQSn4qY8yH2_CFCFkigkDGImF7JKj_Kp456Xp9gsqC_91ue2TQfOa7FW65tfdbWIDPsxnXeuv69aLi8yUHq_zEwbnDNEGn97WBuPMCq1vGfHG37i_JvfY5ekX66-VGvUbAu5ZvHPR-A4cDo1M |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensor+Systems+for+Greenhouse+Microclimate+Monitoring+and+Control%3A+a+Review&rft.jtitle=Journal+of+biosystems+engineering&rft.au=Bhujel%2C+Anil&rft.au=Basak%2C+Jayanta+Kumar&rft.au=Khan%2C+Fawad&rft.au=Arulmozhi%2C+Elanchezhian&rft.date=2020-12-01&rft.pub=Springer+Singapore&rft.issn=1738-1266&rft.eissn=2234-1862&rft.volume=45&rft.issue=4&rft.spage=341&rft.epage=361&rft_id=info:doi/10.1007%2Fs42853-020-00075-6&rft.externalDocID=10_1007_s42853_020_00075_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-1266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-1266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-1266&client=summon |