PROTEIN EXPRESSION DURING HEAT STRESS IN THERMO-INTOLERANT AND THERMO-TOLERANT DIATOMS

To better understand how diatoms are capable of responding to environmental stress, protein expression during heat treatment of a thermo‐intolerant (Phaeodactylum tricornutum) and thermo‐tolerant (Chaetoceros muelleri) diatom (Chrysophyta) was investigated. The stress response is a universal and con...

Full description

Saved in:
Bibliographic Details
Published inJournal of phycology Vol. 36; no. s3; p. 59
Main Authors Rousch, J. M., Bingham, S.E., Sommerfeld, M.R.
Format Journal Article
LanguageEnglish
Published Boston, MA, USA Blackwell Science Inc 01.12.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To better understand how diatoms are capable of responding to environmental stress, protein expression during heat treatment of a thermo‐intolerant (Phaeodactylum tricornutum) and thermo‐tolerant (Chaetoceros muelleri) diatom (Chrysophyta) was investigated. The stress response is a universal and conserved mechanism of cell survival to unfavorable conditions. Typically, a 10 to 15° C temperature elevation above cell growth optimal causes constitutively expressed proteins to decrease and heat shock proteins (HSPs) to increase. HSPs are categorized by molecular weight among five classes with each apparently specialized for a particular function that enhances cell survival. One‐dimensional SDS‐PAGE of diatoms subjected to heat treatment revealed that P. tricornutum exhibited a typical stress response, but C. muelleri did not exhibit a characteristic response even at a greatly elevated temperature (50° C). This result was confirmed by total soluble protein assays. Chaetoceros muelleri may contain higher basal levels of HSPs than P. tricornutum allowing C. muelleri to better tolerate elevated temperatures. Western blot analysis using pea HSP70 (70 kDa) antisera of heat‐treated P. tricornutum and C. muelleri validated the hypothesis that thermo‐tolerant cells contain higher levels of constitutively expressed HSPs. Two‐dimensional gel electrophoresis of heat‐treated cells indicate that the small HSPs (17–30 kDa) played a role in the stress response similar to that found in vascular plants. Ongoing work is focused on the manipulation of the stress response through over‐expression of key hsp genes.
AbstractList To better understand how diatoms are capable of responding to environmental stress, protein expression during heat treatment of a thermo-intolerant (Phaeodactylum tricornutum) and thermo-tolerant (Chaetoceros muelleri) diatom (Chrysophyta) was investigated. The stress response is a universal and conserved mechanism of cell survival to unfavorable conditions. Typically, a 10 to 15 degree C temperature elevation above cell growth optimal causes constitutively expressed proteins to decrease and heat shock proteins (HSPs) to increase. HSPs are categorized by molecular weight among five classes with each apparently specialized for a particular function that enhances cell survival. One-dimensional SDS-PAGE of diatoms subjected to heat treatment revealed that P. tricornutum exhibited a typical stress response, but C. muelleri did not exhibit a characteristic response even at a greatly elevated temperature (50 degree C). This result was confirmed by total soluble protein assays. Chaetoceros muelleri may contain higher basal levels of HSPs than P. tricornutum allowing C. muelleri to better tolerate elevated temperatures. Western blot analysis using pea HSP70 (70 kDa) antisera of heat-treated P. tricornutum and C. muelleri validated the hypothesis that thermo-tolerant cells contain higher levels of constitutively expressed HSPs. Two-dimensional gel electrophoresis of heat-treated cells indicate that the small HSPs (17-30 kDa) played a role in the stress response similar to that found in vascular plants. Ongoing work is focused on the manipulation of the stress response through over-expression of key hsp genes.
To better understand how diatoms are capable of responding to environmental stress, protein expression during heat treatment of a thermo‐intolerant (Phaeodactylum tricornutum) and thermo‐tolerant (Chaetoceros muelleri) diatom (Chrysophyta) was investigated. The stress response is a universal and conserved mechanism of cell survival to unfavorable conditions. Typically, a 10 to 15° C temperature elevation above cell growth optimal causes constitutively expressed proteins to decrease and heat shock proteins (HSPs) to increase. HSPs are categorized by molecular weight among five classes with each apparently specialized for a particular function that enhances cell survival. One‐dimensional SDS‐PAGE of diatoms subjected to heat treatment revealed that P. tricornutum exhibited a typical stress response, but C. muelleri did not exhibit a characteristic response even at a greatly elevated temperature (50° C). This result was confirmed by total soluble protein assays. Chaetoceros muelleri may contain higher basal levels of HSPs than P. tricornutum allowing C. muelleri to better tolerate elevated temperatures. Western blot analysis using pea HSP70 (70 kDa) antisera of heat‐treated P. tricornutum and C. muelleri validated the hypothesis that thermo‐tolerant cells contain higher levels of constitutively expressed HSPs. Two‐dimensional gel electrophoresis of heat‐treated cells indicate that the small HSPs (17–30 kDa) played a role in the stress response similar to that found in vascular plants. Ongoing work is focused on the manipulation of the stress response through over‐expression of key hsp genes.
To better understand how diatoms are capable of responding to environmental stress, protein expression during heat treatment of a thermo‐intolerant ( Phaeodactylum tricornutum ) and thermo‐tolerant ( Chaetoceros muelleri ) diatom (Chrysophyta) was investigated. The stress response is a universal and conserved mechanism of cell survival to unfavorable conditions. Typically, a 10 to 15° C temperature elevation above cell growth optimal causes constitutively expressed proteins to decrease and heat shock proteins (HSPs) to increase. HSPs are categorized by molecular weight among five classes with each apparently specialized for a particular function that enhances cell survival. One‐dimensional SDS‐PAGE of diatoms subjected to heat treatment revealed that P. tricornutum exhibited a typical stress response, but C. muelleri did not exhibit a characteristic response even at a greatly elevated temperature (50° C). This result was confirmed by total soluble protein assays. Chaetoceros muelleri may contain higher basal levels of HSPs than P. tricornutum allowing C. muelleri to better tolerate elevated temperatures. Western blot analysis using pea HSP70 (70 kDa) antisera of heat‐treated P. tricornutum and C. muelleri validated the hypothesis that thermo‐tolerant cells contain higher levels of constitutively expressed HSPs. Two‐dimensional gel electrophoresis of heat‐treated cells indicate that the small HSPs (17–30 kDa) played a role in the stress response similar to that found in vascular plants. Ongoing work is focused on the manipulation of the stress response through over‐expression of key hsp genes.
Author Sommerfeld, M.R.
Rousch, J. M.
Bingham, S.E.
Author_xml – sequence: 1
  givenname: J. M.
  surname: Rousch
  fullname: Rousch, J. M.
  organization: Department of Plant Biology, Arizona State University, Box 871601,Tempe, AZ 85287 USA
– sequence: 2
  givenname: S.E.
  surname: Bingham
  fullname: Bingham, S.E.
  organization: Department of Plant Biology, Arizona State University, Box 871601,Tempe, AZ 85287 USA
– sequence: 3
  givenname: M.R.
  surname: Sommerfeld
  fullname: Sommerfeld, M.R.
  organization: Department of Plant Biology, Arizona State University, Box 871601,Tempe, AZ 85287 USA
BookMark eNqVkF1vgjAYhZvFJVO3_8DFsjtYC7TQZDcoTFkUDOA-rpqKNcGhOKqZ_vsV2bxfb972vOecpE8PdLbVVgBwj6CBoE0e1wbCJtVdFzkGopQaUB2kI4cYxyvQvSw7oAuhaeoWsckN6Em5Vj6HYNQFr7MkzoIw0oL3WRKkaRhHmj9PwmikjQMv09KsUTVlyMZBMo31MMriSZB4UaZ5kf-nXjQ_9LJ4mt6C6xUvpbj7nX0wfw6y4VifxKNw6E303LQh0V2LCLEgCPGliZfU5mLBMac8dzDMKRQLizrqF656EogFdi13hShfIqRyjkBWHzy0vbu6-joIuWebQuaiLPlWVAfJFAqKbYqV8ak15nUlZS1WbFcXG16fGIKsgcnWrOHFGl6sgcnOMJsGdlTxQRv_Lkpx-leWvcw-zldVorclhdyL46WE15-MOJaD2Vs0YnbqwoFPIuZaP7v9hag
CitedBy_id crossref_primary_10_1016_j_marpolbul_2024_116122
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
F1W
H95
L.G
DOI 10.1046/j.1529-8817.1999.00001-176.x
DatabaseName Istex
CrossRef
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1529-8817
Editor Millie, DF
Kurgens, P (eds)
Editor_xml – fullname: Millie, DF
– fullname: Kurgens, P (eds)
EndPage 59
ExternalDocumentID 10_1046_j_1529_8817_1999_00001_176_x
JPY1-176
ark_67375_WNG_4S80BD6N_8
Genre abstract
GroupedDBID -DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EDH
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NHB
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SUPJJ
TN5
TUS
TWZ
UB1
UKR
UPT
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
XOL
YBU
YQT
YR2
ZCG
ZZTAW
~02
~IA
~KM
~WT
AETEA
AAYXX
CITATION
F1W
H95
L.G
ID FETCH-LOGICAL-c2406-836eeb611ad25d94aeba5a9ac750c90eb3971528750605e5838f19ad116ee7e13
IEDL.DBID DR2
ISSN 0022-3646
IngestDate Sat Oct 05 04:23:43 EDT 2024
Thu Sep 26 19:58:25 EDT 2024
Sat Aug 24 00:55:13 EDT 2024
Wed Oct 30 09:52:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue s3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2406-836eeb611ad25d94aeba5a9ac750c90eb3971528750605e5838f19ad116ee7e13
Notes ark:/67375/WNG-4S80BD6N-8
istex:D129ECA92A8262FA6D54E9C4003DFF7957E8D6FC
ArticleID:JPY1-176
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 17695495
PQPubID 23462
PageCount 1
ParticipantIDs proquest_miscellaneous_17695495
crossref_primary_10_1046_j_1529_8817_1999_00001_176_x
wiley_primary_10_1046_j_1529_8817_1999_00001_176_x_JPY1_176
istex_primary_ark_67375_WNG_4S80BD6N_8
PublicationCentury 2000
PublicationDate December 2000
PublicationDateYYYYMMDD 2000-12-01
PublicationDate_xml – month: 12
  year: 2000
  text: December 2000
PublicationDecade 2000
PublicationPlace Boston, MA, USA
PublicationPlace_xml – name: Boston, MA, USA
PublicationTitle Journal of phycology
PublicationTitleAlternate Journal of Phycology
PublicationYear 2000
Publisher Blackwell Science Inc
Publisher_xml – name: Blackwell Science Inc
SSID ssj0007651
Score 1.6332421
Snippet To better understand how diatoms are capable of responding to environmental stress, protein expression during heat treatment of a thermo‐intolerant...
To better understand how diatoms are capable of responding to environmental stress, protein expression during heat treatment of a thermo‐intolerant (...
To better understand how diatoms are capable of responding to environmental stress, protein expression during heat treatment of a thermo-intolerant...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 59
SubjectTerms Bacillariophyceae
Chaetoceros muelleri
Chrysophyta
Marine
Phaeodactylum tricornutum
Title PROTEIN EXPRESSION DURING HEAT STRESS IN THERMO-INTOLERANT AND THERMO-TOLERANT DIATOMS
URI https://api.istex.fr/ark:/67375/WNG-4S80BD6N-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1529-8817.1999.00001-176.x
https://search.proquest.com/docview/17695495
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PT9swFH9CgKZdGOyP6P6wHNBuqeImsRNxCktYi9YUtanW7WLZiXMAqZ2glYATH2GfcZ9k7zm0wCQOaLtEkWU78nt59s9-7_0MsF8JHVV17LtG02kVE8qNIhXigythTEcrm1_Rz3l3HBxPwska5MtcmIYfYnXgRpZh52sycKWbW0g8y257Slf3xNgpE5RyF1smQkaEh23ClMwXFOGVDu_YpAQP2Yo8nAf8Gezfc3I-2tmDFWuDhH_5AI7eB7V2VTp6AbPleJpglLP2Yq7b5fVfVI__b8DbsHULYJ2k-eN2YM1MX8Lm4QxB5tUr-HEyHBRZL3eyidUtztROOqaIC6ebJYUzKqjUwQpFNxv2B79vfvXyYvA1GyZ54SR5ele-Kk17STHoj17D-CgrPnfd2-sb3JJgghv53BjNGVNVJ6ziQBmtQhWrEkFKGXu4i48Fjgg3TB7uqQz5b2sWq4oxbCcM89_A-nQ2Nbvg-JzVXoVYpdQoC97BWgq1WXNPKy-qVQvCpYrkz4alQ1rvekCZaCQ2SWKTJDZpxSZRbPKyBZ-sPleN1PkZRbqJUH7Lv8hgFHmHKc9l1IKPS4VLtD9yqqipmS0uqB_ylIYtOLDKe9L35fHJd_v69p9av4PnliHARtm8h_X5-cJ8QKw013vWAv4AWV38Vg
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29btswED4ESdF2afqLun_REHSTK1oSJaGTEimVU1sKbBl1uhCkRC0B7CC1gbRTHyHPmCfpHWU7SYEORbsIAkFS4J2O_Mi7-wiwXwcqrJvItbWi0yoWSDsMpY8PLgOte0qa_IphzrOJdzz1p1tQrHNhWn6IzYEbWYaZr8nA6UD6w8ot2Vq534uwVxZQzl1kqAgZMR52EVTu4Azg0pUGyeiGTyrgPtvQh3OP34f9W27OP_Z2Z83aIfFf3gGkt2GtWZeOduF8PaI2HOWsu1yobvXjN7LH_zjkx_BohWGtuP3pnsCWnj2FewdzxJnfn8HXk1FRpv3cSqdGvThZW8mEgi6sLI1La1xSqYUVyiwdDYvrn1f9vCwG6SjOSyvOk5vyTWnSj8tiOH4Ok6O0PMzs1Q0OdkVIwQ5drrXijMm659eRJ7WSvoxkhTilihzcyEcBjgj3TA5uqzS5cBsWyZoxbBdo5r6A7dl8pl-C5XLWODXClUqhLHgPa0lUZ8MdJZ2wkR3w1zoS5y1RhzAOdo-S0UhsgsQmSGzCiE2g2MRlB94bhW4ayYszCnYLfPEl_yS8cegcJDwXYQf21hoXaILkV5EzPV9-o37IWep34KPR3l99XxyfnJrXV__Ueg8eZOVwIAb9_PNreGgIA0zQzRvYXlws9VuETgv1zpjDL00DAH8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFH-aNjRxYfwVZcBymLilxE3iJOKUkZR2rG7VpqLsYtmJc5nUTqOVBic-Ap-RT8J7TtttSBwQXKLIsh35vTz7Z7_3fgY4riIdV3Xiu0bTaRWLlBvHKsQHV5ExHa1sfsVA8N40OJ2Fsx0Qm1yYhh9ie-BGlmHnazLwy6p-u_ZKNkYedhLslEWUcpdYJkJGhIdtxJR7Afc9CvHKxjd0UhEP2ZY9nAd8H45veTn_2NudJWuPpH99B4_eRrV2WeoewGIzoCYa5aK9Wup2-e03rsf_N-KH8GCNYJ20-eUewY6ZP4Z7JwtEmV-fwPloPCzyvnDymVUuTtVONqWQC6eXp4UzKajUwQpFLx8Phj-__-iLYniWj1NROKnIbsq3pVk_LYaDyVOYdvPifc9d39_gloQT3NjnxmjOmKo6YZUEymgVqkSViFLKxMNtfBLhiHDH5OGmypADt2aJqhjDdpFh_jPYnS_m5jk4Pme1VyFYKTXKgnewlkJt1tzTyotr1YJwoyJ52dB0SOteDygVjcQmSWySxCat2CSKTV634I3V57aRurqgULcolJ_EBxlMYu8k40LGLTjaKFyiAZJXRc3NYvWF-iFXadiCd1Z5f_V9eTr6bF9f_FPrI9gfZV151hcfD-G-ZQuwETcvYXd5tTKvEDct9WtrDL8AI_n_Hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+expression+during+heat+stress+in+thermo-intolerant+and+thermo-tolerant+diatoms&rft.jtitle=Journal+of+phycology&rft.au=Rousch%2C+J+M&rft.au=Bingham%2C+SE&rft.au=Sommerfeld%2C+M+R&rft.date=2000-12-01&rft.issn=0022-3646&rft.volume=36&rft.issue=3&rft.spage=59&rft.epage=59&rft_id=info:doi/10.1046%2Fj.1529-8817.1999.00001-176.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3646&client=summon