Objective Type Question Generation using Natural Language Processing
Automatic Question Generation (AQG) is a research trend that enables teachers to create assessments with greater efficiency in right set of questions from the study material. Today's educational institutions require a powerful tool to correctly assess learner’s mastery of concepts learned throu...
Saved in:
Published in | International journal of advanced computer science & applications Vol. 13; no. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
West Yorkshire
Science and Information (SAI) Organization Limited
2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic Question Generation (AQG) is a research trend that enables teachers to create assessments with greater efficiency in right set of questions from the study material. Today's educational institutions require a powerful tool to correctly assess learner’s mastery of concepts learned through study materials. Objective type questions are an excellent method of assessing a learner's topic understanding in learning process, based on Information and Communication Technology (ICT) and Intelligent Tutoring Systems (ITS).Creating a set of questions for assessment can take a significant amount of time for teachers, and obtaining questions from external sources such as assessment books or question banks may not be relevant to the content covered by students during their studies. This proposed system involves to generate the familiar objective type questions like True or False, ‘Wh’, Fill up with double blank space, match the following type question have generated using Natural Language Processing(NLP) techniquesfrom the given study material. Different rules are created to generate T/F and ‘Wh’ type questions. Dependence parser method has involved in ‘Wh’ questions. Proposed system is tested with Grade V Computer Science text book as an input. Experimental result shows that the proposed system is quite promising to generate the amount of objective type assessment questions. |
---|---|
AbstractList | Automatic Question Generation (AQG) is a research trend that enables teachers to create assessments with greater efficiency in right set of questions from the study material. Today's educational institutions require a powerful tool to correctly assess learner’s mastery of concepts learned through study materials. Objective type questions are an excellent method of assessing a learner's topic understanding in learning process, based on Information and Communication Technology (ICT) and Intelligent Tutoring Systems (ITS).Creating a set of questions for assessment can take a significant amount of time for teachers, and obtaining questions from external sources such as assessment books or question banks may not be relevant to the content covered by students during their studies. This proposed system involves to generate the familiar objective type questions like True or False, ‘Wh’, Fill up with double blank space, match the following type question have generated using Natural Language Processing(NLP) techniquesfrom the given study material. Different rules are created to generate T/F and ‘Wh’ type questions. Dependence parser method has involved in ‘Wh’ questions. Proposed system is tested with Grade V Computer Science text book as an input. Experimental result shows that the proposed system is quite promising to generate the amount of objective type assessment questions. |
Author | Raja, K. Deena, G. |
Author_xml | – sequence: 1 givenname: G. surname: Deena fullname: Deena, G. – sequence: 2 givenname: K. surname: Raja fullname: Raja, K. |
BookMark | eNotkE9Lw0AQxRepYK39Bh4CnlNnZ3Y3ybFUrZViFSt4WzbJpqTUTd1tCv32pn_m8h684c3wu2U91zjL2D2HERdSZY-zt_HkazxCQBwBJ0BFV6yPXKpYygR6J5_GHJKfGzYMYQ3dUIYqpT57WuRrW-zqvY2Wh62NPlsbdnXjoql11puTbUPtVtG72bXebKK5cavWrGz04ZvChmN2x64rswl2eNEB-355Xk5e4_liOpuM53GBAigWSQU8r9JSJcaqFPNKpkagpCTHIpMlKiuoy6VSpKCEhHKVUwmQCVI5Chqwh3Pv1jd_x0f1umm9605qVBIz4tABGDBx3ip8E4K3ld76-tf4g-agT8j0GZk-ItMXZPQPAzJfRw |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3296911 |
ContentType | Journal Article |
Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.14569/IJACSA.2022.0130263 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database Research Library (ProQuest) Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Central Korea ProQuest Research Library Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2156-5570 |
ExternalDocumentID | 10_14569_IJACSA_2022_0130263 |
GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GROUPED_DOAJ GUQSH HCIFZ K7- KQ8 M2O OK1 PIMPY RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c2403-47f01bf8d67ae682bf58a42537b2c95d26e43bf8566360d073b6b3d009436b243 |
IEDL.DBID | 8FG |
ISSN | 2158-107X |
IngestDate | Thu Oct 10 19:30:09 EDT 2024 Fri Aug 23 01:49:34 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2403-47f01bf8d67ae682bf58a42537b2c95d26e43bf8566360d073b6b3d009436b243 |
OpenAccessLink | https://www.proquest.com/docview/2652931001?pq-origsite=%requestingapplication% |
PQID | 2652931001 |
PQPubID | 5444811 |
ParticipantIDs | proquest_journals_2652931001 crossref_primary_10_14569_IJACSA_2022_0130263 |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationPlace | West Yorkshire |
PublicationPlace_xml | – name: West Yorkshire |
PublicationTitle | International journal of advanced computer science & applications |
PublicationYear | 2022 |
Publisher | Science and Information (SAI) Organization Limited |
Publisher_xml | – name: Science and Information (SAI) Organization Limited |
SSID | ssj0000392683 |
Score | 2.2284741 |
Snippet | Automatic Question Generation (AQG) is a research trend that enables teachers to create assessments with greater efficiency in right set of questions from the... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
SubjectTerms | Natural language processing Questions Speech recognition Teachers |
Title | Objective Type Question Generation using Natural Language Processing |
URI | https://www.proquest.com/docview/2652931001 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFG4ULl78bUSR9OC1srVbu50MIohE0agk3Jp1bU08AAr-_752nYaLtyYv2-Fr3q-v7fcQurQ6d0OQcsJNxklilSXQBhmSQXVdcs3L2FMDjxM-mibjWToLhNsqXKusY6IP1HpROo68S3kKmckpBl0vP4mbGuVOV8MIjW3UjKkQrvnKhne_HEsEyZ97JU5IbE7FVMzC6zkoG_Lu_bjXf-1Bj0jplT_A42wzO20GZ59xhvtoN5SKuFft7QHaMvNDtFePYcDBK4_Q7ZP6qMIWdl0l9hwmwI0rSWm_dNfb3_Gk8Cob-CGQlDg8EwDbMZoOB2_9EQnDEUjpJPRIImwUK5tpLgrDM6psmhXggEwoWuapptwkDOxQrjEeafBkxRXT_iYhVzRhJ6gxX8zNKcJWcaFjJpIyhW-ivIitpYZaphisVdJCpAZFLisNDOl6BweirECUDkQZQGyhdo2cDB6xkn_7d_a_-RztuJ9VNEcbNdZf3-YCEv9adfzudlDzZjB5fvkB71GqJQ |
link.rule.ids | 315,783,787,4031,12777,21400,27935,27936,27937,33385,33756,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLDwjSgU8MBqmtiOk0yoKpS2tGWglbpZcWwjMbSFlv_P2XFALGyWTsnwrPt6tt8hdGt17oYg5USYTBBulSXQBhmSQXVdCi3K2FMD44noz_hwnswD4bYO1yrrmOgDtV6WjiNvU5FAZnKKQferD-KmRrnT1TBCYxvtcAa52r0U7z39cCwRJH_hlTghsTkV03QeXs9B2ZC3B8NO97UDPSKld_4AT7C_2elvcPYZp3eI9kOpiDvV3h6hLbM4Rgf1GAYcvPIEPbyo9ypsYddVYs9hAty4kpT2S3e9_Q1PCq-ygUeBpMThmQDYTtGs9zjt9kkYjkBKJ6FHeGqjWNlMi7QwIqPKJlkBDshSRcs80VQYzsAO5RoTkQZPVkIx7W8SCkU5O0ONxXJhzhG2SqQ6ZikvE_gmyovYWmqoZYrBWvEmIjUoclVpYEjXOzgQZQWidCDKAGITtWrkZPCItfzdv4v_zTdotz8dj-RoMHm-RHvuxxXl0UKNzeeXuYIiYKOu_U5_A58nq20 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective+Type+Question+Generation+using+Natural+Language+Processing&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Deena%2C+G.&rft.au=Raja%2C+K.&rft.date=2022&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=13&rft.issue=2&rft_id=info:doi/10.14569%2FIJACSA.2022.0130263&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2022_0130263 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |