Objective Type Question Generation using Natural Language Processing

Automatic Question Generation (AQG) is a research trend that enables teachers to create assessments with greater efficiency in right set of questions from the study material. Today's educational institutions require a powerful tool to correctly assess learner’s mastery of concepts learned throu...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 13; no. 2
Main Authors Deena, G., Raja, K.
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic Question Generation (AQG) is a research trend that enables teachers to create assessments with greater efficiency in right set of questions from the study material. Today's educational institutions require a powerful tool to correctly assess learner’s mastery of concepts learned through study materials. Objective type questions are an excellent method of assessing a learner's topic understanding in learning process, based on Information and Communication Technology (ICT) and Intelligent Tutoring Systems (ITS).Creating a set of questions for assessment can take a significant amount of time for teachers, and obtaining questions from external sources such as assessment books or question banks may not be relevant to the content covered by students during their studies. This proposed system involves to generate the familiar objective type questions like True or False, ‘Wh’, Fill up with double blank space, match the following type question have generated using Natural Language Processing(NLP) techniquesfrom the given study material. Different rules are created to generate T/F and ‘Wh’ type questions. Dependence parser method has involved in ‘Wh’ questions. Proposed system is tested with Grade V Computer Science text book as an input. Experimental result shows that the proposed system is quite promising to generate the amount of objective type assessment questions.
AbstractList Automatic Question Generation (AQG) is a research trend that enables teachers to create assessments with greater efficiency in right set of questions from the study material. Today's educational institutions require a powerful tool to correctly assess learner’s mastery of concepts learned through study materials. Objective type questions are an excellent method of assessing a learner's topic understanding in learning process, based on Information and Communication Technology (ICT) and Intelligent Tutoring Systems (ITS).Creating a set of questions for assessment can take a significant amount of time for teachers, and obtaining questions from external sources such as assessment books or question banks may not be relevant to the content covered by students during their studies. This proposed system involves to generate the familiar objective type questions like True or False, ‘Wh’, Fill up with double blank space, match the following type question have generated using Natural Language Processing(NLP) techniquesfrom the given study material. Different rules are created to generate T/F and ‘Wh’ type questions. Dependence parser method has involved in ‘Wh’ questions. Proposed system is tested with Grade V Computer Science text book as an input. Experimental result shows that the proposed system is quite promising to generate the amount of objective type assessment questions.
Author Raja, K.
Deena, G.
Author_xml – sequence: 1
  givenname: G.
  surname: Deena
  fullname: Deena, G.
– sequence: 2
  givenname: K.
  surname: Raja
  fullname: Raja, K.
BookMark eNotkE9Lw0AQxRepYK39Bh4CnlNnZ3Y3ybFUrZViFSt4WzbJpqTUTd1tCv32pn_m8h684c3wu2U91zjL2D2HERdSZY-zt_HkazxCQBwBJ0BFV6yPXKpYygR6J5_GHJKfGzYMYQ3dUIYqpT57WuRrW-zqvY2Wh62NPlsbdnXjoql11puTbUPtVtG72bXebKK5cavWrGz04ZvChmN2x64rswl2eNEB-355Xk5e4_liOpuM53GBAigWSQU8r9JSJcaqFPNKpkagpCTHIpMlKiuoy6VSpKCEhHKVUwmQCVI5Chqwh3Pv1jd_x0f1umm9605qVBIz4tABGDBx3ip8E4K3ld76-tf4g-agT8j0GZk-ItMXZPQPAzJfRw
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3296911
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2022.0130263
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
Research Library (ProQuest)
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2022_0130263
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PIMPY
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2403-47f01bf8d67ae682bf58a42537b2c95d26e43bf8566360d073b6b3d009436b243
IEDL.DBID 8FG
ISSN 2158-107X
IngestDate Thu Oct 10 19:30:09 EDT 2024
Fri Aug 23 01:49:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2403-47f01bf8d67ae682bf58a42537b2c95d26e43bf8566360d073b6b3d009436b243
OpenAccessLink https://www.proquest.com/docview/2652931001?pq-origsite=%requestingapplication%
PQID 2652931001
PQPubID 5444811
ParticipantIDs proquest_journals_2652931001
crossref_primary_10_14569_IJACSA_2022_0130263
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2022
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.2284741
Snippet Automatic Question Generation (AQG) is a research trend that enables teachers to create assessments with greater efficiency in right set of questions from the...
SourceID proquest
crossref
SourceType Aggregation Database
SubjectTerms Natural language processing
Questions
Speech recognition
Teachers
Title Objective Type Question Generation using Natural Language Processing
URI https://www.proquest.com/docview/2652931001
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFG4ULl78bUSR9OC1srVbu50MIohE0agk3Jp1bU08AAr-_752nYaLtyYv2-Fr3q-v7fcQurQ6d0OQcsJNxklilSXQBhmSQXVdcs3L2FMDjxM-mibjWToLhNsqXKusY6IP1HpROo68S3kKmckpBl0vP4mbGuVOV8MIjW3UjKkQrvnKhne_HEsEyZ97JU5IbE7FVMzC6zkoG_Lu_bjXf-1Bj0jplT_A42wzO20GZ59xhvtoN5SKuFft7QHaMvNDtFePYcDBK4_Q7ZP6qMIWdl0l9hwmwI0rSWm_dNfb3_Gk8Cob-CGQlDg8EwDbMZoOB2_9EQnDEUjpJPRIImwUK5tpLgrDM6psmhXggEwoWuapptwkDOxQrjEeafBkxRXT_iYhVzRhJ6gxX8zNKcJWcaFjJpIyhW-ivIitpYZaphisVdJCpAZFLisNDOl6BweirECUDkQZQGyhdo2cDB6xkn_7d_a_-RztuJ9VNEcbNdZf3-YCEv9adfzudlDzZjB5fvkB71GqJQ
link.rule.ids 315,783,787,4031,12777,21400,27935,27936,27937,33385,33756,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLDwjSgU8MBqmtiOk0yoKpS2tGWglbpZcWwjMbSFlv_P2XFALGyWTsnwrPt6tt8hdGt17oYg5USYTBBulSXQBhmSQXVdCi3K2FMD44noz_hwnswD4bYO1yrrmOgDtV6WjiNvU5FAZnKKQferD-KmRrnT1TBCYxvtcAa52r0U7z39cCwRJH_hlTghsTkV03QeXs9B2ZC3B8NO97UDPSKld_4AT7C_2elvcPYZp3eI9kOpiDvV3h6hLbM4Rgf1GAYcvPIEPbyo9ypsYddVYs9hAty4kpT2S3e9_Q1PCq-ygUeBpMThmQDYTtGs9zjt9kkYjkBKJ6FHeGqjWNlMi7QwIqPKJlkBDshSRcs80VQYzsAO5RoTkQZPVkIx7W8SCkU5O0ONxXJhzhG2SqQ6ZikvE_gmyovYWmqoZYrBWvEmIjUoclVpYEjXOzgQZQWidCDKAGITtWrkZPCItfzdv4v_zTdotz8dj-RoMHm-RHvuxxXl0UKNzeeXuYIiYKOu_U5_A58nq20
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective+Type+Question+Generation+using+Natural+Language+Processing&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Deena%2C+G.&rft.au=Raja%2C+K.&rft.date=2022&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=13&rft.issue=2&rft_id=info:doi/10.14569%2FIJACSA.2022.0130263&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2022_0130263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon