Optimizing Sparse Mean Reverting Portfolios with AR-HMMs in the Presence of Secondary Effects
In this paper we optimize mean reverting portfolios subject to cardinality constraints. First, the parameters of the corresponding Ornstein-Uhlenbeck (OU) process are estimated by auto-regressive Hidden Markov Models (AR-HMM) in order to capture the underlying characteristics of the financial time s...
Saved in:
Published in | Periodica polytechnica. Electrical engineering and computer science Vol. 59; no. 1; pp. 1 - 8 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Budapest
Periodica Polytechnica, Budapest University of Technology and Economics
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 2064-5260 2064-5279 |
DOI | 10.3311/PPee.7352 |
Cover
Abstract | In this paper we optimize mean reverting portfolios subject to cardinality constraints. First, the parameters of the corresponding Ornstein-Uhlenbeck (OU) process are estimated by auto-regressive Hidden Markov Models (AR-HMM) in order to capture the underlying characteristics of the financial time series. Portfolio optimization is then performed according to maximizing the mean return by the means of the introduced AR-HMM prediction algorithm. The optimization itself is carried out by stochastic search algorithms. The presented solutions satisfy the cardinality constraint thus providing a sparse portfolios which minimizes the transaction costs and maximizes the interpretability of the results.The performance has been tested on historical data obtained from S&P 500 and FOREX. The results demonstrate that a good average return can be achieved by the proposed AR-HMM based trading algorithms in realistic scenarios. Furthermore, profitability can also be accomplished in the presence of secondary effects. |
---|---|
AbstractList | In this paper we optimize mean reverting portfolios subject to cardinality constraints. First, the parameters of the corresponding Ornstein-Uhlenbeck (OU) process are estimated by auto-regressive Hidden Markov Models (AR-HMM) in order to capture the underlying characteristics of the financial time series. Portfolio optimization is then performed according to maximizing the mean return by the means of the introduced AR-HMM prediction algorithm. The optimization itself is carried out by stochastic search algorithms. The presented solutions satisfy the cardinality constraint thus providing a sparse portfolios which minimizes the transaction costs and maximizes the interpretability of the results.The performance has been tested on historical data obtained from S&P 500 and FOREX. The results demonstrate that a good average return can be achieved by the proposed AR-HMM based trading algorithms in realistic scenarios. Furthermore, profitability can also be accomplished in the presence of secondary effects. |
Author | Levendovszky, János Sipos, I. Róbert |
Author_xml | – sequence: 1 givenname: I. Róbert surname: Sipos fullname: Sipos, I. Róbert – sequence: 2 givenname: János surname: Levendovszky fullname: Levendovszky, János |
BookMark | eNptkE1LAzEQhoMo-NWD_yDgRQ9bk2x2kz2K-AUWS6tHWaZxopFtUpNU0V_vLooH8TTD8Lwvw7NLNn3wSMgBZ-Oy5PxkOkUcq7ISG2RHsFoWlVDN5u9es20ySumFMcZrobhqdsjD7Sq7pft0_onOVxAT0gmCpzN8w5iH6zTEbEPnQqLvLj_T01lxNZkk6jzNz0inERN6gzRYOkcT_CPED3puLZqc9smWhS7h6GfukfuL87uzq-Lm9vL67PSmMEIyUUgpoRbYRxotKw0L4MCFEiAsB80BmGlMLctaQ6nlQjcLWValbLRtpDWgyj1y9N27iuF1jSm3S5cMdh14DOvU8lr3cVlx0aOHf9CXsI6-_66nlK5U_8FQePJNmRhSimhb4zJkF3yO4LqWs3Yw3g7G28F4nzj-k1hFt-xd_MN-AXSkgZQ |
CitedBy_id | crossref_primary_10_1111_itor_13123 crossref_primary_10_3233_AF_190243 crossref_primary_10_1007_s10614_016_9579_y |
ContentType | Journal Article |
Copyright | Copyright Periodica Polytechnica, Budapest University of Technology and Economics 2015 |
Copyright_xml | – notice: Copyright Periodica Polytechnica, Budapest University of Technology and Economics 2015 |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS BENPR BGLVJ BYOGL CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.3311/PPee.7352 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection East Europe, Central Europe Database (ProQuest) ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition East Europe, Central Europe Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2064-5279 |
EndPage | 8 |
ExternalDocumentID | 3674346601 10_3311_PPee_7352 |
GroupedDBID | .4S 8FE 8FG AAYXX ABJCF ABUWG ACIWK AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ BPHCQ BYOGL CCPQU CITATION EOJEC HCIFZ L6V M7S OBODZ P62 PHGZM PHGZT PQQKQ PROAC PTHSS TUS DWQXO PKEHL PQEST PQGLB PQUKI PRINS 7SC 8FD JQ2 L7M L~C L~D PUEGO |
ID | FETCH-LOGICAL-c2402-444a62efec98458aba1a1272a2f1a81aa0c9c64368a384b89b4353498f94fca73 |
IEDL.DBID | BENPR |
ISSN | 2064-5260 |
IngestDate | Fri Sep 05 00:19:20 EDT 2025 Fri Jul 25 12:08:56 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Tue Jul 01 05:16:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2402-444a62efec98458aba1a1272a2f1a81aa0c9c64368a384b89b4353498f94fca73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pp.bme.hu/eecs/article/download/7352/6769 |
PQID | 1678578457 |
PQPubID | 2034351 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1686434512 proquest_journals_1678578457 crossref_citationtrail_10_3311_PPee_7352 crossref_primary_10_3311_PPee_7352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-00-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Budapest |
PublicationPlace_xml | – name: Budapest |
PublicationTitle | Periodica polytechnica. Electrical engineering and computer science |
PublicationYear | 2015 |
Publisher | Periodica Polytechnica, Budapest University of Technology and Economics |
Publisher_xml | – name: Periodica Polytechnica, Budapest University of Technology and Economics |
SSID | ssj0001627179 |
Score | 1.5761514 |
Snippet | In this paper we optimize mean reverting portfolios subject to cardinality constraints. First, the parameters of the corresponding Ornstein-Uhlenbeck (OU)... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Algorithms Computer simulation Electrical engineering Mathematical models Optimization Profitability Stochasticity Time series |
Title | Optimizing Sparse Mean Reverting Portfolios with AR-HMMs in the Presence of Secondary Effects |
URI | https://www.proquest.com/docview/1678578457 https://www.proquest.com/docview/1686434512 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC58XPQgru7iqCuteNhL3Dw66c5BFlccB2FGGRW8SKh0umFAk9HRg_56q_LwAcsekxQNqe6q_qqq-yuA_ahIgsJ32vNzV3jSKrI5dJHntDMUyNGkG67oDkfJ4Fqe3cQ3czDq7sLwscrOJ9aOuqgM58h_B-RVaXXJWP2ZPnjcNYqrq10LDWxbKxSHNcXYPCySS9a07hf_nowuxh9ZlySk-IUxcUh7MUVhid_QDUVRwMyK1h6o-hLS503qq4-uN57-Kqy0iFEcNVP8DeZsuQbLn3gE1-H2nAz_fvJKD-JySqGqFUOLpRjbutsyveUDo666m1QzwZlXcTT2BsPhTExKQQhQXNSXkIwVlROXHCIX-PgiGmbj2Xe47p9cHQ-8tm-CZ7hW4kkpMQktiaSkL405BhiEKsTQBagDRN-kJmHqeYy0zHWaE2aKZKpdKp1BFf2AhbIq7QYIUpbRNnBxnCAFjj4qFRdRrFTiGDqlPfjVKSozLak497a4yyi4YJ1mrNOMddqDvXfRacOk8S-h7U7bWWtMs-xj6nuw-_6ZzIBrG1ja6pllNP2RJPiy-f8htmCJME_cZFG2YeHp8dn-JFzxlO_AvO6f7rRL5g0MVs0M |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V7QE4lBaoWFqKQSBxyTYPJ3YOHPqgbOmmRX1I5YCC49jSipJUza5Q-1f4K_y4zuTRFoR6q8QxiWPJmcn4-8bjzwBvgjzyctdKx81s7nAj8J9TNnCstBqJHBpd04pushsNj_in4_B4Bn51e2GorLKLiXWgzktNOfJVD6MqehcPRVtBuWPOfyI_q95vb6Ix3_r-1ofDjaHTHiHgaFo2cDjnKvKNNTrGV6XKlKc8X_jKt56SnlKujnVEKuwqkDyTcYbwIeCxtDG3WokA-70Hs8gq3LAHs-tf9j6OrlM4kY9kiAC2jxM7UrrIbbSLgsAjmUZjBqLe0XRzxvsz4Nez2NYj-N2Nvyle-T6YTrKBvvhLGvI__UDzMNeiZ7bWuPsCzJjiMTy8oan4BL7uYRD8Mb7AC3ZwirTdsMSogu2b-uRpvEvFs7Y8GZcVoyw0W9t3hklSsXHBEA2zz_WGLG1YadkBpQtydXbOGpXn6ikc3cn4FqFXlIV5BgxtraXxbBhGCkm0q4QI8yAUIrIEI-M-vOvsnOpWYJ3O-ThJkWiRS6TkEim5RB9eXzU9bVRF_tVouTN02gaWKr22ch9eXT3GkEDrPKow5ZTaSBwRRyj3_PYuXsL94WEySkfbuztL8ACxYNhkl5ahNzmbmheItybZSuv3DL7dtSddAgQ6NjY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Sparse+Mean+Reverting+Portfolios+with+AR-HMMs+in+the+Presence+of+Secondary+Effects&rft.jtitle=Periodica+polytechnica.+Electrical+engineering+and+computer+science&rft.au=Sipos%2C+I.+R%C3%B3bert&rft.au=Levendovszky%2C+J%C3%A1nos&rft.date=2015&rft.issn=2064-5260&rft.eissn=2064-5279&rft.volume=59&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.3311%2FPPee.7352&rft.externalDBID=n%2Fa&rft.externalDocID=10_3311_PPee_7352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2064-5260&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2064-5260&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2064-5260&client=summon |