Optimizing Sparse Mean Reverting Portfolios with AR-HMMs in the Presence of Secondary Effects

In this paper we optimize mean reverting portfolios subject to cardinality constraints. First, the parameters of the corresponding Ornstein-Uhlenbeck (OU) process are estimated by auto-regressive Hidden Markov Models (AR-HMM) in order to capture the underlying characteristics of the financial time s...

Full description

Saved in:
Bibliographic Details
Published inPeriodica polytechnica. Electrical engineering and computer science Vol. 59; no. 1; pp. 1 - 8
Main Authors Sipos, I. Róbert, Levendovszky, János
Format Journal Article
LanguageEnglish
Published Budapest Periodica Polytechnica, Budapest University of Technology and Economics 2015
Subjects
Online AccessGet full text
ISSN2064-5260
2064-5279
DOI10.3311/PPee.7352

Cover

Abstract In this paper we optimize mean reverting portfolios subject to cardinality constraints. First, the parameters of the corresponding Ornstein-Uhlenbeck (OU) process are estimated by auto-regressive Hidden Markov Models (AR-HMM) in order to capture the underlying characteristics of the financial time series. Portfolio optimization is then performed according to maximizing the mean return by the means of the introduced AR-HMM prediction algorithm. The optimization itself is carried out by stochastic search algorithms. The presented solutions satisfy the cardinality constraint thus providing a sparse portfolios which minimizes the transaction costs and maximizes the interpretability of the results.The performance has been tested on historical data obtained from S&P 500 and FOREX. The results demonstrate that a good average return can be achieved by the proposed AR-HMM based trading algorithms in realistic scenarios. Furthermore, profitability can also be accomplished in the presence of secondary effects.
AbstractList In this paper we optimize mean reverting portfolios subject to cardinality constraints. First, the parameters of the corresponding Ornstein-Uhlenbeck (OU) process are estimated by auto-regressive Hidden Markov Models (AR-HMM) in order to capture the underlying characteristics of the financial time series. Portfolio optimization is then performed according to maximizing the mean return by the means of the introduced AR-HMM prediction algorithm. The optimization itself is carried out by stochastic search algorithms. The presented solutions satisfy the cardinality constraint thus providing a sparse portfolios which minimizes the transaction costs and maximizes the interpretability of the results.The performance has been tested on historical data obtained from S&P 500 and FOREX. The results demonstrate that a good average return can be achieved by the proposed AR-HMM based trading algorithms in realistic scenarios. Furthermore, profitability can also be accomplished in the presence of secondary effects.
Author Levendovszky, János
Sipos, I. Róbert
Author_xml – sequence: 1
  givenname: I. Róbert
  surname: Sipos
  fullname: Sipos, I. Róbert
– sequence: 2
  givenname: János
  surname: Levendovszky
  fullname: Levendovszky, János
BookMark eNptkE1LAzEQhoMo-NWD_yDgRQ9bk2x2kz2K-AUWS6tHWaZxopFtUpNU0V_vLooH8TTD8Lwvw7NLNn3wSMgBZ-Oy5PxkOkUcq7ISG2RHsFoWlVDN5u9es20ySumFMcZrobhqdsjD7Sq7pft0_onOVxAT0gmCpzN8w5iH6zTEbEPnQqLvLj_T01lxNZkk6jzNz0inERN6gzRYOkcT_CPED3puLZqc9smWhS7h6GfukfuL87uzq-Lm9vL67PSmMEIyUUgpoRbYRxotKw0L4MCFEiAsB80BmGlMLctaQ6nlQjcLWValbLRtpDWgyj1y9N27iuF1jSm3S5cMdh14DOvU8lr3cVlx0aOHf9CXsI6-_66nlK5U_8FQePJNmRhSimhb4zJkF3yO4LqWs3Yw3g7G28F4nzj-k1hFt-xd_MN-AXSkgZQ
CitedBy_id crossref_primary_10_1111_itor_13123
crossref_primary_10_3233_AF_190243
crossref_primary_10_1007_s10614_016_9579_y
ContentType Journal Article
Copyright Copyright Periodica Polytechnica, Budapest University of Technology and Economics 2015
Copyright_xml – notice: Copyright Periodica Polytechnica, Budapest University of Technology and Economics 2015
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
BENPR
BGLVJ
BYOGL
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3311/PPee.7352
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
East Europe, Central Europe Database (ProQuest)
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
East Europe, Central Europe Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2064-5279
EndPage 8
ExternalDocumentID 3674346601
10_3311_PPee_7352
GroupedDBID .4S
8FE
8FG
AAYXX
ABJCF
ABUWG
ACIWK
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
BPHCQ
BYOGL
CCPQU
CITATION
EOJEC
HCIFZ
L6V
M7S
OBODZ
P62
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
TUS
DWQXO
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7SC
8FD
JQ2
L7M
L~C
L~D
PUEGO
ID FETCH-LOGICAL-c2402-444a62efec98458aba1a1272a2f1a81aa0c9c64368a384b89b4353498f94fca73
IEDL.DBID BENPR
ISSN 2064-5260
IngestDate Fri Sep 05 00:19:20 EDT 2025
Fri Jul 25 12:08:56 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Tue Jul 01 05:16:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2402-444a62efec98458aba1a1272a2f1a81aa0c9c64368a384b89b4353498f94fca73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pp.bme.hu/eecs/article/download/7352/6769
PQID 1678578457
PQPubID 2034351
PageCount 8
ParticipantIDs proquest_miscellaneous_1686434512
proquest_journals_1678578457
crossref_citationtrail_10_3311_PPee_7352
crossref_primary_10_3311_PPee_7352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-00-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015-00-00
PublicationDecade 2010
PublicationPlace Budapest
PublicationPlace_xml – name: Budapest
PublicationTitle Periodica polytechnica. Electrical engineering and computer science
PublicationYear 2015
Publisher Periodica Polytechnica, Budapest University of Technology and Economics
Publisher_xml – name: Periodica Polytechnica, Budapest University of Technology and Economics
SSID ssj0001627179
Score 1.5761514
Snippet In this paper we optimize mean reverting portfolios subject to cardinality constraints. First, the parameters of the corresponding Ornstein-Uhlenbeck (OU)...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Algorithms
Computer simulation
Electrical engineering
Mathematical models
Optimization
Profitability
Stochasticity
Time series
Title Optimizing Sparse Mean Reverting Portfolios with AR-HMMs in the Presence of Secondary Effects
URI https://www.proquest.com/docview/1678578457
https://www.proquest.com/docview/1686434512
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC58XPQgru7iqCuteNhL3Dw66c5BFlccB2FGGRW8SKh0umFAk9HRg_56q_LwAcsekxQNqe6q_qqq-yuA_ahIgsJ32vNzV3jSKrI5dJHntDMUyNGkG67oDkfJ4Fqe3cQ3czDq7sLwscrOJ9aOuqgM58h_B-RVaXXJWP2ZPnjcNYqrq10LDWxbKxSHNcXYPCySS9a07hf_nowuxh9ZlySk-IUxcUh7MUVhid_QDUVRwMyK1h6o-hLS503qq4-uN57-Kqy0iFEcNVP8DeZsuQbLn3gE1-H2nAz_fvJKD-JySqGqFUOLpRjbutsyveUDo666m1QzwZlXcTT2BsPhTExKQQhQXNSXkIwVlROXHCIX-PgiGmbj2Xe47p9cHQ-8tm-CZ7hW4kkpMQktiaSkL405BhiEKsTQBagDRN-kJmHqeYy0zHWaE2aKZKpdKp1BFf2AhbIq7QYIUpbRNnBxnCAFjj4qFRdRrFTiGDqlPfjVKSozLak497a4yyi4YJ1mrNOMddqDvXfRacOk8S-h7U7bWWtMs-xj6nuw-_6ZzIBrG1ja6pllNP2RJPiy-f8htmCJME_cZFG2YeHp8dn-JFzxlO_AvO6f7rRL5g0MVs0M
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V7QE4lBaoWFqKQSBxyTYPJ3YOHPqgbOmmRX1I5YCC49jSipJUza5Q-1f4K_y4zuTRFoR6q8QxiWPJmcn4-8bjzwBvgjzyctdKx81s7nAj8J9TNnCstBqJHBpd04pushsNj_in4_B4Bn51e2GorLKLiXWgzktNOfJVD6MqehcPRVtBuWPOfyI_q95vb6Ix3_r-1ofDjaHTHiHgaFo2cDjnKvKNNTrGV6XKlKc8X_jKt56SnlKujnVEKuwqkDyTcYbwIeCxtDG3WokA-70Hs8gq3LAHs-tf9j6OrlM4kY9kiAC2jxM7UrrIbbSLgsAjmUZjBqLe0XRzxvsz4Nez2NYj-N2Nvyle-T6YTrKBvvhLGvI__UDzMNeiZ7bWuPsCzJjiMTy8oan4BL7uYRD8Mb7AC3ZwirTdsMSogu2b-uRpvEvFs7Y8GZcVoyw0W9t3hklSsXHBEA2zz_WGLG1YadkBpQtydXbOGpXn6ikc3cn4FqFXlIV5BgxtraXxbBhGCkm0q4QI8yAUIrIEI-M-vOvsnOpWYJ3O-ThJkWiRS6TkEim5RB9eXzU9bVRF_tVouTN02gaWKr22ch9eXT3GkEDrPKow5ZTaSBwRRyj3_PYuXsL94WEySkfbuztL8ACxYNhkl5ahNzmbmheItybZSuv3DL7dtSddAgQ6NjY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Sparse+Mean+Reverting+Portfolios+with+AR-HMMs+in+the+Presence+of+Secondary+Effects&rft.jtitle=Periodica+polytechnica.+Electrical+engineering+and+computer+science&rft.au=Sipos%2C+I.+R%C3%B3bert&rft.au=Levendovszky%2C+J%C3%A1nos&rft.date=2015&rft.issn=2064-5260&rft.eissn=2064-5279&rft.volume=59&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.3311%2FPPee.7352&rft.externalDBID=n%2Fa&rft.externalDocID=10_3311_PPee_7352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2064-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2064-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2064-5260&client=summon