Model-based fault diagnosis and monitoring of induction machine bearing fault

This paper proposes a novel approach for the diagnosis of bearing faults in the presence of coexisting electrical anomalies. A simplified dq-model is developed to simulate localized spalling on the outer race, with torque disturbances explicitly incorporated to represent the mechanical defect. Unlik...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 238; no. 113245; p. 113245
Main Authors Kavugho, S. Moloverya, Ngandu Kalala, G., Rasolofondraibe, L., Kilundu Y'Ebondo, B., Chiementin, X.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2025
Elsevier
Subjects
Online AccessGet full text
ISSN0888-3270
1096-1216
DOI10.1016/j.ymssp.2025.113245

Cover

Abstract This paper proposes a novel approach for the diagnosis of bearing faults in the presence of coexisting electrical anomalies. A simplified dq-model is developed to simulate localized spalling on the outer race, with torque disturbances explicitly incorporated to represent the mechanical defect. Unlike finite element and magnetic models, which are often too computationally intensive for real-time industrial use, the proposed approach captures bearing fault transmission to the stator current with reduced computational cost. This trade-off between accuracy and efficiency allows the model to be extended to multifault scenarios, including broken rotor bars and inter-turn short circuits. The system equations are numerically integrated using the fourth-order Runge–Kutta method to ensure both stability and computational precision. To address fault detection under multifault conditions, a diagnostic strategy based on stator current analysis is introduced. The method combines frequency-domain analysis, used to identify characteristic fault frequencies, with time-domain processing based on newly proposed features specifically designed for bearing fault identification. These features, not previously reported in the literature, provide a robust basis for the development of data-driven classification algorithms capable of distinguishing concurrent faults. Experimental validation is performed on a dynamic test bench equipped with an induction motor. The results demonstrate the feasibility of the approach for real-time condition monitoring, although further validation is required to fully assess its robustness and generalization across industrial operating conditions.
AbstractList This paper proposes a novel approach for the diagnosis of bearing faults in the presence of coexisting electrical anomalies. A simplified dq-model is developed to simulate localized spalling on the outer race, with torque disturbances explicitly incorporated to represent the mechanical defect. Unlike finite element and magnetic models, which are often too computationally intensive for real-time industrial use, the proposed approach captures bearing fault transmission to the stator current with reduced computational cost. This trade-off between accuracy and efficiency allows the model to be extended to multifault scenarios, including broken rotor bars and inter-turn short circuits. The system equations are numerically integrated using the fourth-order Runge–Kutta method to ensure both stability and computational precision. To address fault detection under multifault conditions, a diagnostic strategy based on stator current analysis is introduced. The method combines frequency-domain analysis, used to identify characteristic fault frequencies, with time-domain processing based on newly proposed features specifically designed for bearing fault identification. These features, not previously reported in the literature, provide a robust basis for the development of data-driven classification algorithms capable of distinguishing concurrent faults. Experimental validation is performed on a dynamic test bench equipped with an induction motor. The results demonstrate the feasibility of the approach for real-time condition monitoring, although further validation is required to fully assess its robustness and generalization across industrial operating conditions.
This paper proposes a novel approach for the diagnosis of bearing faults in the presence of coexisting electrical anomalies. A simplified dq-model is developed to simulate localized spalling on the outer race, with torque disturbances explicitly incorporated to represent the mechanical defect. Unlike finite element and magnetic models, which are often too computationally intensive for real-time industrial use, the proposed approach captures bearing fault transmission to the stator current with reduced computational cost. This trade-off between accuracy and efficiency allows the model to be extended to multifault scenarios, including broken rotor bars and inter- turn short circuits. The system equations are numerically integrated using the fourth-order Runge–Kutta method to ensure both stability and computational precision. To address fault detection under multifault conditions, a diagnostic strategy based on stator current analysis is introduced. The method combines frequency-domain analysis, used to identify characteristic fault frequencies, with time-domain processing based on newly proposed features specifically designed for bearing fault identification. These features, not previously reported in the literature, provide a robust basis for the development of data-driven classification algorithms capable of distinguishing concurrent faults. Experimental validation is performed on a dynamic test bench equipped with an induction motor. The results demonstrate the feasibility of the approach for real-time condition monitoring, although further validation is required to fully assess its robustness and generalization across industrial operating conditions.
ArticleNumber 113245
Author Chiementin, X.
Kavugho, S. Moloverya
Kilundu Y'Ebondo, B.
Rasolofondraibe, L.
Ngandu Kalala, G.
Author_xml – sequence: 1
  givenname: S. Moloverya
  orcidid: 0009-0002-4825-7385
  surname: Kavugho
  fullname: Kavugho, S. Moloverya
  organization: University of Reims Champagne Ardennes, CReSTIC, 51685 Reims Cedex 2, France
– sequence: 2
  givenname: G.
  orcidid: 0000-0002-7712-236X
  surname: Ngandu Kalala
  fullname: Ngandu Kalala, G.
  organization: University of Lubumbashi, Polytechnic Faculty, 7110502 Lubumbashi, Democratic Republic of the Congo
– sequence: 3
  givenname: L.
  surname: Rasolofondraibe
  fullname: Rasolofondraibe, L.
  organization: University of Reims Champagne Ardennes, CReSTIC, 51685 Reims Cedex 2, France
– sequence: 4
  givenname: B.
  orcidid: 0000-0003-1599-7491
  surname: Kilundu Y'Ebondo
  fullname: Kilundu Y'Ebondo, B.
  organization: HE2B-ISIB, 28 rue des goujons, 1000 Bruxelles, Belgium
– sequence: 5
  givenname: X.
  surname: Chiementin
  fullname: Chiementin, X.
  organization: University of Reims Champagne Ardennes, ITheMM, 51685 Reims Cedex 2, France
BackLink https://hal.science/hal-05224179$$DView record in HAL
BookMark eNp9kD1vwjAQhq2KSgXaX9DFa4ek_kicZOiAUFsqgbqwW459BqPERnFA4t-XkKpjp5Pee5-T7pmhiQ8eEHqmJKWEitdDemljPKaMsDyllLMsv0NTSiqRUEbFBE1JWZYJZwV5QLMYD4SQKiNiijabYKBJahXBYKtOTY-NUzsfootYeYPb4F0fOud3OFjsvDnp3gWPW6X3zgOuQd2WN_YR3VvVRHj6nXO0_XjfLlfJ-vvza7lYJ5plhCam0MKCEbxmjNocOKeQmyovqyKvBFimhVKGGgqaZzUQW9mS11xkGZjKUD5HL-PZvWrksXOt6i4yKCdXi7UcMpIzltGiOg9dPnZ1F2LswP4BlMhBnjzImzw5yJOjvCv1NlJw_eLsoJNRO_AajOtA99IE9y__A6s0e1c
Cites_doi 10.1016/j.matcom.2013.04.005
10.1049/iet-epa.2018.5226
10.3390/s24216935
10.1109/28.475697
10.1109/TIE.2008.917108
10.3390/machines12120890
10.1016/j.ymssp.2014.08.022
10.1109/ACCESS.2021.3128669
10.1109/TIE.2014.2334652
10.3182/20120829-3-MX-2028.00255
10.1109/TIE.2010.2051398
10.1016/j.mechmachtheory.2019.01.028
10.1016/j.jsv.2016.12.031
10.3390/app10061996
10.1109/DEMPED.2019.8864895
10.1109/ACCESS.2022.3200058
10.1016/j.epsr.2015.12.017
10.1016/j.knosys.2024.112357
10.3390/s21144855
10.1016/j.ymssp.2005.02.001
10.1109/60.969469
10.1016/j.ymssp.2013.11.006
10.3390/machines10050379
10.3390/en15228372
10.1016/j.bspc.2020.102210
10.3390/en15228735
10.1109/OPTIM.2012.6231950
10.1016/j.triboint.2008.06.002
10.1109/TMAG.2017.2710181
10.3390/en15249412
10.3390/en15217855
10.1016/j.jsv.2020.115884
10.51485/ajss.v6i1.7
10.3390/s21216963
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.ymssp.2025.113245
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Computer Science
EISSN 1096-1216
ExternalDocumentID oai_HAL_hal_05224179v1
10_1016_j_ymssp_2025_113245
S088832702500946X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
~HD
29M
AAQXK
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADFGL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG5
LG9
LY7
M41
R2-
SBC
SET
WUQ
1XC
VOOES
ID FETCH-LOGICAL-c2401-d7c6fed63b221f5e331e5d95897596ef2c6aad1d1ec34be0f9f83b3644ed9d13
IEDL.DBID AIKHN
ISSN 0888-3270
IngestDate Wed Sep 17 06:29:28 EDT 2025
Thu Sep 11 00:24:27 EDT 2025
Sat Sep 13 17:00:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 113245
Keywords Induction motor
Modelling
Stator current
Bearing fault
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2401-d7c6fed63b221f5e331e5d95897596ef2c6aad1d1ec34be0f9f83b3644ed9d13
ORCID 0009-0002-4825-7385
0000-0002-7712-236X
0000-0003-1599-7491
0000-0003-3033-2826
0000-0002-5685-1694
OpenAccessLink https://hal.science/hal-05224179
ParticipantIDs hal_primary_oai_HAL_hal_05224179v1
crossref_primary_10_1016_j_ymssp_2025_113245
elsevier_sciencedirect_doi_10_1016_j_ymssp_2025_113245
PublicationCentury 2000
PublicationDate 2025-09-01
2025-09-00
2025-09
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References J.L. Gomez, I. Khelf, A. Bourdon, D. Rémond, H. André, Angular modeling of a rotating machine in non-stationary conditions: application to monitoring bearing defects of wind turbines with Instantaneous Angular Speed, 2019.
Rémond, Antoni, Randall (b0100) 2014; 44
S. Kerroumi, Extraction des paramètres et classification dynamique dans le cadre de la détection et du suivi de défaut de roulements, Doctoral dissertation, Université de Reims Champagne-Ardenne, 2016.
A. Garcia-Perez, R. de J. Romero-Troncoso, E. Cabal-Yepez, R. A. Osornio-Rios, The application of high-resolution spectral analysis for identifying multiple combined faults in induction motors, IEEE Trans. Ind. Electron. 58 (2011) 2002–2010.
C. Pezzani, G. Bossio, C. De Angelo, Winding distribution effects on induction motor rotor fault diagnosis, in: 8th IFAC Symposium on Fault Detection (SAFEPROCESS), Mexico City, 2012.
Fourati, Bourdon, Feki, Rémond, Chaari, Haddar (b0140) 2017; 395
Singh, Grant, DeFour, Sharma, Bahadoorsingh (b0010) 2016; 133
Sidki (b0080) 2016; 1
Dorrell, Makhoba (b0210) 2017
A. Sapena-Bano, M. Riera-Guasp, J. Martinez-Roman, M. Pineda-Sanchez, R. Puche-Panadero, J. Perez-Cruz, FEM-Analytical Hybrid Model for Real Time Simulation of IMs Under Static Eccentricity Fault, in: Proc. IEEE Int. Symp. Diagnostics for Electr. Mach., Power Electron. Drives (SDEMPED), Toulouse, France, 2019, pp. 108–114.
Nazarzadeh, Naeini (b0110) 2011
Zhang, Zhao, Lin (b0215) 2021; 9
Rodriguez-Blanco, Golikov, Osorio-Sánchez, Samovarov, Ortiz-Torres, Sanchez-Lara, Vazquez-Avila (b0075) 2022; 15
Bessous, Sbaa, Pusca, Romary (b0160) 2021; 6
Gheorghe, Melcescu, Tudorache, Mihai (b0050) 2016; 61
Mohan, Raju (b0120) 2020
K. Hamouche, Surveillance multi dimensionnelle des machines tournantes par classification dynamique dans un but de maintenance conditionnelle, Thèse de doctorat en co-tutelle, Université de Reims Champagne-Ardenne (France) et Université Ferhat Abbas Sétif 1 (Algérie), 2022.
R.-V. Sánchez, J. C. Macancela, L.-R. Ortega, D. Cabrera, F.P. G. Márquez, M. Cerrada, Evaluation of hand-crafted feature extraction for fault diagnosis in rotating machinery: a survey, 2020.
Ghorbanian, Faiz (b0250) 2015; 54–55
A. Chahmi, Identification paramétrique de la machine asynchrone dédiée au diagnostic, Doctoral dissertation, Université des sciences et technologie d’Oran, 2017.
Kumar, Waisale, Tamata, Tortella, Kia, Andriollo (b0165) 2024; 12
Ruiz-Sarrio, Antonino-Daviu, Martis (b0180) 2024; 24
Mohan (b0115) 2014
A. Medoued, Surveillance et diagnostic des défauts des machines électriques : applications aux moteurs asynchrones, Doctoral dissertation, Université du 20 Août 1955–Skikda (2012).
M.J. Jafarian, J. Nazarzadeh, Spectral analysis for diagnosis of bearing defects in induction machine drives, 2019.
M. Ben Slimene, M.A. Khlifi, Investigation on the effects of magnetic saturation in six-phase induction machines with and without cross saturation of the main flux path, Energies 15 (2022) 9412.
Zarei, Poshtan (b0090) 2009; 42
C. Terron-Santiago, J. Martinez-Roman, R. Puche-Panadero, A. Sapena-Bano, Low-computational-cost hybrid FEM-analytical induction machine model for the diagnosis of rotor eccentricity, based on sparse identification techniques and trigonometric interpolation, 2021.
M. Mengoni, S.C. Agarlita, L. Zarri, D. Casadei, On-line estimation of stator resistance and mutual inductance of multiphase induction machines, 2012.
Bouzid, Champenois (b0130) 2013; 90
M. Ebrahimi, A. Basiri, RACEkNN: A hybrid approach for improving the effectiveness of the k-nearest neighbor algorithm, Knowl.-Based Syst. 301 (2024) 112357.
Fajardo, Gomez, Prieto (b0245) 2021; 63
S. Sassi, B. Badri, M. Thomas, “TALAF” and “THIKAT” as innovative time domain indicators for tracking ball bearings, Eng. 18 (2006).
Kuruppu, Kulatunga (b0095) 2014; 62
Jiao, Sun, Wang, Wan (b0235) 2025; 25
Han, Ding, Xu, Chu, Wang (b0145) 2022; 166
C. Terron-Santiago, J. Martinez-Roman, R. Puche-Panadero, A. Sapena-Bano, A review of techniques used for induction machine fault modelling, Sensors 21 (2021).
Goh, Kim (b0170) 2020; 10
Garcia-Calva, Morinigo-Sotelo, Fernandez-Cavero, Romero-Troncoso (b0005) 2022; 15
B.-G. Gu, Development of broken rotor bar fault diagnosis method with sum of weighted Fourier series coefficients square, Energies 10 (2022) 8735.
Schoen, Habetler, Kamran, Bartheld (b0150) 1995; 31
Toliyat, Haji (b0205) 2001; 16
Atta, Ibrahim, Gilany (b0070) 2022; 10
Gu, Yesilyurt, Li, Harris, Ball (b0025) 2005; 20
N. Feki, Modélisation électromécanique de transmissions par engrenages: applications à la détection et au suivi des avaries, Doctoral dissertation, Institut national des sciences appliquées de Lyon, 2012.
Blodt, Granjon, Raison, Rostaing (b0155) 2008; 55
Li, Bourdon, Rémond, Kœchlin, Prieto (b0105) 2021; 494
Rodriguez-Blanco, Golikov, Vazquez-Avila, Samovarov, Sanchez-Lara, Osorio-Sánchez, Pérez-Ramírez (b0020) 2022; 10
Nazarzadeh (10.1016/j.ymssp.2025.113245_b0110) 2011
Ghorbanian (10.1016/j.ymssp.2025.113245_b0250) 2015; 54–55
10.1016/j.ymssp.2025.113245_b0125
Singh (10.1016/j.ymssp.2025.113245_b0010) 2016; 133
10.1016/j.ymssp.2025.113245_b0225
10.1016/j.ymssp.2025.113245_b0200
Mohan (10.1016/j.ymssp.2025.113245_b0115) 2014
Bessous (10.1016/j.ymssp.2025.113245_b0160) 2021; 6
10.1016/j.ymssp.2025.113245_b0190
Zarei (10.1016/j.ymssp.2025.113245_b0090) 2009; 42
Han (10.1016/j.ymssp.2025.113245_b0145) 2022; 166
Atta (10.1016/j.ymssp.2025.113245_b0070) 2022; 10
Fourati (10.1016/j.ymssp.2025.113245_b0140) 2017; 395
Toliyat (10.1016/j.ymssp.2025.113245_b0205) 2001; 16
Garcia-Calva (10.1016/j.ymssp.2025.113245_b0005) 2022; 15
10.1016/j.ymssp.2025.113245_b0055
Mohan (10.1016/j.ymssp.2025.113245_b0120) 2020
Blodt (10.1016/j.ymssp.2025.113245_b0155) 2008; 55
Dorrell (10.1016/j.ymssp.2025.113245_b0210) 2017
10.1016/j.ymssp.2025.113245_b0175
Jiao (10.1016/j.ymssp.2025.113245_b0235) 2025; 25
10.1016/j.ymssp.2025.113245_b0030
Rodriguez-Blanco (10.1016/j.ymssp.2025.113245_b0020) 2022; 10
Ruiz-Sarrio (10.1016/j.ymssp.2025.113245_b0180) 2024; 24
Schoen (10.1016/j.ymssp.2025.113245_b0150) 1995; 31
Kumar (10.1016/j.ymssp.2025.113245_b0165) 2024; 12
10.1016/j.ymssp.2025.113245_b0015
10.1016/j.ymssp.2025.113245_b0035
10.1016/j.ymssp.2025.113245_b0255
10.1016/j.ymssp.2025.113245_b0135
Li (10.1016/j.ymssp.2025.113245_b0105) 2021; 494
Zhang (10.1016/j.ymssp.2025.113245_b0215) 2021; 9
Kuruppu (10.1016/j.ymssp.2025.113245_b0095) 2014; 62
Gheorghe (10.1016/j.ymssp.2025.113245_b0050) 2016; 61
Bouzid (10.1016/j.ymssp.2025.113245_b0130) 2013; 90
Fajardo (10.1016/j.ymssp.2025.113245_b0245) 2021; 63
Goh (10.1016/j.ymssp.2025.113245_b0170) 2020; 10
Rodriguez-Blanco (10.1016/j.ymssp.2025.113245_b0075) 2022; 15
10.1016/j.ymssp.2025.113245_b0220
10.1016/j.ymssp.2025.113245_b0045
Rémond (10.1016/j.ymssp.2025.113245_b0100) 2014; 44
10.1016/j.ymssp.2025.113245_b0185
10.1016/j.ymssp.2025.113245_b0240
10.1016/j.ymssp.2025.113245_b0065
Sidki (10.1016/j.ymssp.2025.113245_b0080) 2016; 1
10.1016/j.ymssp.2025.113245_b0040
10.1016/j.ymssp.2025.113245_b0060
Gu (10.1016/j.ymssp.2025.113245_b0025) 2005; 20
References_xml – volume: 31
  start-page: 1274
  year: 1995
  end-page: 1279
  ident: b0150
  article-title: Motor bearing damage detection using stator current monitoring
  publication-title: IEEE Trans. Ind. Appl.
– volume: 12
  start-page: 890
  year: 2024
  ident: b0165
  article-title: Advanced fault detection and severity analysis of broken rotor bars in induction motors: comparative classification and feature study using dimensionality reduction technique
  publication-title: Machines
– reference: K. Hamouche, Surveillance multi dimensionnelle des machines tournantes par classification dynamique dans un but de maintenance conditionnelle, Thèse de doctorat en co-tutelle, Université de Reims Champagne-Ardenne (France) et Université Ferhat Abbas Sétif 1 (Algérie), 2022.
– volume: 61
  start-page: 18
  year: 2016
  end-page: 21
  ident: b0050
  article-title: Numerical modeling approaches for the analysis of squirrel–cage induction motor
  publication-title: Revue Roumaine Des Sciences Techniques, Série Électrotechnique et Énergétique
– volume: 10
  year: 2022
  ident: b0020
  article-title: Comprehensive and simplified fault diagnosis for three–phase induction motor using parity equation approach in stator current reference frame
  publication-title: Machines
– volume: 63
  year: 2021
  ident: b0245
  article-title: EMG hand gesture classification using handcrafted and deep features
  publication-title: Biomed. Signal Process. Control
– volume: 9
  start-page: 155598
  year: 2021
  end-page: 155608
  ident: b0215
  article-title: Machine learning-based bearing fault diagnosis using the case Western Reserve university data: a review
  publication-title: IEEE Access
– volume: 55
  start-page: 1813
  year: 2008
  end-page: 1822
  ident: b0155
  article-title: Models for bearing damage detection in induction motors using stator current monitoring
  publication-title: IEEE Trans. Ind. Electron.
– year: 2014
  ident: b0115
  article-title: Advanced Electric Drives: Analysis, Control, and Modeling using MATLAB/Simulink
– volume: 166
  start-page: 554
  year: 2022
  end-page: 575
  ident: b0145
  article-title: Stator current model for detecting rolling bearing faults in induction motors using magnetic equivalent circuits
  publication-title: Mech. Syst. Sig. Process.
– reference: N. Feki, Modélisation électromécanique de transmissions par engrenages: applications à la détection et au suivi des avaries, Doctoral dissertation, Institut national des sciences appliquées de Lyon, 2012.
– volume: 10
  start-page: 1996
  year: 2020
  ident: b0170
  article-title: Inter-turn short circuit diagnosis using new D-Q synchronous min–max coordinate system and linear discriminant analysis
  publication-title: Appl. Sci.
– volume: 25
  start-page: 2328
  year: 2025
  ident: b0235
  article-title: Comprehensive exploitation of time- and frequency-domain information for bearing fault diagnosis on imbalanced datasets via adaptive wavelet-like transform
  publication-title: GAN Ensemble Learn. Sens.
– volume: 6
  start-page: 41
  year: 2021
  end-page: 48
  ident: b0160
  article-title: Rotor fault detection in squirrel cage induction motors using MCSA and DWT techniques
  publication-title: Algerian J. Signals Syst.
– reference: S. Sassi, B. Badri, M. Thomas, “TALAF” and “THIKAT” as innovative time domain indicators for tracking ball bearings, Eng. 18 (2006).
– reference: C. Terron-Santiago, J. Martinez-Roman, R. Puche-Panadero, A. Sapena-Bano, Low-computational-cost hybrid FEM-analytical induction machine model for the diagnosis of rotor eccentricity, based on sparse identification techniques and trigonometric interpolation, 2021.
– reference: S. Kerroumi, Extraction des paramètres et classification dynamique dans le cadre de la détection et du suivi de défaut de roulements, Doctoral dissertation, Université de Reims Champagne-Ardenne, 2016.
– volume: 62
  start-page: 113
  year: 2014
  end-page: 121
  ident: b0095
  article-title: DQ current signature-based faulted phase localization for SM-PMAC machine drives
  publication-title: IEEE Trans. Ind. Electron.
– year: 2011
  ident: b0110
  article-title: Magnetic reluctance method for dynamical modeling of squirrel cage induction machines
  publication-title: Research Gate
– reference: B.-G. Gu, Development of broken rotor bar fault diagnosis method with sum of weighted Fourier series coefficients square, Energies 10 (2022) 8735.
– reference: M.J. Jafarian, J. Nazarzadeh, Spectral analysis for diagnosis of bearing defects in induction machine drives, 2019.
– volume: 16
  start-page: 312
  year: 2001
  end-page: 317
  ident: b0205
  article-title: Pattern recognition – a technique for induction machines rotor broken bar detection
  publication-title: IEEE Trans. Energy Convers.
– year: 2020
  ident: b0120
  article-title: Analysis and Control of Electric Drives: Simulations and Laboratory Implementation
– reference: A. Sapena-Bano, M. Riera-Guasp, J. Martinez-Roman, M. Pineda-Sanchez, R. Puche-Panadero, J. Perez-Cruz, FEM-Analytical Hybrid Model for Real Time Simulation of IMs Under Static Eccentricity Fault, in: Proc. IEEE Int. Symp. Diagnostics for Electr. Mach., Power Electron. Drives (SDEMPED), Toulouse, France, 2019, pp. 108–114.
– volume: 20
  start-page: 1444
  year: 2005
  end-page: 1460
  ident: b0025
  article-title: An investigation of the effects of measurement noise in the use of instantaneous angular speed for machine diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 44
  start-page: 1
  year: 2014
  end-page: 4
  ident: b0100
  article-title: Editorial for the special issue on instantaneous angular speed (IAS) processing and angular applications
  publication-title: Mech. Syst. Sig. Process.
– volume: 133
  start-page: 191
  year: 2016
  end-page: 197
  ident: b0010
  article-title: A review of induction motor fault modeling
  publication-title: Electr. Pow. Syst. Res.
– volume: 24
  start-page: 6935
  year: 2024
  ident: b0180
  article-title: Localized bearing fault analysis for different induction machine start-up modes via vibration time–frequency envelope spectrum
  publication-title: Sensors
– volume: 42
  start-page: 213
  year: 2009
  end-page: 219
  ident: b0090
  article-title: An advanced Park’s vectors approach for bearing fault detection
  publication-title: Tribol. Int.
– volume: 15
  start-page: 8372
  year: 2022
  ident: b0075
  article-title: Fault diagnosis of induction motor using D-Q simplified model and parity equations
  publication-title: Energies
– volume: 494
  year: 2021
  ident: b0105
  article-title: Angular-based modeling of unbalanced magnetic pull for analyzing the dynamical behavior of a 3-phase induction motor
  publication-title: J. Sound Vib.
– volume: 90
  start-page: 98
  year: 2013
  end-page: 115
  ident: b0130
  article-title: An efficient, simplified multiple-coupled circuit model of the induction motor aimed to simulate different types of stator faults
  publication-title: Math. Comput. Simul
– reference: C. Pezzani, G. Bossio, C. De Angelo, Winding distribution effects on induction motor rotor fault diagnosis, in: 8th IFAC Symposium on Fault Detection (SAFEPROCESS), Mexico City, 2012.
– reference: M. Mengoni, S.C. Agarlita, L. Zarri, D. Casadei, On-line estimation of stator resistance and mutual inductance of multiphase induction machines, 2012.
– reference: M. Ebrahimi, A. Basiri, RACEkNN: A hybrid approach for improving the effectiveness of the k-nearest neighbor algorithm, Knowl.-Based Syst. 301 (2024) 112357.
– volume: 15
  start-page: 7855
  year: 2022
  ident: b0005
  article-title: Early detection of faults in induction motors—a review
  publication-title: Energies
– reference: A. Garcia-Perez, R. de J. Romero-Troncoso, E. Cabal-Yepez, R. A. Osornio-Rios, The application of high-resolution spectral analysis for identifying multiple combined faults in induction motors, IEEE Trans. Ind. Electron. 58 (2011) 2002–2010.
– volume: 10
  start-page: 88504
  year: 2022
  end-page: 88526
  ident: b0070
  article-title: Broken bar fault detection and diagnosis techniques for induction motors and drives: state of the art
  publication-title: IEEE Access
– volume: 1
  start-page: 1
  year: 2016
  end-page: 5
  ident: b0080
  article-title: Diagnostic des défauts de la machine asynchrone par analyse spectrale
  publication-title: Rev. Interdisciplinaire
– reference: A. Medoued, Surveillance et diagnostic des défauts des machines électriques : applications aux moteurs asynchrones, Doctoral dissertation, Université du 20 Août 1955–Skikda (2012).
– reference: M. Ben Slimene, M.A. Khlifi, Investigation on the effects of magnetic saturation in six-phase induction machines with and without cross saturation of the main flux path, Energies 15 (2022) 9412.
– reference: C. Terron-Santiago, J. Martinez-Roman, R. Puche-Panadero, A. Sapena-Bano, A review of techniques used for induction machine fault modelling, Sensors 21 (2021).
– reference: R.-V. Sánchez, J. C. Macancela, L.-R. Ortega, D. Cabrera, F.P. G. Márquez, M. Cerrada, Evaluation of hand-crafted feature extraction for fault diagnosis in rotating machinery: a survey, 2020.
– volume: 395
  start-page: 371
  year: 2017
  end-page: 392
  ident: b0140
  article-title: Angular-based modeling of induction motors for monitoring
  publication-title: J. Sound Vib.
– start-page: 1
  year: 2017
  ident: b0210
  article-title: Detection of inter-turn stator faults in induction motors using short-term averaging of forward and backward rotating stator current phasors for fast prognostic
  publication-title: IEEE Trans. Magn.
– volume: 54–55
  start-page: 427
  year: 2015
  end-page: 456
  ident: b0250
  article-title: A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes
  publication-title: Mech. Syst. Sig. Process.
– reference: J.L. Gomez, I. Khelf, A. Bourdon, D. Rémond, H. André, Angular modeling of a rotating machine in non-stationary conditions: application to monitoring bearing defects of wind turbines with Instantaneous Angular Speed, 2019.
– reference: A. Chahmi, Identification paramétrique de la machine asynchrone dédiée au diagnostic, Doctoral dissertation, Université des sciences et technologie d’Oran, 2017.
– volume: 90
  start-page: 98
  year: 2013
  ident: 10.1016/j.ymssp.2025.113245_b0130
  article-title: An efficient, simplified multiple-coupled circuit model of the induction motor aimed to simulate different types of stator faults
  publication-title: Math. Comput. Simul
  doi: 10.1016/j.matcom.2013.04.005
– year: 2014
  ident: 10.1016/j.ymssp.2025.113245_b0115
– ident: 10.1016/j.ymssp.2025.113245_b0030
– ident: 10.1016/j.ymssp.2025.113245_b0200
  doi: 10.1049/iet-epa.2018.5226
– ident: 10.1016/j.ymssp.2025.113245_b0225
– ident: 10.1016/j.ymssp.2025.113245_b0240
– volume: 24
  start-page: 6935
  year: 2024
  ident: 10.1016/j.ymssp.2025.113245_b0180
  article-title: Localized bearing fault analysis for different induction machine start-up modes via vibration time–frequency envelope spectrum
  publication-title: Sensors
  doi: 10.3390/s24216935
– volume: 31
  start-page: 1274
  issue: 6
  year: 1995
  ident: 10.1016/j.ymssp.2025.113245_b0150
  article-title: Motor bearing damage detection using stator current monitoring
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/28.475697
– volume: 55
  start-page: 1813
  issue: 4
  year: 2008
  ident: 10.1016/j.ymssp.2025.113245_b0155
  article-title: Models for bearing damage detection in induction motors using stator current monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2008.917108
– volume: 12
  start-page: 890
  year: 2024
  ident: 10.1016/j.ymssp.2025.113245_b0165
  article-title: Advanced fault detection and severity analysis of broken rotor bars in induction motors: comparative classification and feature study using dimensionality reduction techniques
  publication-title: Machines
  doi: 10.3390/machines12120890
– volume: 54–55
  start-page: 427
  year: 2015
  ident: 10.1016/j.ymssp.2025.113245_b0250
  article-title: A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2014.08.022
– volume: 61
  start-page: 18
  year: 2016
  ident: 10.1016/j.ymssp.2025.113245_b0050
  article-title: Numerical modeling approaches for the analysis of squirrel–cage induction motor
  publication-title: Revue Roumaine Des Sciences Techniques, Série Électrotechnique et Énergétique
– volume: 9
  start-page: 155598
  year: 2021
  ident: 10.1016/j.ymssp.2025.113245_b0215
  article-title: Machine learning-based bearing fault diagnosis using the case Western Reserve university data: a review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3128669
– ident: 10.1016/j.ymssp.2025.113245_b0175
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.ymssp.2025.113245_b0080
  article-title: Diagnostic des défauts de la machine asynchrone par analyse spectrale
  publication-title: Rev. Interdisciplinaire
– volume: 62
  start-page: 113
  year: 2014
  ident: 10.1016/j.ymssp.2025.113245_b0095
  article-title: DQ current signature-based faulted phase localization for SM-PMAC machine drives
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2334652
– ident: 10.1016/j.ymssp.2025.113245_b0045
  doi: 10.3182/20120829-3-MX-2028.00255
– ident: 10.1016/j.ymssp.2025.113245_b0035
  doi: 10.1109/TIE.2010.2051398
– volume: 166
  start-page: 554
  year: 2022
  ident: 10.1016/j.ymssp.2025.113245_b0145
  article-title: Stator current model for detecting rolling bearing faults in induction motors using magnetic equivalent circuits
  publication-title: Mech. Syst. Sig. Process.
– ident: 10.1016/j.ymssp.2025.113245_b0185
  doi: 10.1016/j.mechmachtheory.2019.01.028
– volume: 395
  start-page: 371
  year: 2017
  ident: 10.1016/j.ymssp.2025.113245_b0140
  article-title: Angular-based modeling of induction motors for monitoring
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.12.031
– volume: 10
  start-page: 1996
  year: 2020
  ident: 10.1016/j.ymssp.2025.113245_b0170
  article-title: Inter-turn short circuit diagnosis using new D-Q synchronous min–max coordinate system and linear discriminant analysis
  publication-title: Appl. Sci.
  doi: 10.3390/app10061996
– ident: 10.1016/j.ymssp.2025.113245_b0055
  doi: 10.1109/DEMPED.2019.8864895
– volume: 10
  start-page: 88504
  year: 2022
  ident: 10.1016/j.ymssp.2025.113245_b0070
  article-title: Broken bar fault detection and diagnosis techniques for induction motors and drives: state of the art
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3200058
– volume: 133
  start-page: 191
  year: 2016
  ident: 10.1016/j.ymssp.2025.113245_b0010
  article-title: A review of induction motor fault modeling
  publication-title: Electr. Pow. Syst. Res.
  doi: 10.1016/j.epsr.2015.12.017
– ident: 10.1016/j.ymssp.2025.113245_b0255
  doi: 10.1016/j.knosys.2024.112357
– ident: 10.1016/j.ymssp.2025.113245_b0060
  doi: 10.3390/s21144855
– volume: 20
  start-page: 1444
  year: 2005
  ident: 10.1016/j.ymssp.2025.113245_b0025
  article-title: An investigation of the effects of measurement noise in the use of instantaneous angular speed for machine diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2005.02.001
– volume: 16
  start-page: 312
  issue: 4
  year: 2001
  ident: 10.1016/j.ymssp.2025.113245_b0205
  article-title: Pattern recognition – a technique for induction machines rotor broken bar detection
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/60.969469
– volume: 44
  start-page: 1
  year: 2014
  ident: 10.1016/j.ymssp.2025.113245_b0100
  article-title: Editorial for the special issue on instantaneous angular speed (IAS) processing and angular applications
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2013.11.006
– volume: 10
  year: 2022
  ident: 10.1016/j.ymssp.2025.113245_b0020
  article-title: Comprehensive and simplified fault diagnosis for three–phase induction motor using parity equation approach in stator current reference frame
  publication-title: Machines
  doi: 10.3390/machines10050379
– ident: 10.1016/j.ymssp.2025.113245_b0220
– volume: 15
  start-page: 8372
  year: 2022
  ident: 10.1016/j.ymssp.2025.113245_b0075
  article-title: Fault diagnosis of induction motor using D-Q simplified model and parity equations
  publication-title: Energies
  doi: 10.3390/en15228372
– volume: 63
  year: 2021
  ident: 10.1016/j.ymssp.2025.113245_b0245
  article-title: EMG hand gesture classification using handcrafted and deep features
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102210
– ident: 10.1016/j.ymssp.2025.113245_b0015
– ident: 10.1016/j.ymssp.2025.113245_b0040
– ident: 10.1016/j.ymssp.2025.113245_b0065
  doi: 10.3390/en15228735
– year: 2011
  ident: 10.1016/j.ymssp.2025.113245_b0110
  article-title: Magnetic reluctance method for dynamical modeling of squirrel cage induction machines
  publication-title: Research Gate
– ident: 10.1016/j.ymssp.2025.113245_b0125
  doi: 10.1109/OPTIM.2012.6231950
– volume: 42
  start-page: 213
  year: 2009
  ident: 10.1016/j.ymssp.2025.113245_b0090
  article-title: An advanced Park’s vectors approach for bearing fault detection
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2008.06.002
– start-page: 1
  year: 2017
  ident: 10.1016/j.ymssp.2025.113245_b0210
  article-title: Detection of inter-turn stator faults in induction motors using short-term averaging of forward and backward rotating stator current phasors for fast prognostics
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2017.2710181
– year: 2020
  ident: 10.1016/j.ymssp.2025.113245_b0120
– ident: 10.1016/j.ymssp.2025.113245_b0135
  doi: 10.3390/en15249412
– volume: 15
  start-page: 7855
  year: 2022
  ident: 10.1016/j.ymssp.2025.113245_b0005
  article-title: Early detection of faults in induction motors—a review
  publication-title: Energies
  doi: 10.3390/en15217855
– volume: 494
  year: 2021
  ident: 10.1016/j.ymssp.2025.113245_b0105
  article-title: Angular-based modeling of unbalanced magnetic pull for analyzing the dynamical behavior of a 3-phase induction motor
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115884
– volume: 6
  start-page: 41
  issue: 1
  year: 2021
  ident: 10.1016/j.ymssp.2025.113245_b0160
  article-title: Rotor fault detection in squirrel cage induction motors using MCSA and DWT techniques
  publication-title: Algerian J. Signals Syst.
  doi: 10.51485/ajss.v6i1.7
– volume: 25
  start-page: 2328
  year: 2025
  ident: 10.1016/j.ymssp.2025.113245_b0235
  article-title: Comprehensive exploitation of time- and frequency-domain information for bearing fault diagnosis on imbalanced datasets via adaptive wavelet-like transform
  publication-title: GAN Ensemble Learn. Sens.
– ident: 10.1016/j.ymssp.2025.113245_b0190
  doi: 10.3390/s21216963
SSID ssj0009406
Score 2.4623923
Snippet This paper proposes a novel approach for the diagnosis of bearing faults in the presence of coexisting electrical anomalies. A simplified dq-model is developed...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 113245
SubjectTerms Bearing fault
Computer Science
Engineering Sciences
Induction motor
Mechanical engineering
Mechanics
Modelling
Physics
Signal and Image Processing
Stator current
Title Model-based fault diagnosis and monitoring of induction machine bearing fault
URI https://dx.doi.org/10.1016/j.ymssp.2025.113245
https://hal.science/hal-05224179
Volume 238
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7RcoEDWl7isYssxJHQOI6d-FhVi8rzAki9RX6KIloQbVfaC799PU4Ci4Q4cIzjSaIv9szY-vwNwJGSXhcyVYnDWql5iBnBD3KTuMwYbmTpTdSZvboWw7v8fMRHSzBoz8IgrbLx_bVPj966aek1aPaex-PeTZgfYTgWGMTDGkWMOrCcMSl4F5b7ZxfD63ft3TyW2MT-CRq04kOR5vV3MpuhbmXGsbxJhseaPg9Qnft2qzWGntMfsNbkjKRff9Y6LLnpBqz-pyS4CVdY0-wxwZhkiVeLxzmxNYluPCNqaskkzl3sTJ48CQvxWjWWTCKZ0hEdRjzejLZbcHv6-3YwTJpKCYkJ6NLEFkZ4ZwXTWUY9d4xRx63kpSy4FM5nRihlqaXOsFy71EtfMs1CLuSstJRtQ3f6NHU7QFSuhPQ8t7Q0uXFcaWbK1MlC51bqVO_CcYtO9VzrYVQtUeyhimBWCGZVg7kLokWw-vBbq-CxvzY8DHi_vQJFsIf9ywrbUo5pRyH_0L3vPn0fVvCq5or9hO78ZeF-heRirg-gc_JKD5oh9A_xNM7D
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUoHIADYhU7FuJIaBLbSXxEiKpAy4Ui9WZ5FUVdEC1IXPh2PE7CIiEOXL0k0ct4Zmw9v0HoRHKnch7LyEKtVOpjhveDTEc21ZppXjgddGa7t1n7nl73WX8OXdR3YYBWWfn-0qcHb121NCs0m0-DQfPOrw9vjjkEcb9HyfoNtEAZyYHXd_b-xfPgNBTYhNERDK-lhwLJ6200nYJqZcqguEkKl5p-D0-Nh_qgNQSe1ipaqTJGfF5-1Bqas-N1tPxNR3ADdaGi2TCCiGSwky_DGTYlhW4wxXJs8CisXBiMJw77bXipGYtHgUppsfL2Dp1h7ibqtS57F-2oqpMQaY9tEplcZ86ajKg0TRyzhCSWGc4KnjOeWZfqTEqTmMRqQpWNHXcFUcRnQtZwk5AtND-ejO02wpLKjDtGTVJoqi2TiugitjxX1HAVqx10WqMjnko1DFHTxB5FAFMAmKIEcwdlNYLix08V3l__PfHY4_35CpDAbp93BLTFDJKOnL8mu_99-hFabPe6HdG5ur3ZQ0vQU7LG9tH87PnFHvg0Y6YOgxl9AKwKz44
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+fault+diagnosis+and+monitoring+of+induction+machine+bearing+fault&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Kavugho%2C+S.+Moloverya&rft.au=Ngandu+Kalala%2C+G.&rft.au=Rasolofondraibe%2C+L.&rft.au=Kilundu+Y%27Ebondo%2C+B.&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.volume=238&rft_id=info:doi/10.1016%2Fj.ymssp.2025.113245&rft.externalDocID=S088832702500946X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon