Model-based fault diagnosis and monitoring of induction machine bearing fault
This paper proposes a novel approach for the diagnosis of bearing faults in the presence of coexisting electrical anomalies. A simplified dq-model is developed to simulate localized spalling on the outer race, with torque disturbances explicitly incorporated to represent the mechanical defect. Unlik...
Saved in:
Published in | Mechanical systems and signal processing Vol. 238; no. 113245; p. 113245 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0888-3270 1096-1216 |
DOI | 10.1016/j.ymssp.2025.113245 |
Cover
Abstract | This paper proposes a novel approach for the diagnosis of bearing faults in the presence of coexisting electrical anomalies. A simplified dq-model is developed to simulate localized spalling on the outer race, with torque disturbances explicitly incorporated to represent the mechanical defect. Unlike finite element and magnetic models, which are often too computationally intensive for real-time industrial use, the proposed approach captures bearing fault transmission to the stator current with reduced computational cost. This trade-off between accuracy and efficiency allows the model to be extended to multifault scenarios, including broken rotor bars and inter-turn short circuits. The system equations are numerically integrated using the fourth-order Runge–Kutta method to ensure both stability and computational precision.
To address fault detection under multifault conditions, a diagnostic strategy based on stator current analysis is introduced. The method combines frequency-domain analysis, used to identify characteristic fault frequencies, with time-domain processing based on newly proposed features specifically designed for bearing fault identification. These features, not previously reported in the literature, provide a robust basis for the development of data-driven classification algorithms capable of distinguishing concurrent faults. Experimental validation is performed on a dynamic test bench equipped with an induction motor. The results demonstrate the feasibility of the approach for real-time condition monitoring, although further validation is required to fully assess its robustness and generalization across industrial operating conditions. |
---|---|
AbstractList | This paper proposes a novel approach for the diagnosis of bearing faults in the presence of coexisting electrical anomalies. A simplified dq-model is developed to simulate localized spalling on the outer race, with torque disturbances explicitly incorporated to represent the mechanical defect. Unlike finite element and magnetic models, which are often too computationally intensive for real-time industrial use, the proposed approach captures bearing fault transmission to the stator current with reduced computational cost. This trade-off between accuracy and efficiency allows the model to be extended to multifault scenarios, including broken rotor bars and inter-turn short circuits. The system equations are numerically integrated using the fourth-order Runge–Kutta method to ensure both stability and computational precision.
To address fault detection under multifault conditions, a diagnostic strategy based on stator current analysis is introduced. The method combines frequency-domain analysis, used to identify characteristic fault frequencies, with time-domain processing based on newly proposed features specifically designed for bearing fault identification. These features, not previously reported in the literature, provide a robust basis for the development of data-driven classification algorithms capable of distinguishing concurrent faults. Experimental validation is performed on a dynamic test bench equipped with an induction motor. The results demonstrate the feasibility of the approach for real-time condition monitoring, although further validation is required to fully assess its robustness and generalization across industrial operating conditions. This paper proposes a novel approach for the diagnosis of bearing faults in the presence of coexisting electrical anomalies. A simplified dq-model is developed to simulate localized spalling on the outer race, with torque disturbances explicitly incorporated to represent the mechanical defect. Unlike finite element and magnetic models, which are often too computationally intensive for real-time industrial use, the proposed approach captures bearing fault transmission to the stator current with reduced computational cost. This trade-off between accuracy and efficiency allows the model to be extended to multifault scenarios, including broken rotor bars and inter- turn short circuits. The system equations are numerically integrated using the fourth-order Runge–Kutta method to ensure both stability and computational precision. To address fault detection under multifault conditions, a diagnostic strategy based on stator current analysis is introduced. The method combines frequency-domain analysis, used to identify characteristic fault frequencies, with time-domain processing based on newly proposed features specifically designed for bearing fault identification. These features, not previously reported in the literature, provide a robust basis for the development of data-driven classification algorithms capable of distinguishing concurrent faults. Experimental validation is performed on a dynamic test bench equipped with an induction motor. The results demonstrate the feasibility of the approach for real-time condition monitoring, although further validation is required to fully assess its robustness and generalization across industrial operating conditions. |
ArticleNumber | 113245 |
Author | Chiementin, X. Kavugho, S. Moloverya Kilundu Y'Ebondo, B. Rasolofondraibe, L. Ngandu Kalala, G. |
Author_xml | – sequence: 1 givenname: S. Moloverya orcidid: 0009-0002-4825-7385 surname: Kavugho fullname: Kavugho, S. Moloverya organization: University of Reims Champagne Ardennes, CReSTIC, 51685 Reims Cedex 2, France – sequence: 2 givenname: G. orcidid: 0000-0002-7712-236X surname: Ngandu Kalala fullname: Ngandu Kalala, G. organization: University of Lubumbashi, Polytechnic Faculty, 7110502 Lubumbashi, Democratic Republic of the Congo – sequence: 3 givenname: L. surname: Rasolofondraibe fullname: Rasolofondraibe, L. organization: University of Reims Champagne Ardennes, CReSTIC, 51685 Reims Cedex 2, France – sequence: 4 givenname: B. orcidid: 0000-0003-1599-7491 surname: Kilundu Y'Ebondo fullname: Kilundu Y'Ebondo, B. organization: HE2B-ISIB, 28 rue des goujons, 1000 Bruxelles, Belgium – sequence: 5 givenname: X. surname: Chiementin fullname: Chiementin, X. organization: University of Reims Champagne Ardennes, ITheMM, 51685 Reims Cedex 2, France |
BackLink | https://hal.science/hal-05224179$$DView record in HAL |
BookMark | eNp9kD1vwjAQhq2KSgXaX9DFa4ek_kicZOiAUFsqgbqwW459BqPERnFA4t-XkKpjp5Pee5-T7pmhiQ8eEHqmJKWEitdDemljPKaMsDyllLMsv0NTSiqRUEbFBE1JWZYJZwV5QLMYD4SQKiNiijabYKBJahXBYKtOTY-NUzsfootYeYPb4F0fOud3OFjsvDnp3gWPW6X3zgOuQd2WN_YR3VvVRHj6nXO0_XjfLlfJ-vvza7lYJ5plhCam0MKCEbxmjNocOKeQmyovqyKvBFimhVKGGgqaZzUQW9mS11xkGZjKUD5HL-PZvWrksXOt6i4yKCdXi7UcMpIzltGiOg9dPnZ1F2LswP4BlMhBnjzImzw5yJOjvCv1NlJw_eLsoJNRO_AajOtA99IE9y__A6s0e1c |
Cites_doi | 10.1016/j.matcom.2013.04.005 10.1049/iet-epa.2018.5226 10.3390/s24216935 10.1109/28.475697 10.1109/TIE.2008.917108 10.3390/machines12120890 10.1016/j.ymssp.2014.08.022 10.1109/ACCESS.2021.3128669 10.1109/TIE.2014.2334652 10.3182/20120829-3-MX-2028.00255 10.1109/TIE.2010.2051398 10.1016/j.mechmachtheory.2019.01.028 10.1016/j.jsv.2016.12.031 10.3390/app10061996 10.1109/DEMPED.2019.8864895 10.1109/ACCESS.2022.3200058 10.1016/j.epsr.2015.12.017 10.1016/j.knosys.2024.112357 10.3390/s21144855 10.1016/j.ymssp.2005.02.001 10.1109/60.969469 10.1016/j.ymssp.2013.11.006 10.3390/machines10050379 10.3390/en15228372 10.1016/j.bspc.2020.102210 10.3390/en15228735 10.1109/OPTIM.2012.6231950 10.1016/j.triboint.2008.06.002 10.1109/TMAG.2017.2710181 10.3390/en15249412 10.3390/en15217855 10.1016/j.jsv.2020.115884 10.51485/ajss.v6i1.7 10.3390/s21216963 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.ymssp.2025.113245 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Computer Science |
EISSN | 1096-1216 |
ExternalDocumentID | oai_HAL_hal_05224179v1 10_1016_j_ymssp_2025_113245 S088832702500946X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- ~HD 29M AAQXK AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ADFGL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG5 LG9 LY7 M41 R2- SBC SET WUQ 1XC VOOES |
ID | FETCH-LOGICAL-c2401-d7c6fed63b221f5e331e5d95897596ef2c6aad1d1ec34be0f9f83b3644ed9d13 |
IEDL.DBID | AIKHN |
ISSN | 0888-3270 |
IngestDate | Wed Sep 17 06:29:28 EDT 2025 Thu Sep 11 00:24:27 EDT 2025 Sat Sep 13 17:00:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 113245 |
Keywords | Induction motor Modelling Stator current Bearing fault |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2401-d7c6fed63b221f5e331e5d95897596ef2c6aad1d1ec34be0f9f83b3644ed9d13 |
ORCID | 0009-0002-4825-7385 0000-0002-7712-236X 0000-0003-1599-7491 0000-0003-3033-2826 0000-0002-5685-1694 |
OpenAccessLink | https://hal.science/hal-05224179 |
ParticipantIDs | hal_primary_oai_HAL_hal_05224179v1 crossref_primary_10_1016_j_ymssp_2025_113245 elsevier_sciencedirect_doi_10_1016_j_ymssp_2025_113245 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 2025-09-00 2025-09 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | J.L. Gomez, I. Khelf, A. Bourdon, D. Rémond, H. André, Angular modeling of a rotating machine in non-stationary conditions: application to monitoring bearing defects of wind turbines with Instantaneous Angular Speed, 2019. Rémond, Antoni, Randall (b0100) 2014; 44 S. Kerroumi, Extraction des paramètres et classification dynamique dans le cadre de la détection et du suivi de défaut de roulements, Doctoral dissertation, Université de Reims Champagne-Ardenne, 2016. A. Garcia-Perez, R. de J. Romero-Troncoso, E. Cabal-Yepez, R. A. Osornio-Rios, The application of high-resolution spectral analysis for identifying multiple combined faults in induction motors, IEEE Trans. Ind. Electron. 58 (2011) 2002–2010. C. Pezzani, G. Bossio, C. De Angelo, Winding distribution effects on induction motor rotor fault diagnosis, in: 8th IFAC Symposium on Fault Detection (SAFEPROCESS), Mexico City, 2012. Fourati, Bourdon, Feki, Rémond, Chaari, Haddar (b0140) 2017; 395 Singh, Grant, DeFour, Sharma, Bahadoorsingh (b0010) 2016; 133 Sidki (b0080) 2016; 1 Dorrell, Makhoba (b0210) 2017 A. Sapena-Bano, M. Riera-Guasp, J. Martinez-Roman, M. Pineda-Sanchez, R. Puche-Panadero, J. Perez-Cruz, FEM-Analytical Hybrid Model for Real Time Simulation of IMs Under Static Eccentricity Fault, in: Proc. IEEE Int. Symp. Diagnostics for Electr. Mach., Power Electron. Drives (SDEMPED), Toulouse, France, 2019, pp. 108–114. Nazarzadeh, Naeini (b0110) 2011 Zhang, Zhao, Lin (b0215) 2021; 9 Rodriguez-Blanco, Golikov, Osorio-Sánchez, Samovarov, Ortiz-Torres, Sanchez-Lara, Vazquez-Avila (b0075) 2022; 15 Bessous, Sbaa, Pusca, Romary (b0160) 2021; 6 Gheorghe, Melcescu, Tudorache, Mihai (b0050) 2016; 61 Mohan, Raju (b0120) 2020 K. Hamouche, Surveillance multi dimensionnelle des machines tournantes par classification dynamique dans un but de maintenance conditionnelle, Thèse de doctorat en co-tutelle, Université de Reims Champagne-Ardenne (France) et Université Ferhat Abbas Sétif 1 (Algérie), 2022. R.-V. Sánchez, J. C. Macancela, L.-R. Ortega, D. Cabrera, F.P. G. Márquez, M. Cerrada, Evaluation of hand-crafted feature extraction for fault diagnosis in rotating machinery: a survey, 2020. Ghorbanian, Faiz (b0250) 2015; 54–55 A. Chahmi, Identification paramétrique de la machine asynchrone dédiée au diagnostic, Doctoral dissertation, Université des sciences et technologie d’Oran, 2017. Kumar, Waisale, Tamata, Tortella, Kia, Andriollo (b0165) 2024; 12 Ruiz-Sarrio, Antonino-Daviu, Martis (b0180) 2024; 24 Mohan (b0115) 2014 A. Medoued, Surveillance et diagnostic des défauts des machines électriques : applications aux moteurs asynchrones, Doctoral dissertation, Université du 20 Août 1955–Skikda (2012). M.J. Jafarian, J. Nazarzadeh, Spectral analysis for diagnosis of bearing defects in induction machine drives, 2019. M. Ben Slimene, M.A. Khlifi, Investigation on the effects of magnetic saturation in six-phase induction machines with and without cross saturation of the main flux path, Energies 15 (2022) 9412. Zarei, Poshtan (b0090) 2009; 42 C. Terron-Santiago, J. Martinez-Roman, R. Puche-Panadero, A. Sapena-Bano, Low-computational-cost hybrid FEM-analytical induction machine model for the diagnosis of rotor eccentricity, based on sparse identification techniques and trigonometric interpolation, 2021. M. Mengoni, S.C. Agarlita, L. Zarri, D. Casadei, On-line estimation of stator resistance and mutual inductance of multiphase induction machines, 2012. Bouzid, Champenois (b0130) 2013; 90 M. Ebrahimi, A. Basiri, RACEkNN: A hybrid approach for improving the effectiveness of the k-nearest neighbor algorithm, Knowl.-Based Syst. 301 (2024) 112357. Fajardo, Gomez, Prieto (b0245) 2021; 63 S. Sassi, B. Badri, M. Thomas, “TALAF” and “THIKAT” as innovative time domain indicators for tracking ball bearings, Eng. 18 (2006). Kuruppu, Kulatunga (b0095) 2014; 62 Jiao, Sun, Wang, Wan (b0235) 2025; 25 Han, Ding, Xu, Chu, Wang (b0145) 2022; 166 C. Terron-Santiago, J. Martinez-Roman, R. Puche-Panadero, A. Sapena-Bano, A review of techniques used for induction machine fault modelling, Sensors 21 (2021). Goh, Kim (b0170) 2020; 10 Garcia-Calva, Morinigo-Sotelo, Fernandez-Cavero, Romero-Troncoso (b0005) 2022; 15 B.-G. Gu, Development of broken rotor bar fault diagnosis method with sum of weighted Fourier series coefficients square, Energies 10 (2022) 8735. Schoen, Habetler, Kamran, Bartheld (b0150) 1995; 31 Toliyat, Haji (b0205) 2001; 16 Atta, Ibrahim, Gilany (b0070) 2022; 10 Gu, Yesilyurt, Li, Harris, Ball (b0025) 2005; 20 N. Feki, Modélisation électromécanique de transmissions par engrenages: applications à la détection et au suivi des avaries, Doctoral dissertation, Institut national des sciences appliquées de Lyon, 2012. Blodt, Granjon, Raison, Rostaing (b0155) 2008; 55 Li, Bourdon, Rémond, Kœchlin, Prieto (b0105) 2021; 494 Rodriguez-Blanco, Golikov, Vazquez-Avila, Samovarov, Sanchez-Lara, Osorio-Sánchez, Pérez-Ramírez (b0020) 2022; 10 Nazarzadeh (10.1016/j.ymssp.2025.113245_b0110) 2011 Ghorbanian (10.1016/j.ymssp.2025.113245_b0250) 2015; 54–55 10.1016/j.ymssp.2025.113245_b0125 Singh (10.1016/j.ymssp.2025.113245_b0010) 2016; 133 10.1016/j.ymssp.2025.113245_b0225 10.1016/j.ymssp.2025.113245_b0200 Mohan (10.1016/j.ymssp.2025.113245_b0115) 2014 Bessous (10.1016/j.ymssp.2025.113245_b0160) 2021; 6 10.1016/j.ymssp.2025.113245_b0190 Zarei (10.1016/j.ymssp.2025.113245_b0090) 2009; 42 Han (10.1016/j.ymssp.2025.113245_b0145) 2022; 166 Atta (10.1016/j.ymssp.2025.113245_b0070) 2022; 10 Fourati (10.1016/j.ymssp.2025.113245_b0140) 2017; 395 Toliyat (10.1016/j.ymssp.2025.113245_b0205) 2001; 16 Garcia-Calva (10.1016/j.ymssp.2025.113245_b0005) 2022; 15 10.1016/j.ymssp.2025.113245_b0055 Mohan (10.1016/j.ymssp.2025.113245_b0120) 2020 Blodt (10.1016/j.ymssp.2025.113245_b0155) 2008; 55 Dorrell (10.1016/j.ymssp.2025.113245_b0210) 2017 10.1016/j.ymssp.2025.113245_b0175 Jiao (10.1016/j.ymssp.2025.113245_b0235) 2025; 25 10.1016/j.ymssp.2025.113245_b0030 Rodriguez-Blanco (10.1016/j.ymssp.2025.113245_b0020) 2022; 10 Ruiz-Sarrio (10.1016/j.ymssp.2025.113245_b0180) 2024; 24 Schoen (10.1016/j.ymssp.2025.113245_b0150) 1995; 31 Kumar (10.1016/j.ymssp.2025.113245_b0165) 2024; 12 10.1016/j.ymssp.2025.113245_b0015 10.1016/j.ymssp.2025.113245_b0035 10.1016/j.ymssp.2025.113245_b0255 10.1016/j.ymssp.2025.113245_b0135 Li (10.1016/j.ymssp.2025.113245_b0105) 2021; 494 Zhang (10.1016/j.ymssp.2025.113245_b0215) 2021; 9 Kuruppu (10.1016/j.ymssp.2025.113245_b0095) 2014; 62 Gheorghe (10.1016/j.ymssp.2025.113245_b0050) 2016; 61 Bouzid (10.1016/j.ymssp.2025.113245_b0130) 2013; 90 Fajardo (10.1016/j.ymssp.2025.113245_b0245) 2021; 63 Goh (10.1016/j.ymssp.2025.113245_b0170) 2020; 10 Rodriguez-Blanco (10.1016/j.ymssp.2025.113245_b0075) 2022; 15 10.1016/j.ymssp.2025.113245_b0220 10.1016/j.ymssp.2025.113245_b0045 Rémond (10.1016/j.ymssp.2025.113245_b0100) 2014; 44 10.1016/j.ymssp.2025.113245_b0185 10.1016/j.ymssp.2025.113245_b0240 10.1016/j.ymssp.2025.113245_b0065 Sidki (10.1016/j.ymssp.2025.113245_b0080) 2016; 1 10.1016/j.ymssp.2025.113245_b0040 10.1016/j.ymssp.2025.113245_b0060 Gu (10.1016/j.ymssp.2025.113245_b0025) 2005; 20 |
References_xml | – volume: 31 start-page: 1274 year: 1995 end-page: 1279 ident: b0150 article-title: Motor bearing damage detection using stator current monitoring publication-title: IEEE Trans. Ind. Appl. – volume: 12 start-page: 890 year: 2024 ident: b0165 article-title: Advanced fault detection and severity analysis of broken rotor bars in induction motors: comparative classification and feature study using dimensionality reduction technique publication-title: Machines – reference: K. Hamouche, Surveillance multi dimensionnelle des machines tournantes par classification dynamique dans un but de maintenance conditionnelle, Thèse de doctorat en co-tutelle, Université de Reims Champagne-Ardenne (France) et Université Ferhat Abbas Sétif 1 (Algérie), 2022. – volume: 61 start-page: 18 year: 2016 end-page: 21 ident: b0050 article-title: Numerical modeling approaches for the analysis of squirrel–cage induction motor publication-title: Revue Roumaine Des Sciences Techniques, Série Électrotechnique et Énergétique – volume: 10 year: 2022 ident: b0020 article-title: Comprehensive and simplified fault diagnosis for three–phase induction motor using parity equation approach in stator current reference frame publication-title: Machines – volume: 63 year: 2021 ident: b0245 article-title: EMG hand gesture classification using handcrafted and deep features publication-title: Biomed. Signal Process. Control – volume: 9 start-page: 155598 year: 2021 end-page: 155608 ident: b0215 article-title: Machine learning-based bearing fault diagnosis using the case Western Reserve university data: a review publication-title: IEEE Access – volume: 55 start-page: 1813 year: 2008 end-page: 1822 ident: b0155 article-title: Models for bearing damage detection in induction motors using stator current monitoring publication-title: IEEE Trans. Ind. Electron. – year: 2014 ident: b0115 article-title: Advanced Electric Drives: Analysis, Control, and Modeling using MATLAB/Simulink – volume: 166 start-page: 554 year: 2022 end-page: 575 ident: b0145 article-title: Stator current model for detecting rolling bearing faults in induction motors using magnetic equivalent circuits publication-title: Mech. Syst. Sig. Process. – reference: N. Feki, Modélisation électromécanique de transmissions par engrenages: applications à la détection et au suivi des avaries, Doctoral dissertation, Institut national des sciences appliquées de Lyon, 2012. – volume: 10 start-page: 1996 year: 2020 ident: b0170 article-title: Inter-turn short circuit diagnosis using new D-Q synchronous min–max coordinate system and linear discriminant analysis publication-title: Appl. Sci. – volume: 25 start-page: 2328 year: 2025 ident: b0235 article-title: Comprehensive exploitation of time- and frequency-domain information for bearing fault diagnosis on imbalanced datasets via adaptive wavelet-like transform publication-title: GAN Ensemble Learn. Sens. – volume: 6 start-page: 41 year: 2021 end-page: 48 ident: b0160 article-title: Rotor fault detection in squirrel cage induction motors using MCSA and DWT techniques publication-title: Algerian J. Signals Syst. – reference: S. Sassi, B. Badri, M. Thomas, “TALAF” and “THIKAT” as innovative time domain indicators for tracking ball bearings, Eng. 18 (2006). – reference: C. Terron-Santiago, J. Martinez-Roman, R. Puche-Panadero, A. Sapena-Bano, Low-computational-cost hybrid FEM-analytical induction machine model for the diagnosis of rotor eccentricity, based on sparse identification techniques and trigonometric interpolation, 2021. – reference: S. Kerroumi, Extraction des paramètres et classification dynamique dans le cadre de la détection et du suivi de défaut de roulements, Doctoral dissertation, Université de Reims Champagne-Ardenne, 2016. – volume: 62 start-page: 113 year: 2014 end-page: 121 ident: b0095 article-title: DQ current signature-based faulted phase localization for SM-PMAC machine drives publication-title: IEEE Trans. Ind. Electron. – year: 2011 ident: b0110 article-title: Magnetic reluctance method for dynamical modeling of squirrel cage induction machines publication-title: Research Gate – reference: B.-G. Gu, Development of broken rotor bar fault diagnosis method with sum of weighted Fourier series coefficients square, Energies 10 (2022) 8735. – reference: M.J. Jafarian, J. Nazarzadeh, Spectral analysis for diagnosis of bearing defects in induction machine drives, 2019. – volume: 16 start-page: 312 year: 2001 end-page: 317 ident: b0205 article-title: Pattern recognition – a technique for induction machines rotor broken bar detection publication-title: IEEE Trans. Energy Convers. – year: 2020 ident: b0120 article-title: Analysis and Control of Electric Drives: Simulations and Laboratory Implementation – reference: A. Sapena-Bano, M. Riera-Guasp, J. Martinez-Roman, M. Pineda-Sanchez, R. Puche-Panadero, J. Perez-Cruz, FEM-Analytical Hybrid Model for Real Time Simulation of IMs Under Static Eccentricity Fault, in: Proc. IEEE Int. Symp. Diagnostics for Electr. Mach., Power Electron. Drives (SDEMPED), Toulouse, France, 2019, pp. 108–114. – volume: 20 start-page: 1444 year: 2005 end-page: 1460 ident: b0025 article-title: An investigation of the effects of measurement noise in the use of instantaneous angular speed for machine diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 44 start-page: 1 year: 2014 end-page: 4 ident: b0100 article-title: Editorial for the special issue on instantaneous angular speed (IAS) processing and angular applications publication-title: Mech. Syst. Sig. Process. – volume: 133 start-page: 191 year: 2016 end-page: 197 ident: b0010 article-title: A review of induction motor fault modeling publication-title: Electr. Pow. Syst. Res. – volume: 24 start-page: 6935 year: 2024 ident: b0180 article-title: Localized bearing fault analysis for different induction machine start-up modes via vibration time–frequency envelope spectrum publication-title: Sensors – volume: 42 start-page: 213 year: 2009 end-page: 219 ident: b0090 article-title: An advanced Park’s vectors approach for bearing fault detection publication-title: Tribol. Int. – volume: 15 start-page: 8372 year: 2022 ident: b0075 article-title: Fault diagnosis of induction motor using D-Q simplified model and parity equations publication-title: Energies – volume: 494 year: 2021 ident: b0105 article-title: Angular-based modeling of unbalanced magnetic pull for analyzing the dynamical behavior of a 3-phase induction motor publication-title: J. Sound Vib. – volume: 90 start-page: 98 year: 2013 end-page: 115 ident: b0130 article-title: An efficient, simplified multiple-coupled circuit model of the induction motor aimed to simulate different types of stator faults publication-title: Math. Comput. Simul – reference: C. Pezzani, G. Bossio, C. De Angelo, Winding distribution effects on induction motor rotor fault diagnosis, in: 8th IFAC Symposium on Fault Detection (SAFEPROCESS), Mexico City, 2012. – reference: M. Mengoni, S.C. Agarlita, L. Zarri, D. Casadei, On-line estimation of stator resistance and mutual inductance of multiphase induction machines, 2012. – reference: M. Ebrahimi, A. Basiri, RACEkNN: A hybrid approach for improving the effectiveness of the k-nearest neighbor algorithm, Knowl.-Based Syst. 301 (2024) 112357. – volume: 15 start-page: 7855 year: 2022 ident: b0005 article-title: Early detection of faults in induction motors—a review publication-title: Energies – reference: A. Garcia-Perez, R. de J. Romero-Troncoso, E. Cabal-Yepez, R. A. Osornio-Rios, The application of high-resolution spectral analysis for identifying multiple combined faults in induction motors, IEEE Trans. Ind. Electron. 58 (2011) 2002–2010. – volume: 10 start-page: 88504 year: 2022 end-page: 88526 ident: b0070 article-title: Broken bar fault detection and diagnosis techniques for induction motors and drives: state of the art publication-title: IEEE Access – volume: 1 start-page: 1 year: 2016 end-page: 5 ident: b0080 article-title: Diagnostic des défauts de la machine asynchrone par analyse spectrale publication-title: Rev. Interdisciplinaire – reference: A. Medoued, Surveillance et diagnostic des défauts des machines électriques : applications aux moteurs asynchrones, Doctoral dissertation, Université du 20 Août 1955–Skikda (2012). – reference: M. Ben Slimene, M.A. Khlifi, Investigation on the effects of magnetic saturation in six-phase induction machines with and without cross saturation of the main flux path, Energies 15 (2022) 9412. – reference: C. Terron-Santiago, J. Martinez-Roman, R. Puche-Panadero, A. Sapena-Bano, A review of techniques used for induction machine fault modelling, Sensors 21 (2021). – reference: R.-V. Sánchez, J. C. Macancela, L.-R. Ortega, D. Cabrera, F.P. G. Márquez, M. Cerrada, Evaluation of hand-crafted feature extraction for fault diagnosis in rotating machinery: a survey, 2020. – volume: 395 start-page: 371 year: 2017 end-page: 392 ident: b0140 article-title: Angular-based modeling of induction motors for monitoring publication-title: J. Sound Vib. – start-page: 1 year: 2017 ident: b0210 article-title: Detection of inter-turn stator faults in induction motors using short-term averaging of forward and backward rotating stator current phasors for fast prognostic publication-title: IEEE Trans. Magn. – volume: 54–55 start-page: 427 year: 2015 end-page: 456 ident: b0250 article-title: A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes publication-title: Mech. Syst. Sig. Process. – reference: J.L. Gomez, I. Khelf, A. Bourdon, D. Rémond, H. André, Angular modeling of a rotating machine in non-stationary conditions: application to monitoring bearing defects of wind turbines with Instantaneous Angular Speed, 2019. – reference: A. Chahmi, Identification paramétrique de la machine asynchrone dédiée au diagnostic, Doctoral dissertation, Université des sciences et technologie d’Oran, 2017. – volume: 90 start-page: 98 year: 2013 ident: 10.1016/j.ymssp.2025.113245_b0130 article-title: An efficient, simplified multiple-coupled circuit model of the induction motor aimed to simulate different types of stator faults publication-title: Math. Comput. Simul doi: 10.1016/j.matcom.2013.04.005 – year: 2014 ident: 10.1016/j.ymssp.2025.113245_b0115 – ident: 10.1016/j.ymssp.2025.113245_b0030 – ident: 10.1016/j.ymssp.2025.113245_b0200 doi: 10.1049/iet-epa.2018.5226 – ident: 10.1016/j.ymssp.2025.113245_b0225 – ident: 10.1016/j.ymssp.2025.113245_b0240 – volume: 24 start-page: 6935 year: 2024 ident: 10.1016/j.ymssp.2025.113245_b0180 article-title: Localized bearing fault analysis for different induction machine start-up modes via vibration time–frequency envelope spectrum publication-title: Sensors doi: 10.3390/s24216935 – volume: 31 start-page: 1274 issue: 6 year: 1995 ident: 10.1016/j.ymssp.2025.113245_b0150 article-title: Motor bearing damage detection using stator current monitoring publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.475697 – volume: 55 start-page: 1813 issue: 4 year: 2008 ident: 10.1016/j.ymssp.2025.113245_b0155 article-title: Models for bearing damage detection in induction motors using stator current monitoring publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2008.917108 – volume: 12 start-page: 890 year: 2024 ident: 10.1016/j.ymssp.2025.113245_b0165 article-title: Advanced fault detection and severity analysis of broken rotor bars in induction motors: comparative classification and feature study using dimensionality reduction techniques publication-title: Machines doi: 10.3390/machines12120890 – volume: 54–55 start-page: 427 year: 2015 ident: 10.1016/j.ymssp.2025.113245_b0250 article-title: A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2014.08.022 – volume: 61 start-page: 18 year: 2016 ident: 10.1016/j.ymssp.2025.113245_b0050 article-title: Numerical modeling approaches for the analysis of squirrel–cage induction motor publication-title: Revue Roumaine Des Sciences Techniques, Série Électrotechnique et Énergétique – volume: 9 start-page: 155598 year: 2021 ident: 10.1016/j.ymssp.2025.113245_b0215 article-title: Machine learning-based bearing fault diagnosis using the case Western Reserve university data: a review publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3128669 – ident: 10.1016/j.ymssp.2025.113245_b0175 – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.ymssp.2025.113245_b0080 article-title: Diagnostic des défauts de la machine asynchrone par analyse spectrale publication-title: Rev. Interdisciplinaire – volume: 62 start-page: 113 year: 2014 ident: 10.1016/j.ymssp.2025.113245_b0095 article-title: DQ current signature-based faulted phase localization for SM-PMAC machine drives publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2334652 – ident: 10.1016/j.ymssp.2025.113245_b0045 doi: 10.3182/20120829-3-MX-2028.00255 – ident: 10.1016/j.ymssp.2025.113245_b0035 doi: 10.1109/TIE.2010.2051398 – volume: 166 start-page: 554 year: 2022 ident: 10.1016/j.ymssp.2025.113245_b0145 article-title: Stator current model for detecting rolling bearing faults in induction motors using magnetic equivalent circuits publication-title: Mech. Syst. Sig. Process. – ident: 10.1016/j.ymssp.2025.113245_b0185 doi: 10.1016/j.mechmachtheory.2019.01.028 – volume: 395 start-page: 371 year: 2017 ident: 10.1016/j.ymssp.2025.113245_b0140 article-title: Angular-based modeling of induction motors for monitoring publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.12.031 – volume: 10 start-page: 1996 year: 2020 ident: 10.1016/j.ymssp.2025.113245_b0170 article-title: Inter-turn short circuit diagnosis using new D-Q synchronous min–max coordinate system and linear discriminant analysis publication-title: Appl. Sci. doi: 10.3390/app10061996 – ident: 10.1016/j.ymssp.2025.113245_b0055 doi: 10.1109/DEMPED.2019.8864895 – volume: 10 start-page: 88504 year: 2022 ident: 10.1016/j.ymssp.2025.113245_b0070 article-title: Broken bar fault detection and diagnosis techniques for induction motors and drives: state of the art publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3200058 – volume: 133 start-page: 191 year: 2016 ident: 10.1016/j.ymssp.2025.113245_b0010 article-title: A review of induction motor fault modeling publication-title: Electr. Pow. Syst. Res. doi: 10.1016/j.epsr.2015.12.017 – ident: 10.1016/j.ymssp.2025.113245_b0255 doi: 10.1016/j.knosys.2024.112357 – ident: 10.1016/j.ymssp.2025.113245_b0060 doi: 10.3390/s21144855 – volume: 20 start-page: 1444 year: 2005 ident: 10.1016/j.ymssp.2025.113245_b0025 article-title: An investigation of the effects of measurement noise in the use of instantaneous angular speed for machine diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2005.02.001 – volume: 16 start-page: 312 issue: 4 year: 2001 ident: 10.1016/j.ymssp.2025.113245_b0205 article-title: Pattern recognition – a technique for induction machines rotor broken bar detection publication-title: IEEE Trans. Energy Convers. doi: 10.1109/60.969469 – volume: 44 start-page: 1 year: 2014 ident: 10.1016/j.ymssp.2025.113245_b0100 article-title: Editorial for the special issue on instantaneous angular speed (IAS) processing and angular applications publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2013.11.006 – volume: 10 year: 2022 ident: 10.1016/j.ymssp.2025.113245_b0020 article-title: Comprehensive and simplified fault diagnosis for three–phase induction motor using parity equation approach in stator current reference frame publication-title: Machines doi: 10.3390/machines10050379 – ident: 10.1016/j.ymssp.2025.113245_b0220 – volume: 15 start-page: 8372 year: 2022 ident: 10.1016/j.ymssp.2025.113245_b0075 article-title: Fault diagnosis of induction motor using D-Q simplified model and parity equations publication-title: Energies doi: 10.3390/en15228372 – volume: 63 year: 2021 ident: 10.1016/j.ymssp.2025.113245_b0245 article-title: EMG hand gesture classification using handcrafted and deep features publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102210 – ident: 10.1016/j.ymssp.2025.113245_b0015 – ident: 10.1016/j.ymssp.2025.113245_b0040 – ident: 10.1016/j.ymssp.2025.113245_b0065 doi: 10.3390/en15228735 – year: 2011 ident: 10.1016/j.ymssp.2025.113245_b0110 article-title: Magnetic reluctance method for dynamical modeling of squirrel cage induction machines publication-title: Research Gate – ident: 10.1016/j.ymssp.2025.113245_b0125 doi: 10.1109/OPTIM.2012.6231950 – volume: 42 start-page: 213 year: 2009 ident: 10.1016/j.ymssp.2025.113245_b0090 article-title: An advanced Park’s vectors approach for bearing fault detection publication-title: Tribol. Int. doi: 10.1016/j.triboint.2008.06.002 – start-page: 1 year: 2017 ident: 10.1016/j.ymssp.2025.113245_b0210 article-title: Detection of inter-turn stator faults in induction motors using short-term averaging of forward and backward rotating stator current phasors for fast prognostics publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2017.2710181 – year: 2020 ident: 10.1016/j.ymssp.2025.113245_b0120 – ident: 10.1016/j.ymssp.2025.113245_b0135 doi: 10.3390/en15249412 – volume: 15 start-page: 7855 year: 2022 ident: 10.1016/j.ymssp.2025.113245_b0005 article-title: Early detection of faults in induction motors—a review publication-title: Energies doi: 10.3390/en15217855 – volume: 494 year: 2021 ident: 10.1016/j.ymssp.2025.113245_b0105 article-title: Angular-based modeling of unbalanced magnetic pull for analyzing the dynamical behavior of a 3-phase induction motor publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115884 – volume: 6 start-page: 41 issue: 1 year: 2021 ident: 10.1016/j.ymssp.2025.113245_b0160 article-title: Rotor fault detection in squirrel cage induction motors using MCSA and DWT techniques publication-title: Algerian J. Signals Syst. doi: 10.51485/ajss.v6i1.7 – volume: 25 start-page: 2328 year: 2025 ident: 10.1016/j.ymssp.2025.113245_b0235 article-title: Comprehensive exploitation of time- and frequency-domain information for bearing fault diagnosis on imbalanced datasets via adaptive wavelet-like transform publication-title: GAN Ensemble Learn. Sens. – ident: 10.1016/j.ymssp.2025.113245_b0190 doi: 10.3390/s21216963 |
SSID | ssj0009406 |
Score | 2.4623923 |
Snippet | This paper proposes a novel approach for the diagnosis of bearing faults in the presence of coexisting electrical anomalies. A simplified dq-model is developed... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 113245 |
SubjectTerms | Bearing fault Computer Science Engineering Sciences Induction motor Mechanical engineering Mechanics Modelling Physics Signal and Image Processing Stator current |
Title | Model-based fault diagnosis and monitoring of induction machine bearing fault |
URI | https://dx.doi.org/10.1016/j.ymssp.2025.113245 https://hal.science/hal-05224179 |
Volume | 238 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7RcoEDWl7isYssxJHQOI6d-FhVi8rzAki9RX6KIloQbVfaC799PU4Ci4Q4cIzjSaIv9szY-vwNwJGSXhcyVYnDWql5iBnBD3KTuMwYbmTpTdSZvboWw7v8fMRHSzBoz8IgrbLx_bVPj966aek1aPaex-PeTZgfYTgWGMTDGkWMOrCcMSl4F5b7ZxfD63ft3TyW2MT-CRq04kOR5vV3MpuhbmXGsbxJhseaPg9Qnft2qzWGntMfsNbkjKRff9Y6LLnpBqz-pyS4CVdY0-wxwZhkiVeLxzmxNYluPCNqaskkzl3sTJ48CQvxWjWWTCKZ0hEdRjzejLZbcHv6-3YwTJpKCYkJ6NLEFkZ4ZwXTWUY9d4xRx63kpSy4FM5nRihlqaXOsFy71EtfMs1CLuSstJRtQ3f6NHU7QFSuhPQ8t7Q0uXFcaWbK1MlC51bqVO_CcYtO9VzrYVQtUeyhimBWCGZVg7kLokWw-vBbq-CxvzY8DHi_vQJFsIf9ywrbUo5pRyH_0L3vPn0fVvCq5or9hO78ZeF-heRirg-gc_JKD5oh9A_xNM7D |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUoHIADYhU7FuJIaBLbSXxEiKpAy4Ui9WZ5FUVdEC1IXPh2PE7CIiEOXL0k0ct4Zmw9v0HoRHKnch7LyEKtVOpjhveDTEc21ZppXjgddGa7t1n7nl73WX8OXdR3YYBWWfn-0qcHb121NCs0m0-DQfPOrw9vjjkEcb9HyfoNtEAZyYHXd_b-xfPgNBTYhNERDK-lhwLJ6200nYJqZcqguEkKl5p-D0-Nh_qgNQSe1ipaqTJGfF5-1Bqas-N1tPxNR3ADdaGi2TCCiGSwky_DGTYlhW4wxXJs8CisXBiMJw77bXipGYtHgUppsfL2Dp1h7ibqtS57F-2oqpMQaY9tEplcZ86ajKg0TRyzhCSWGc4KnjOeWZfqTEqTmMRqQpWNHXcFUcRnQtZwk5AtND-ejO02wpLKjDtGTVJoqi2TiugitjxX1HAVqx10WqMjnko1DFHTxB5FAFMAmKIEcwdlNYLix08V3l__PfHY4_35CpDAbp93BLTFDJKOnL8mu_99-hFabPe6HdG5ur3ZQ0vQU7LG9tH87PnFHvg0Y6YOgxl9AKwKz44 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+fault+diagnosis+and+monitoring+of+induction+machine+bearing+fault&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Kavugho%2C+S.+Moloverya&rft.au=Ngandu+Kalala%2C+G.&rft.au=Rasolofondraibe%2C+L.&rft.au=Kilundu+Y%27Ebondo%2C+B.&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.volume=238&rft_id=info:doi/10.1016%2Fj.ymssp.2025.113245&rft.externalDocID=S088832702500946X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |