From Tumor Targeting to Speech Monitoring: Accurate Respiratory Monitoring Using Medical Continuous-Wave Radar Sensors
Since the debut of medical radar sensors nearly four decades ago, there have been many technical advancements that helped this technology mature. Progresses have been seen from system architectures to signal processing algorithms. Many research efforts have been dedicated to utilize the radar sensor...
Saved in:
Published in | IEEE microwave magazine Vol. 15; no. 4; pp. 66 - 76 |
---|---|
Main Authors | , |
Format | Magazine Article |
Language | English |
Published |
New York
IEEE
01.06.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1527-3342 1557-9581 |
DOI | 10.1109/MMM.2014.2308763 |
Cover
Loading…
Abstract | Since the debut of medical radar sensors nearly four decades ago, there have been many technical advancements that helped this technology mature. Progresses have been seen from system architectures to signal processing algorithms. Many research efforts have been dedicated to utilize the radar sensors for different biomedical applications such as noncontact vital sign detection, human fall detection, through-wall detection, and medical imaging. A special application is radar respiration measurement in motion-adaptive cancer radiotherapy. The radar measures the respiration pattern that is used to infer the tumor location in real time. To realize accurate respiration pattern measurement, the signal distortion problem in a conventional CW radar sensor was extensively analyzed, and the solution led to a dc-coupled radar that is distortion-free. Successful preliminary clinical tests have been carried out using the radar sensor in a radiotherapy environment, demonstrating its feasibility. The same dc-coupled physiological radar sensor solution also shows the potential of monitoring the physical states and speech of the subject person. |
---|---|
AbstractList | Since the debut of medical radar sensors nearly four decades ago, there have been many technical advancements that helped this technology mature. Progresses have been seen from system architectures to signal processing algorithms. Many research efforts have been dedicated to utilize the radar sensors for different biomedical applications such as noncontact vital sign detection, human fall detection, through-wall detection, and medical imaging. A special application is radar respiration measurement in motion-adaptive cancer radiotherapy. The radar measures the respiration pattern that is used to infer the tumor location in real time. To realize accurate respiration pattern measurement, the signal distortion problem in a conventional CW radar sensor was extensively analyzed, and the solution led to a dc-coupled radar that is distortion-free. Successful preliminary clinical tests have been carried out using the radar sensor in a radiotherapy environment, demonstrating its feasibility. The same dc-coupled physiological radar sensor solution also shows the potential of monitoring the physical states and speech of the subject person. Using microwaves to detect small physiological movements such as respiration and heartbeat dates back to the 1970s [1]. It is realized by detecting the phase information in the received radar signals, which is caused by Doppler shift due to the moving chest wall. The principle is similar to the radar guns used by police officers to detect over-speed vehicles. Based on the form of the transmit signal, there are basically two types of radars: continuous-wave (CW) radar and ultrawideband (UWB) radar. The CW radar falls into three subcategories: single-tone, stepped frequency (SFCW), and frequency-modulated CW (FMCW). Each category of radars has its specific advantages. The singletone CW radar has a simple system architecture that allows high-level chip integration [2]?[4]. It also has high accuracy (submillimeter) in relative displacement measurement [5]?[6]. Unfortunately, because no instant bandwidth is transmitted, single-tone CW radars do not carry range (i.e., absolute distance between the radar and the subject) information. FMCW radars are able to detect range information [7]?[8] but normally require a very large bandwidth and more sophisticated signal processing to realize high-accuracy relative displacement measurement. Researchers also have successfully integrated the FMCW radar on silicon chips [9]?[11]. SFCW radars carry some advantages of both singletone CW radars and FMCW radars and thus have been successfully used in applications such as fall detection [23]. In addition, a hybrid radar system combining the advantages of the single-tone and FMCW radars was reported in [12]. UWB biomedical radars have veryhigh-range resolution due to its wideband nature [13]. The state of the art shows that UWB pulse radars have been efficiently implemented on silicon [74] and have been successfully applied to the accurate detection of respiratory rate and apnea in adults and infants [75]. |
Author | Changzhi Li Changzhan Gu |
Author_xml | – sequence: 1 givenname: Changzhan surname: Gu fullname: Gu, Changzhan – sequence: 2 givenname: Changzhi surname: Li fullname: Li, Changzhi |
BookMark | eNp9kUlLBDEQhYMouN4FLwEvXnrM1ku8yeAGNoKOeAyZpNRIT2dMugX_vTWMiHiQQFIU36s86u2SzT72QMghZxPOmT5t23YiGFcTIVlTV3KD7PCyrAtdNnxzVYu6kFKJbbKb8xtDspR8h3xcprigs3ERE53Z9AJD6F_oEOnDEsC90jb2YYgJm2f03Lkx2QHoPeRlwCqmz18AfcyruwUfnO3oNPY4a4xjLp7sB4qst4k-QJ9jyvtk69l2GQ6-3z3yeHkxm14Xt3dXN9Pz28IJqYdiPteghXd15WvRyBqE9UwAnlpK5rDXVEo33CuwilnNKt9A6eeVbbhQ4OUeOVnPXab4PkIezCJkB11ne0BnhldCS1yNYoge_0Hf4ph6dGd4qUqtpOQlUmxNuRRzTvBsliksbPo0nJlVEAaDMKsgzHcQKKn-SFwY7BBwP8mG7j_h0VoYAODnn6pBGP1-AcNbl9A |
CODEN | IEMMFF |
CitedBy_id | crossref_primary_10_1109_RBME_2020_3036330 crossref_primary_10_1109_MMM_2019_2915490 crossref_primary_10_1109_TMTT_2017_2650911 crossref_primary_10_1049_rsn2_12399 crossref_primary_10_1109_MMM_2019_2915491 crossref_primary_10_3390_s16081169 crossref_primary_10_1049_htl_2015_0003 crossref_primary_10_1049_iet_spr_2016_0085 crossref_primary_10_1109_JSEN_2024_3448539 crossref_primary_10_1016_j_eswa_2021_114781 crossref_primary_10_1109_JERM_2017_2735241 crossref_primary_10_1109_TAP_2019_2927777 crossref_primary_10_3390_s24248118 crossref_primary_10_7467_KSAE_2020_28_12_835 crossref_primary_10_3390_s16122025 crossref_primary_10_1007_s11042_024_19830_4 crossref_primary_10_1088_0957_0233_27_6_065702 crossref_primary_10_1109_MMM_2018_2875612 |
Cites_doi | 10.1109/TBME.1986.325760 10.1109/TMTT.2006.873625 10.1109/BIOWIRELESS.2011.5724348 10.1109/ISSCC.2002.993075 10.1109/TMTT.2004.837153 10.1109/TMTT.2007.895653 10.1109/MMM.2008.930675 10.1109/TMTT.2010.2087349 10.1109/TMTT.2006.884652 10.1109/IEMBS.2009.5332667 10.1109/MMM.2012.2216710 10.1109/MWSYM.2010.5517103 10.1016/j.semradonc.2006.04.007 10.1109/IEMBS.2011.6090054 10.1109/MWSYM.2008.4633266 10.1109/MWSYM.2013.6697623 10.1109/TBCAS.2011.2176937 10.1109/WAMICON.2011.5872871 10.1109/BioWireleSS.2013.6613657 10.1109/82.592569 10.1109/BioWireless.2012.6172731 10.1109/RFIC.2012.6242318 10.1109/IEMBS.2009.5333206 10.1109/MWSYM.2013.6697732 10.1109/TITB.2009.2031239 10.1111/j.1748-1716.2006.01529.x 10.1049/el.2012.2451 10.1109/PROC.1975.9992 10.1109/LMWC.2013.2250269 10.1109/TMTT.2008.2007139 10.1109/TAP.2012.2201105 10.1113/expphysiol.2008.042424 10.1109/TITB.2009.2037614 10.1109/TMTT.2013.2247619 10.1109/TMTT.2004.823552 10.1109/TGRS.2009.2012849 10.1109/WISNET.2011.5725027 10.1016/0167-8760(91)90006-J 10.1109/TGRS.2011.2170694 10.1109/LMWC.2008.925112 10.1109/TMTT.2013.2252186 10.1049/el.2011.2419 10.1016/j.meddos.2005.12.005 10.1002/bem.2250130610 10.1109/ISSCC.2011.5746210 10.1109/IEMBS.2011.6090541 10.1109/TMTT.2011.2171712 10.1109/TMTT.2013.2247055 10.1109/MWSYM.2013.6697618 10.1109/TMTT.2003.812575 10.1109/TIM.2009.2028208 10.1109/62.942213 10.1109/TMTT.2013.2255884 10.1016/j.ijrobp.2007.07.2386 10.1109/TBME.2012.2206591 10.1109/LMWC.2011.2154318 10.1109/TMTT.2002.805162 10.1049/el.2012.0071 10.1109/MWSYM.2010.5517732 10.1109/MWSYM.2001.966866 10.1109/TMTT.2009.2035945 10.1109/TMTT.2007.914363 10.1109/10.817625 |
ContentType | Magazine Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD F28 FR3 L7M |
DOI | 10.1109/MMM.2014.2308763 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9581 |
EndPage | 76 |
ExternalDocumentID | 3377432671 10_1109_MMM_2014_2308763 6810940 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ZY4 AAYXX CITATION RIG 7SP 7U5 8FD F28 FR3 L7M |
ID | FETCH-LOGICAL-c239t-bb9e92dc76d72837e2ad02e2e27330c728864981d4ea40a906d8e5db6a8124ed3 |
IEDL.DBID | RIE |
ISSN | 1527-3342 |
IngestDate | Fri Sep 05 04:01:44 EDT 2025 Sun Jun 29 16:39:52 EDT 2025 Thu Apr 24 22:57:14 EDT 2025 Tue Jul 01 01:38:22 EDT 2025 Wed Aug 27 02:51:59 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c239t-bb9e92dc76d72837e2ad02e2e27330c728864981d4ea40a906d8e5db6a8124ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1545943315 |
PQPubID | 75738 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_MMM_2014_2308763 proquest_miscellaneous_1629352740 proquest_journals_1545943315 ieee_primary_6810940 crossref_citationtrail_10_1109_MMM_2014_2308763 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140601 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140601 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE microwave magazine |
PublicationTitleAbbrev | MMM |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref14 ref53 li (ref4) 0; 2 ref55 ref11 ref54 jonathan (ref76) 2001; 16 ref17 ref16 ref19 ref18 zhao (ref62) 0 jefferson (ref77) 2012 jonathon (ref78) 0; 1 ref51 ref50 li (ref58) 2008; 18 ref46 ref45 yazhou (ref28) 2012; 50 ref47 ref42 ref41 ref44 li (ref52) 2008; 56 ref43 yan (ref64) 0 ko (ref8) 0 ref7 ref9 yavari (ref24) 0 ref6 ref5 ref79 ref35 ref34 karsmakers (ref22) 0 ref37 yi-an (ref10) 0 gabor (ref49) 2013; 61 ref36 ref75 ref31 ref74 ref33 ref2 ref1 ref39 ref38 chioukh (ref48) 0 ref71 ref70 ref73 ref72 ref68 droitcour (ref3) 0 ref67 ref23 ref69 ref25 ref20 ref66 ref65 ref21 lubecke (ref26) 0 droitcour (ref40) 0; 3 ref27 ref29 li (ref63) 0 ref60 (ref32) 2013 ref61 matteo (ref30) 2013; 61 |
References_xml | – ident: ref14 doi: 10.1109/TBME.1986.325760 – ident: ref42 doi: 10.1109/TMTT.2006.873625 – ident: ref31 doi: 10.1109/BIOWIRELESS.2011.5724348 – ident: ref56 doi: 10.1109/ISSCC.2002.993075 – ident: ref16 doi: 10.1109/TMTT.2004.837153 – volume: 2 start-page: 1022 year: 0 ident: ref4 article-title: Development of non-contact physiological motion sensor on CMOS chip and its potential applications publication-title: Proc 7th IEEE Int Conf Application-Specific Integrated Circuits – ident: ref44 doi: 10.1109/TMTT.2007.895653 – ident: ref17 doi: 10.1109/MMM.2008.930675 – volume: 3 start-page: 1945 year: 0 ident: ref40 article-title: Range correlation effect on ISM band I=QCMOS radar for noncontact sensing of vital signs publication-title: IEEE MTT-S Int Microwave Symp Dig – ident: ref50 doi: 10.1109/TMTT.2010.2087349 – ident: ref60 doi: 10.1109/TMTT.2006.884652 – start-page: 1 year: 0 ident: ref64 article-title: Wavelength division sensing RF vibrometer publication-title: Proc IEEE MTT-S Int Microwave Symp – ident: ref18 doi: 10.1109/IEMBS.2009.5332667 – ident: ref7 doi: 10.1109/MMM.2012.2216710 – ident: ref20 doi: 10.1109/MWSYM.2010.5517103 – start-page: 202 year: 0 ident: ref22 article-title: Automatic in-door fall detection based on microwave radar measurements publication-title: Proc 2012 9th IEEE European Radar Conf – ident: ref33 doi: 10.1016/j.semradonc.2006.04.007 – ident: ref35 doi: 10.1109/IEMBS.2011.6090054 – ident: ref54 doi: 10.1109/MWSYM.2008.4633266 – ident: ref12 doi: 10.1109/MWSYM.2013.6697623 – ident: ref75 doi: 10.1109/TBCAS.2011.2176937 – ident: ref38 doi: 10.1109/WAMICON.2011.5872871 – ident: ref68 doi: 10.1109/BioWireleSS.2013.6613657 – ident: ref65 doi: 10.1109/82.592569 – ident: ref37 doi: 10.1109/BioWireless.2012.6172731 – ident: ref57 doi: 10.1109/RFIC.2012.6242318 – ident: ref53 doi: 10.1109/IEMBS.2009.5333206 – ident: ref21 doi: 10.1109/MWSYM.2013.6697732 – ident: ref72 doi: 10.1109/TITB.2009.2031239 – ident: ref70 doi: 10.1111/j.1748-1716.2006.01529.x – volume: 61 start-page: 1 year: 2013 ident: ref30 article-title: An integrated microwave imaging radar with planar antennas for breast cancer detection publication-title: IEEE Trans Microwave Theory Tech – ident: ref61 doi: 10.1049/el.2012.2451 – ident: ref1 doi: 10.1109/PROC.1975.9992 – start-page: 579 year: 0 ident: ref63 article-title: Non-contact measurement of periodic movements by a 22-40 GHz radar sensor using nonlinear phase modulation publication-title: Proc IEEE MTT-S Int Microwave Symp – ident: ref59 doi: 10.1109/LMWC.2013.2250269 – volume: 56 start-page: 3143 year: 2008 ident: ref52 article-title: Random body movement cancellation in Doppler radar vital sign detection publication-title: IEEE Trans Microwave Theory Tech doi: 10.1109/TMTT.2008.2007139 – ident: ref27 doi: 10.1109/TAP.2012.2201105 – ident: ref71 doi: 10.1113/expphysiol.2008.042424 – ident: ref73 doi: 10.1109/TITB.2009.2037614 – ident: ref23 doi: 10.1109/TMTT.2013.2247619 – ident: ref41 doi: 10.1109/TMTT.2004.823552 – ident: ref79 doi: 10.1109/TGRS.2009.2012849 – ident: ref6 doi: 10.1109/WISNET.2011.5725027 – ident: ref69 doi: 10.1016/0167-8760(91)90006-J – volume: 50 start-page: 1986 year: 2012 ident: ref28 article-title: Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach publication-title: IEEE Trans Geosci Remote Sensing doi: 10.1109/TGRS.2011.2170694 – volume: 18 start-page: 494 year: 2008 ident: ref58 article-title: A 5 GHz double-sideband radar sensor chip in 0.18 m CMOS for non-contact vital sign detection publication-title: IEEE Microwave Wireless Compon Lett doi: 10.1109/LMWC.2008.925112 – ident: ref19 doi: 10.1109/TMTT.2013.2252186 – ident: ref43 doi: 10.1049/el.2011.2419 – ident: ref34 doi: 10.1016/j.meddos.2005.12.005 – ident: ref2 doi: 10.1002/bem.2250130610 – ident: ref74 doi: 10.1109/ISSCC.2011.5746210 – ident: ref25 doi: 10.1109/IEMBS.2011.6090541 – start-page: 348 year: 0 ident: ref3 article-title: 0.25/spl mu/m CMOS and BiCMOS single-chip direct-conversion Doppler radar for remote sensing of vital signs publication-title: IEEE Int Solid-State Circuits Conf Tech Dig 2002 – ident: ref51 doi: 10.1109/TMTT.2011.2171712 – volume: 61 start-page: 2093 year: 2013 ident: ref49 article-title: Six-port radar sensor for remote respiration rate and heartbeat vital-sign monitoring publication-title: IEEE Trans Microwave Theory Tech doi: 10.1109/TMTT.2013.2247055 – start-page: 216 year: 0 ident: ref10 article-title: A fully integrated 77GHz FMCW radar system in 65nm CMOS publication-title: 2010 IEEE Int Solid-State Circuits Conf Dig Tech Papers – ident: ref55 doi: 10.1109/MWSYM.2013.6697618 – ident: ref5 doi: 10.1109/TMTT.2003.812575 – ident: ref47 doi: 10.1109/TIM.2009.2028208 – volume: 16 start-page: 10 year: 2001 ident: ref76 article-title: A non-contact lie detector using radar vital signs monitor (RVSM) technology publication-title: IEEE Aerospace Electron Syst Mag doi: 10.1109/62.942213 – volume: 1 start-page: 834 year: 0 ident: ref78 article-title: A continuous-wave (CW) radar for gait analysis publication-title: Proc Conf Rec 35th Asilomar Conf Signals Systems Computers – start-page: 1909 year: 0 ident: ref62 article-title: DC coupled Doppler radar physiological monitor publication-title: Ann Int Conf IEEE Eng Med and Biol Soc – ident: ref29 doi: 10.1109/TMTT.2013.2255884 – ident: ref36 doi: 10.1016/j.ijrobp.2007.07.2386 – start-page: 381 year: 0 ident: ref48 article-title: Monitoring vital signs using remote harmonic radar concept publication-title: Proceedings of the European Radar Conference 2011 – year: 2012 ident: ref77 article-title: Radar microphone speech recognition – ident: ref39 doi: 10.1109/TBME.2012.2206591 – ident: ref67 doi: 10.1109/LMWC.2011.2154318 – ident: ref11 doi: 10.1109/TMTT.2002.805162 – ident: ref66 doi: 10.1049/el.2012.0071 – start-page: 316 year: 0 ident: ref24 article-title: Doppler radar sensor for occupancy monitoring publication-title: 2013 IEEE Radio & Wireless Symp – start-page: 769 year: 0 ident: ref26 article-title: Through-the-wall radar life detection and monitoring publication-title: Proc IEEE/MTT-S Int Microwave Symp – ident: ref46 doi: 10.1109/MWSYM.2010.5517732 – ident: ref45 doi: 10.1109/MWSYM.2001.966866 – ident: ref13 doi: 10.1109/TMTT.2009.2035945 – ident: ref9 doi: 10.1109/TMTT.2007.914363 – ident: ref15 doi: 10.1109/10.817625 – start-page: 352 year: 0 ident: ref8 article-title: Range resolution improvement for FMCW radars publication-title: Proc European Radar Conf – year: 2013 ident: ref32 publication-title: Cancer Facts and Figures |
SSID | ssj0014531 |
Score | 1.2032208 |
Snippet | Since the debut of medical radar sensors nearly four decades ago, there have been many technical advancements that helped this technology mature. Progresses... Using microwaves to detect small physiological movements such as respiration and heartbeat dates back to the 1970s [1]. It is realized by detecting the phase... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 66 |
SubjectTerms | Art exhibits Bandwidth Chips Displacement measurement Doppler radar Frequency modulation Microwave communication Microwaves Monitoring Physiology Radar Radar detection Radar measurements Radar systems Silicon Tumors Ultrawideband |
Title | From Tumor Targeting to Speech Monitoring: Accurate Respiratory Monitoring Using Medical Continuous-Wave Radar Sensors |
URI | https://ieeexplore.ieee.org/document/6810940 https://www.proquest.com/docview/1545943315 https://www.proquest.com/docview/1629352740 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RTnChlKJuS5GRuFRqdrO2k417Q4gVQgoHWFRukWNP1KolQdmEA7-esfPRVVtVVS5RMk6sPI89zjw_A5wutOQyCW1QFORuEk0RKCNVoESO88gqm3s2YXodX97Jq_vofgs-j2thENGTz3DqTn0u31amdb_KZk47S0maoL-iZtat1RozBjISnTYqJ6cRkg8pyVDN0jR1HC7pSM-JF_zcGIL8nip_dMR-dFnuQTrUqyOV_Ji2TT41z79JNv5vxV_D3iAbzc66hrEPW1i-gd0N9cEDeFrW1QNbtQ9VzVaeEE6XWVOx20dE84117u5sv7AzY1onKsFufqXmNwyYZx6wPuvDnOTV97Kt2nXwVT9RIW11zW5pxlzV67dwt7xYnV8G_TYMgeFCNUGeK1TcmkVsF04rB7m2IUc6FkKEhq4lsVQU90rUMtQqjG2CEYGsXfCAVhzCdlmV-A4YzwXFk9py1Ip6aKGVlvNCYxTpIimkmcBsQCYzvUa52yrjZ-bnKqHKCMvMYZn1WE7g01jisdPn-IftgYNmtOtRmcDRAH7WO_A6c5GlcqvJogmcjLfJ9Vw-RZdIXzCbxxQrUXuT4fu_P_kD7Lj3d8yyI9hu6hY_UgzT5Me-8b4A6vTuqA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QBcSimIhVKMxAWJ7GZjJxtzq1BXCzQ90K3ozXLsiYqgSZVNeuDXM3Y-WFGEUC6RM46sPI89zjw_A7xZaBGJNLRBUZC7CTRFII2QgeQ5zmMrbe7ZhNlZsroQny7jyx14N-6FQURPPsOpu_W5fFuZ1v0qmzntLClogX6P5n0Rd7u1xpyBiHmnjhqR23ARDUnJUM6yLHMsLuFoz6mX_NyahPypKneGYj-_LPcgG1rW0Uq-T9smn5qff4g2_m_TH8HeIBzNjruusQ87WD6Gh1v6gwdwu6yra7Zur6uarT0lnIpZU7HzG0RzxTqHd7bv2bExrZOVYF9-J-e3DJjnHrA-78Oc6NW3sq3aTfBV31IlbXXNzmnNXNWbJ3CxPFl_WAX9QQyBibhsgjyXKCNrFoldOLUcjLQNI6RrwXloqCxNhKTIV6AWoZZhYlOMCWbtwge0_CnsllWJz4BFOaeIUtsItaQxmmupxbzQGMe6SAthJjAbkFGmVyl3h2X8UH61EkpFWCqHpeqxnMDbscZNp9DxD9sDB81o16MygcMBfNW78Ea52FK6_WTxBF6Pj8n5XEZFl0hfUM0Tipaov4nw-d_f_Arur9bZqTr9ePb5BTxwbel4Zoew29QtvqSIpsmPfEf-BYy78fU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Tumor+Targeting+to+Speech+Monitoring%3A+Accurate+Respiratory+Monitoring+Using+Medical+Continuous-Wave+Radar+Sensors&rft.jtitle=IEEE+microwave+magazine&rft.au=Gu%2C+Changzhan&rft.au=Li%2C+Changzhi&rft.date=2014-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1527-3342&rft.eissn=1557-9581&rft.volume=15&rft.issue=4&rft.spage=66&rft_id=info:doi/10.1109%2FMMM.2014.2308763&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3377432671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-3342&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-3342&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-3342&client=summon |