From Tumor Targeting to Speech Monitoring: Accurate Respiratory Monitoring Using Medical Continuous-Wave Radar Sensors

Since the debut of medical radar sensors nearly four decades ago, there have been many technical advancements that helped this technology mature. Progresses have been seen from system architectures to signal processing algorithms. Many research efforts have been dedicated to utilize the radar sensor...

Full description

Saved in:
Bibliographic Details
Published inIEEE microwave magazine Vol. 15; no. 4; pp. 66 - 76
Main Authors Gu, Changzhan, Li, Changzhi
Format Magazine Article
LanguageEnglish
Published New York IEEE 01.06.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1527-3342
1557-9581
DOI10.1109/MMM.2014.2308763

Cover

Loading…
Abstract Since the debut of medical radar sensors nearly four decades ago, there have been many technical advancements that helped this technology mature. Progresses have been seen from system architectures to signal processing algorithms. Many research efforts have been dedicated to utilize the radar sensors for different biomedical applications such as noncontact vital sign detection, human fall detection, through-wall detection, and medical imaging. A special application is radar respiration measurement in motion-adaptive cancer radiotherapy. The radar measures the respiration pattern that is used to infer the tumor location in real time. To realize accurate respiration pattern measurement, the signal distortion problem in a conventional CW radar sensor was extensively analyzed, and the solution led to a dc-coupled radar that is distortion-free. Successful preliminary clinical tests have been carried out using the radar sensor in a radiotherapy environment, demonstrating its feasibility. The same dc-coupled physiological radar sensor solution also shows the potential of monitoring the physical states and speech of the subject person.
AbstractList Since the debut of medical radar sensors nearly four decades ago, there have been many technical advancements that helped this technology mature. Progresses have been seen from system architectures to signal processing algorithms. Many research efforts have been dedicated to utilize the radar sensors for different biomedical applications such as noncontact vital sign detection, human fall detection, through-wall detection, and medical imaging. A special application is radar respiration measurement in motion-adaptive cancer radiotherapy. The radar measures the respiration pattern that is used to infer the tumor location in real time. To realize accurate respiration pattern measurement, the signal distortion problem in a conventional CW radar sensor was extensively analyzed, and the solution led to a dc-coupled radar that is distortion-free. Successful preliminary clinical tests have been carried out using the radar sensor in a radiotherapy environment, demonstrating its feasibility. The same dc-coupled physiological radar sensor solution also shows the potential of monitoring the physical states and speech of the subject person.
Using microwaves to detect small physiological movements such as respiration and heartbeat dates back to the 1970s [1]. It is realized by detecting the phase information in the received radar signals, which is caused by Doppler shift due to the moving chest wall. The principle is similar to the radar guns used by police officers to detect over-speed vehicles. Based on the form of the transmit signal, there are basically two types of radars: continuous-wave (CW) radar and ultrawideband (UWB) radar. The CW radar falls into three subcategories: single-tone, stepped frequency (SFCW), and frequency-modulated CW (FMCW). Each category of radars has its specific advantages. The singletone CW radar has a simple system architecture that allows high-level chip integration [2]?[4]. It also has high accuracy (submillimeter) in relative displacement measurement [5]?[6]. Unfortunately, because no instant bandwidth is transmitted, single-tone CW radars do not carry range (i.e., absolute distance between the radar and the subject) information. FMCW radars are able to detect range information [7]?[8] but normally require a very large bandwidth and more sophisticated signal processing to realize high-accuracy relative displacement measurement. Researchers also have successfully integrated the FMCW radar on silicon chips [9]?[11]. SFCW radars carry some advantages of both singletone CW radars and FMCW radars and thus have been successfully used in applications such as fall detection [23]. In addition, a hybrid radar system combining the advantages of the single-tone and FMCW radars was reported in [12]. UWB biomedical radars have veryhigh-range resolution due to its wideband nature [13]. The state of the art shows that UWB pulse radars have been efficiently implemented on silicon [74] and have been successfully applied to the accurate detection of respiratory rate and apnea in adults and infants [75].
Author Changzhi Li
Changzhan Gu
Author_xml – sequence: 1
  givenname: Changzhan
  surname: Gu
  fullname: Gu, Changzhan
– sequence: 2
  givenname: Changzhi
  surname: Li
  fullname: Li, Changzhi
BookMark eNp9kUlLBDEQhYMouN4FLwEvXnrM1ku8yeAGNoKOeAyZpNRIT2dMugX_vTWMiHiQQFIU36s86u2SzT72QMghZxPOmT5t23YiGFcTIVlTV3KD7PCyrAtdNnxzVYu6kFKJbbKb8xtDspR8h3xcprigs3ERE53Z9AJD6F_oEOnDEsC90jb2YYgJm2f03Lkx2QHoPeRlwCqmz18AfcyruwUfnO3oNPY4a4xjLp7sB4qst4k-QJ9jyvtk69l2GQ6-3z3yeHkxm14Xt3dXN9Pz28IJqYdiPteghXd15WvRyBqE9UwAnlpK5rDXVEo33CuwilnNKt9A6eeVbbhQ4OUeOVnPXab4PkIezCJkB11ne0BnhldCS1yNYoge_0Hf4ph6dGd4qUqtpOQlUmxNuRRzTvBsliksbPo0nJlVEAaDMKsgzHcQKKn-SFwY7BBwP8mG7j_h0VoYAODnn6pBGP1-AcNbl9A
CODEN IEMMFF
CitedBy_id crossref_primary_10_1109_RBME_2020_3036330
crossref_primary_10_1109_MMM_2019_2915490
crossref_primary_10_1109_TMTT_2017_2650911
crossref_primary_10_1049_rsn2_12399
crossref_primary_10_1109_MMM_2019_2915491
crossref_primary_10_3390_s16081169
crossref_primary_10_1049_htl_2015_0003
crossref_primary_10_1049_iet_spr_2016_0085
crossref_primary_10_1109_JSEN_2024_3448539
crossref_primary_10_1016_j_eswa_2021_114781
crossref_primary_10_1109_JERM_2017_2735241
crossref_primary_10_1109_TAP_2019_2927777
crossref_primary_10_3390_s24248118
crossref_primary_10_7467_KSAE_2020_28_12_835
crossref_primary_10_3390_s16122025
crossref_primary_10_1007_s11042_024_19830_4
crossref_primary_10_1088_0957_0233_27_6_065702
crossref_primary_10_1109_MMM_2018_2875612
Cites_doi 10.1109/TBME.1986.325760
10.1109/TMTT.2006.873625
10.1109/BIOWIRELESS.2011.5724348
10.1109/ISSCC.2002.993075
10.1109/TMTT.2004.837153
10.1109/TMTT.2007.895653
10.1109/MMM.2008.930675
10.1109/TMTT.2010.2087349
10.1109/TMTT.2006.884652
10.1109/IEMBS.2009.5332667
10.1109/MMM.2012.2216710
10.1109/MWSYM.2010.5517103
10.1016/j.semradonc.2006.04.007
10.1109/IEMBS.2011.6090054
10.1109/MWSYM.2008.4633266
10.1109/MWSYM.2013.6697623
10.1109/TBCAS.2011.2176937
10.1109/WAMICON.2011.5872871
10.1109/BioWireleSS.2013.6613657
10.1109/82.592569
10.1109/BioWireless.2012.6172731
10.1109/RFIC.2012.6242318
10.1109/IEMBS.2009.5333206
10.1109/MWSYM.2013.6697732
10.1109/TITB.2009.2031239
10.1111/j.1748-1716.2006.01529.x
10.1049/el.2012.2451
10.1109/PROC.1975.9992
10.1109/LMWC.2013.2250269
10.1109/TMTT.2008.2007139
10.1109/TAP.2012.2201105
10.1113/expphysiol.2008.042424
10.1109/TITB.2009.2037614
10.1109/TMTT.2013.2247619
10.1109/TMTT.2004.823552
10.1109/TGRS.2009.2012849
10.1109/WISNET.2011.5725027
10.1016/0167-8760(91)90006-J
10.1109/TGRS.2011.2170694
10.1109/LMWC.2008.925112
10.1109/TMTT.2013.2252186
10.1049/el.2011.2419
10.1016/j.meddos.2005.12.005
10.1002/bem.2250130610
10.1109/ISSCC.2011.5746210
10.1109/IEMBS.2011.6090541
10.1109/TMTT.2011.2171712
10.1109/TMTT.2013.2247055
10.1109/MWSYM.2013.6697618
10.1109/TMTT.2003.812575
10.1109/TIM.2009.2028208
10.1109/62.942213
10.1109/TMTT.2013.2255884
10.1016/j.ijrobp.2007.07.2386
10.1109/TBME.2012.2206591
10.1109/LMWC.2011.2154318
10.1109/TMTT.2002.805162
10.1049/el.2012.0071
10.1109/MWSYM.2010.5517732
10.1109/MWSYM.2001.966866
10.1109/TMTT.2009.2035945
10.1109/TMTT.2007.914363
10.1109/10.817625
ContentType Magazine Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
L7M
DOI 10.1109/MMM.2014.2308763
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9581
EndPage 76
ExternalDocumentID 3377432671
10_1109_MMM_2014_2308763
6810940
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SP
7U5
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c239t-bb9e92dc76d72837e2ad02e2e27330c728864981d4ea40a906d8e5db6a8124ed3
IEDL.DBID RIE
ISSN 1527-3342
IngestDate Fri Sep 05 04:01:44 EDT 2025
Sun Jun 29 16:39:52 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Tue Jul 01 01:38:22 EDT 2025
Wed Aug 27 02:51:59 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c239t-bb9e92dc76d72837e2ad02e2e27330c728864981d4ea40a906d8e5db6a8124ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1545943315
PQPubID 75738
PageCount 11
ParticipantIDs crossref_primary_10_1109_MMM_2014_2308763
proquest_miscellaneous_1629352740
proquest_journals_1545943315
ieee_primary_6810940
crossref_citationtrail_10_1109_MMM_2014_2308763
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140601
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 20140601
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE microwave magazine
PublicationTitleAbbrev MMM
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref14
ref53
li (ref4) 0; 2
ref55
ref11
ref54
jonathan (ref76) 2001; 16
ref17
ref16
ref19
ref18
zhao (ref62) 0
jefferson (ref77) 2012
jonathon (ref78) 0; 1
ref51
ref50
li (ref58) 2008; 18
ref46
ref45
yazhou (ref28) 2012; 50
ref47
ref42
ref41
ref44
li (ref52) 2008; 56
ref43
yan (ref64) 0
ko (ref8) 0
ref7
ref9
yavari (ref24) 0
ref6
ref5
ref79
ref35
ref34
karsmakers (ref22) 0
ref37
yi-an (ref10) 0
gabor (ref49) 2013; 61
ref36
ref75
ref31
ref74
ref33
ref2
ref1
ref39
ref38
chioukh (ref48) 0
ref71
ref70
ref73
ref72
ref68
droitcour (ref3) 0
ref67
ref23
ref69
ref25
ref20
ref66
ref65
ref21
lubecke (ref26) 0
droitcour (ref40) 0; 3
ref27
ref29
li (ref63) 0
ref60
(ref32) 2013
ref61
matteo (ref30) 2013; 61
References_xml – ident: ref14
  doi: 10.1109/TBME.1986.325760
– ident: ref42
  doi: 10.1109/TMTT.2006.873625
– ident: ref31
  doi: 10.1109/BIOWIRELESS.2011.5724348
– ident: ref56
  doi: 10.1109/ISSCC.2002.993075
– ident: ref16
  doi: 10.1109/TMTT.2004.837153
– volume: 2
  start-page: 1022
  year: 0
  ident: ref4
  article-title: Development of non-contact physiological motion sensor on CMOS chip and its potential applications
  publication-title: Proc 7th IEEE Int Conf Application-Specific Integrated Circuits
– ident: ref44
  doi: 10.1109/TMTT.2007.895653
– ident: ref17
  doi: 10.1109/MMM.2008.930675
– volume: 3
  start-page: 1945
  year: 0
  ident: ref40
  article-title: Range correlation effect on ISM band I=QCMOS radar for noncontact sensing of vital signs
  publication-title: IEEE MTT-S Int Microwave Symp Dig
– ident: ref50
  doi: 10.1109/TMTT.2010.2087349
– ident: ref60
  doi: 10.1109/TMTT.2006.884652
– start-page: 1
  year: 0
  ident: ref64
  article-title: Wavelength division sensing RF vibrometer
  publication-title: Proc IEEE MTT-S Int Microwave Symp
– ident: ref18
  doi: 10.1109/IEMBS.2009.5332667
– ident: ref7
  doi: 10.1109/MMM.2012.2216710
– ident: ref20
  doi: 10.1109/MWSYM.2010.5517103
– start-page: 202
  year: 0
  ident: ref22
  article-title: Automatic in-door fall detection based on microwave radar measurements
  publication-title: Proc 2012 9th IEEE European Radar Conf
– ident: ref33
  doi: 10.1016/j.semradonc.2006.04.007
– ident: ref35
  doi: 10.1109/IEMBS.2011.6090054
– ident: ref54
  doi: 10.1109/MWSYM.2008.4633266
– ident: ref12
  doi: 10.1109/MWSYM.2013.6697623
– ident: ref75
  doi: 10.1109/TBCAS.2011.2176937
– ident: ref38
  doi: 10.1109/WAMICON.2011.5872871
– ident: ref68
  doi: 10.1109/BioWireleSS.2013.6613657
– ident: ref65
  doi: 10.1109/82.592569
– ident: ref37
  doi: 10.1109/BioWireless.2012.6172731
– ident: ref57
  doi: 10.1109/RFIC.2012.6242318
– ident: ref53
  doi: 10.1109/IEMBS.2009.5333206
– ident: ref21
  doi: 10.1109/MWSYM.2013.6697732
– ident: ref72
  doi: 10.1109/TITB.2009.2031239
– ident: ref70
  doi: 10.1111/j.1748-1716.2006.01529.x
– volume: 61
  start-page: 1
  year: 2013
  ident: ref30
  article-title: An integrated microwave imaging radar with planar antennas for breast cancer detection
  publication-title: IEEE Trans Microwave Theory Tech
– ident: ref61
  doi: 10.1049/el.2012.2451
– ident: ref1
  doi: 10.1109/PROC.1975.9992
– start-page: 579
  year: 0
  ident: ref63
  article-title: Non-contact measurement of periodic movements by a 22-40 GHz radar sensor using nonlinear phase modulation
  publication-title: Proc IEEE MTT-S Int Microwave Symp
– ident: ref59
  doi: 10.1109/LMWC.2013.2250269
– volume: 56
  start-page: 3143
  year: 2008
  ident: ref52
  article-title: Random body movement cancellation in Doppler radar vital sign detection
  publication-title: IEEE Trans Microwave Theory Tech
  doi: 10.1109/TMTT.2008.2007139
– ident: ref27
  doi: 10.1109/TAP.2012.2201105
– ident: ref71
  doi: 10.1113/expphysiol.2008.042424
– ident: ref73
  doi: 10.1109/TITB.2009.2037614
– ident: ref23
  doi: 10.1109/TMTT.2013.2247619
– ident: ref41
  doi: 10.1109/TMTT.2004.823552
– ident: ref79
  doi: 10.1109/TGRS.2009.2012849
– ident: ref6
  doi: 10.1109/WISNET.2011.5725027
– ident: ref69
  doi: 10.1016/0167-8760(91)90006-J
– volume: 50
  start-page: 1986
  year: 2012
  ident: ref28
  article-title: Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach
  publication-title: IEEE Trans Geosci Remote Sensing
  doi: 10.1109/TGRS.2011.2170694
– volume: 18
  start-page: 494
  year: 2008
  ident: ref58
  article-title: A 5 GHz double-sideband radar sensor chip in 0.18 m CMOS for non-contact vital sign detection
  publication-title: IEEE Microwave Wireless Compon Lett
  doi: 10.1109/LMWC.2008.925112
– ident: ref19
  doi: 10.1109/TMTT.2013.2252186
– ident: ref43
  doi: 10.1049/el.2011.2419
– ident: ref34
  doi: 10.1016/j.meddos.2005.12.005
– ident: ref2
  doi: 10.1002/bem.2250130610
– ident: ref74
  doi: 10.1109/ISSCC.2011.5746210
– ident: ref25
  doi: 10.1109/IEMBS.2011.6090541
– start-page: 348
  year: 0
  ident: ref3
  article-title: 0.25/spl mu/m CMOS and BiCMOS single-chip direct-conversion Doppler radar for remote sensing of vital signs
  publication-title: IEEE Int Solid-State Circuits Conf Tech Dig 2002
– ident: ref51
  doi: 10.1109/TMTT.2011.2171712
– volume: 61
  start-page: 2093
  year: 2013
  ident: ref49
  article-title: Six-port radar sensor for remote respiration rate and heartbeat vital-sign monitoring
  publication-title: IEEE Trans Microwave Theory Tech
  doi: 10.1109/TMTT.2013.2247055
– start-page: 216
  year: 0
  ident: ref10
  article-title: A fully integrated 77GHz FMCW radar system in 65nm CMOS
  publication-title: 2010 IEEE Int Solid-State Circuits Conf Dig Tech Papers
– ident: ref55
  doi: 10.1109/MWSYM.2013.6697618
– ident: ref5
  doi: 10.1109/TMTT.2003.812575
– ident: ref47
  doi: 10.1109/TIM.2009.2028208
– volume: 16
  start-page: 10
  year: 2001
  ident: ref76
  article-title: A non-contact lie detector using radar vital signs monitor (RVSM) technology
  publication-title: IEEE Aerospace Electron Syst Mag
  doi: 10.1109/62.942213
– volume: 1
  start-page: 834
  year: 0
  ident: ref78
  article-title: A continuous-wave (CW) radar for gait analysis
  publication-title: Proc Conf Rec 35th Asilomar Conf Signals Systems Computers
– start-page: 1909
  year: 0
  ident: ref62
  article-title: DC coupled Doppler radar physiological monitor
  publication-title: Ann Int Conf IEEE Eng Med and Biol Soc
– ident: ref29
  doi: 10.1109/TMTT.2013.2255884
– ident: ref36
  doi: 10.1016/j.ijrobp.2007.07.2386
– start-page: 381
  year: 0
  ident: ref48
  article-title: Monitoring vital signs using remote harmonic radar concept
  publication-title: Proceedings of the European Radar Conference 2011
– year: 2012
  ident: ref77
  article-title: Radar microphone speech recognition
– ident: ref39
  doi: 10.1109/TBME.2012.2206591
– ident: ref67
  doi: 10.1109/LMWC.2011.2154318
– ident: ref11
  doi: 10.1109/TMTT.2002.805162
– ident: ref66
  doi: 10.1049/el.2012.0071
– start-page: 316
  year: 0
  ident: ref24
  article-title: Doppler radar sensor for occupancy monitoring
  publication-title: 2013 IEEE Radio & Wireless Symp
– start-page: 769
  year: 0
  ident: ref26
  article-title: Through-the-wall radar life detection and monitoring
  publication-title: Proc IEEE/MTT-S Int Microwave Symp
– ident: ref46
  doi: 10.1109/MWSYM.2010.5517732
– ident: ref45
  doi: 10.1109/MWSYM.2001.966866
– ident: ref13
  doi: 10.1109/TMTT.2009.2035945
– ident: ref9
  doi: 10.1109/TMTT.2007.914363
– ident: ref15
  doi: 10.1109/10.817625
– start-page: 352
  year: 0
  ident: ref8
  article-title: Range resolution improvement for FMCW radars
  publication-title: Proc European Radar Conf
– year: 2013
  ident: ref32
  publication-title: Cancer Facts and Figures
SSID ssj0014531
Score 1.2032208
Snippet Since the debut of medical radar sensors nearly four decades ago, there have been many technical advancements that helped this technology mature. Progresses...
Using microwaves to detect small physiological movements such as respiration and heartbeat dates back to the 1970s [1]. It is realized by detecting the phase...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 66
SubjectTerms Art exhibits
Bandwidth
Chips
Displacement measurement
Doppler radar
Frequency modulation
Microwave communication
Microwaves
Monitoring
Physiology
Radar
Radar detection
Radar measurements
Radar systems
Silicon
Tumors
Ultrawideband
Title From Tumor Targeting to Speech Monitoring: Accurate Respiratory Monitoring Using Medical Continuous-Wave Radar Sensors
URI https://ieeexplore.ieee.org/document/6810940
https://www.proquest.com/docview/1545943315
https://www.proquest.com/docview/1629352740
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RTnChlKJuS5GRuFRqdrO2k417Q4gVQgoHWFRukWNP1KolQdmEA7-esfPRVVtVVS5RMk6sPI89zjw_A5wutOQyCW1QFORuEk0RKCNVoESO88gqm3s2YXodX97Jq_vofgs-j2thENGTz3DqTn0u31amdb_KZk47S0maoL-iZtat1RozBjISnTYqJ6cRkg8pyVDN0jR1HC7pSM-JF_zcGIL8nip_dMR-dFnuQTrUqyOV_Ji2TT41z79JNv5vxV_D3iAbzc66hrEPW1i-gd0N9cEDeFrW1QNbtQ9VzVaeEE6XWVOx20dE84117u5sv7AzY1onKsFufqXmNwyYZx6wPuvDnOTV97Kt2nXwVT9RIW11zW5pxlzV67dwt7xYnV8G_TYMgeFCNUGeK1TcmkVsF04rB7m2IUc6FkKEhq4lsVQU90rUMtQqjG2CEYGsXfCAVhzCdlmV-A4YzwXFk9py1Ip6aKGVlvNCYxTpIimkmcBsQCYzvUa52yrjZ-bnKqHKCMvMYZn1WE7g01jisdPn-IftgYNmtOtRmcDRAH7WO_A6c5GlcqvJogmcjLfJ9Vw-RZdIXzCbxxQrUXuT4fu_P_kD7Lj3d8yyI9hu6hY_UgzT5Me-8b4A6vTuqA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1V5QBcSimIhVKMxAWJ7GZjJxtzq1BXCzQ90K3ozXLsiYqgSZVNeuDXM3Y-WFGEUC6RM46sPI89zjw_A7xZaBGJNLRBUZC7CTRFII2QgeQ5zmMrbe7ZhNlZsroQny7jyx14N-6FQURPPsOpu_W5fFuZ1v0qmzntLClogX6P5n0Rd7u1xpyBiHmnjhqR23ARDUnJUM6yLHMsLuFoz6mX_NyahPypKneGYj-_LPcgG1rW0Uq-T9smn5qff4g2_m_TH8HeIBzNjruusQ87WD6Gh1v6gwdwu6yra7Zur6uarT0lnIpZU7HzG0RzxTqHd7bv2bExrZOVYF9-J-e3DJjnHrA-78Oc6NW3sq3aTfBV31IlbXXNzmnNXNWbJ3CxPFl_WAX9QQyBibhsgjyXKCNrFoldOLUcjLQNI6RrwXloqCxNhKTIV6AWoZZhYlOMCWbtwge0_CnsllWJz4BFOaeIUtsItaQxmmupxbzQGMe6SAthJjAbkFGmVyl3h2X8UH61EkpFWCqHpeqxnMDbscZNp9DxD9sDB81o16MygcMBfNW78Ea52FK6_WTxBF6Pj8n5XEZFl0hfUM0Tipaov4nw-d_f_Arur9bZqTr9ePb5BTxwbel4Zoew29QtvqSIpsmPfEf-BYy78fU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Tumor+Targeting+to+Speech+Monitoring%3A+Accurate+Respiratory+Monitoring+Using+Medical+Continuous-Wave+Radar+Sensors&rft.jtitle=IEEE+microwave+magazine&rft.au=Gu%2C+Changzhan&rft.au=Li%2C+Changzhi&rft.date=2014-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1527-3342&rft.eissn=1557-9581&rft.volume=15&rft.issue=4&rft.spage=66&rft_id=info:doi/10.1109%2FMMM.2014.2308763&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3377432671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-3342&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-3342&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-3342&client=summon