Automatic pointer meters recognition system based on line scan vision

The automatic recognition of pointers is of great significance for efficiently collecting measurements from industrial instruments. In this paper, an automatic pointer meter recognition system based on line scan vision is developed. A line scan camera is used to capture images of the pointer of a po...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 33; no. 12; p. 127001
Main Author Wang, Qing
Format Journal Article
LanguageEnglish
Japanese
Published 01.12.2022
Online AccessGet full text
ISSN0957-0233
1361-6501
DOI10.1088/1361-6501/ac8b9c

Cover

Loading…
Abstract The automatic recognition of pointers is of great significance for efficiently collecting measurements from industrial instruments. In this paper, an automatic pointer meter recognition system based on line scan vision is developed. A line scan camera is used to capture images of the pointer of a pointer meter. Light-spot centroid algorithm is implemented to determine the centroid position of the pointer. The captured images can record the dynamic movement of the pointer, thereby enabling condition monitoring in industrial processes. Experimental results show that the proposed pointer meter extraction method is robust against interference and that a characteristic segmentation classifier produces more accurate detection results than other approaches.
AbstractList The automatic recognition of pointers is of great significance for efficiently collecting measurements from industrial instruments. In this paper, an automatic pointer meter recognition system based on line scan vision is developed. A line scan camera is used to capture images of the pointer of a pointer meter. Light-spot centroid algorithm is implemented to determine the centroid position of the pointer. The captured images can record the dynamic movement of the pointer, thereby enabling condition monitoring in industrial processes. Experimental results show that the proposed pointer meter extraction method is robust against interference and that a characteristic segmentation classifier produces more accurate detection results than other approaches.
Author Wang, Qing
Author_xml – sequence: 1
  givenname: Qing
  orcidid: 0000-0002-5700-071X
  surname: Wang
  fullname: Wang, Qing
BookMark eNp1kE1rwzAMhs3oYG23-47-A1nlOIntYyndBxR22c5BduzhkTjF9gb990vo2GHQi4SEHsHzrsgijMEScs_ggYGUG8YbVjQ1sA0aqZW5Isu_1YIsQdWigJLzG7JK6RMABCi1JPvtVx4HzN7Q4-hDtpEOdqqJRmvGj-CzHwNNp5TtQDUm29Fp7n2wNBkM9Nun6eCWXDvsk7377Wvy_rh_2z0Xh9enl932UJiSq1xoLaREUWmHBsHWQtcNd86iZJ1qRFdp1rFaVbJUjcTOWOOs4pyXnQBwDPmawPmviWNK0br2GP2A8dQyaOcY2tm5nZ3bcwwT0vxDjM84W-WIvr8M_gDfk2ZA
CitedBy_id crossref_primary_10_1088_1361_6501_adbf39
crossref_primary_10_1587_elex_19_20220479
crossref_primary_10_1088_1361_6501_ad0c2f
crossref_primary_10_1088_1361_6501_ace3e8
crossref_primary_10_3390_app14052049
crossref_primary_10_1364_AO_474983
crossref_primary_10_1177_00202940241268610
Cites_doi 10.1016/j.measurement.2020.107962
10.1109/19.836317
10.1088/0957-0233/20/6/065106
10.1016/j.measurement.2012.01.031
10.1364/AO.55.002393
10.1088/1361-6501/aaed0a
10.1016/j.optlastec.2011.03.029
10.1109/JSEN.2012.2231940
10.1049/iet-smt.2013.0054
10.1088/0957-0233/18/5/058
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1088/1361-6501/ac8b9c
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1361-6501
ExternalDocumentID 10_1088_1361_6501_ac8b9c
GroupedDBID -DZ
-~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TWZ
W28
WH7
XPP
YQT
ZMT
~02
ID FETCH-LOGICAL-c239t-bb788a74bfaca0e57b563ffea81d967d4b1d159482968adcecfe93332d700f1a3
ISSN 0957-0233
IngestDate Tue Jul 01 03:54:22 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c239t-bb788a74bfaca0e57b563ffea81d967d4b1d159482968adcecfe93332d700f1a3
ORCID 0000-0002-5700-071X
ParticipantIDs crossref_primary_10_1088_1361_6501_ac8b9c
crossref_citationtrail_10_1088_1361_6501_ac8b9c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement science & technology
PublicationYear 2022
References Alegria (mstac8b9cbib5) 2000; 49
Behaine (mstac8b9cbib6) 2014; 8
Vázquez-Fernández (mstac8b9cbib1) 2009; 20
Jaffery (mstac8b9cbib3) 2013; 13
Liu (mstac8b9cbib10) 2011; 43
Cai (mstac8b9cbib2) 2020; 163
Ma (mstac8b9cbib8) 2019; 30
Hemming (mstac8b9cbib7) 2007; 18
Aydogmus (mstac8b9cbib4) 2012; 45
Wang (mstac8b9cbib9) 2016; 55
References_xml – volume: 163
  year: 2020
  ident: mstac8b9cbib2
  article-title: A pointer meter recognition method based on virtual sample generation technology
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107962
– volume: 49
  start-page: 94
  year: 2000
  ident: mstac8b9cbib5
  article-title: Automatic calibration of analog and digital measuring instruments using computer vision
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.836317
– volume: 20
  year: 2009
  ident: mstac8b9cbib1
  article-title: A machine vision system for the calibration of digital thermometers
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/20/6/065106
– volume: 45
  start-page: 1098
  year: 2012
  ident: mstac8b9cbib4
  article-title: A vision-based measurement installation for programmable logic controllers
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.01.031
– volume: 55
  start-page: 2393
  year: 2016
  ident: mstac8b9cbib9
  article-title: Computer vision for yarn microtension measurement
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.002393
– volume: 30
  year: 2019
  ident: mstac8b9cbib8
  article-title: A robust and high-precision automatic reading algorithm of pointer meters based on machine vision
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aaed0a
– volume: 43
  start-page: 1306
  year: 2011
  ident: mstac8b9cbib10
  article-title: A high-precision 1D dynamic angular measuring system based on linear CCD for Fengyun-2 meteorological satellite
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2011.03.029
– volume: 13
  start-page: 1236
  year: 2013
  ident: mstac8b9cbib3
  article-title: Architecture of noninvasive real time visual monitoring system for dial type measuring instrument
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2012.2231940
– volume: 8
  start-page: 228
  year: 2014
  ident: mstac8b9cbib6
  article-title: Remote visual monitoring of analogue meter displays using deformable models
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2013.0054
– volume: 18
  start-page: 1655
  year: 2007
  ident: mstac8b9cbib7
  article-title: High-accuracy automatic machine vision based calibration of micrometers
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/18/5/058
SSID ssj0007099
Score 2.4167376
Snippet The automatic recognition of pointers is of great significance for efficiently collecting measurements from industrial instruments. In this paper, an automatic...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 127001
Title Automatic pointer meters recognition system based on line scan vision
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dS-NAEMCXOw_hXg6tytVT2QcfTiS22U12k0c5lCp4d0ILvoX9fDpaaeOLf70z2U0ajgrqS0jDdmjzW2ZmZ3ZmCTmFScSkyViSGmyqLaRKdCF04j3XPNNjYZuA_t1vMZlltw_5w_oouaa6pNYX5nljXclHqMIz4IpVsu8g2wmFB3APfOEKhOH6JsaXT_UitFx9XGDfhyUeCI0Vud22IGAbejWfo7mymBpo_MoVKr9QV953T-_WEcPztuAH50a9IQAflMR9a_pi5ICx3i6MNgQoE7DZQcG4oAC5SBPw2tK-howj4kxgPX0X8tYbVTGoL4wKtPLQ5phCl2ZteNpk-3_2qNsl2OTHi6JCGRXKqIKEz-QLg0UBnldx8-dvZ3fluIydFcO_iklpkDDqfsUoSOg5IT1vYrpDvsVlAL0MTHfJJzcfkO1mO65ZDchuVLkr-jP2BT_bI1cdbhpx04Cb9nDTgJs2uCl8RtwUcdOAe5_Mrq-mvyZJPAUjMYyXdaK1LAolM-2VUWOXS50L7r1TsNIohbSZTm2KTXdYKQpljTPelZxzZgGNTxU_IFvzxdx9J1QYC8tpm3uFfc54qZziPM9ULr1VQokhGbWvpTKxRTyeVPKveg3FkJx133gM7VFeHXv4jrE_yNf1jD0iW_XyyR2D91frkwb6C8RSWBQ
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+pointer+meters+recognition+system+based+on+line+scan+vision&rft.jtitle=Measurement+science+%26+technology&rft.au=Wang%2C+Qing&rft.date=2022-12-01&rft.issn=0957-0233&rft.eissn=1361-6501&rft.volume=33&rft.issue=12&rft.spage=127001&rft_id=info:doi/10.1088%2F1361-6501%2Fac8b9c&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6501_ac8b9c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-0233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-0233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-0233&client=summon