On the use of asymptotically motivated gauge functions to obtain convergent series solutions to nonlinear ODEs
We examine the power series solutions of two classical nonlinear ordinary differential equations of fluid mechanics that are mathematically related by their large-distance asymptotic behaviours in semi-infinite domains. The first problem is that of the ‘Sakiadis’ boundary layer over a moving flat wa...
Saved in:
Published in | IMA journal of applied mathematics Vol. 88; no. 1; pp. 43 - 66 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.04.2023
|
Online Access | Get full text |
ISSN | 0272-4960 1464-3634 |
DOI | 10.1093/imamat/hxad006 |
Cover
Loading…
Abstract | We examine the power series solutions of two classical nonlinear ordinary differential equations of fluid mechanics that are mathematically related by their large-distance asymptotic behaviours in semi-infinite domains. The first problem is that of the ‘Sakiadis’ boundary layer over a moving flat wall, for which no exact analytic solution has been put forward. The second problem is that of a static air–liquid meniscus with surface tension that intersects a flat wall at a given contact angle and limits to a flat pool away from the wall. For the latter problem, the exact analytic solution—given as distance from the wall as a function of meniscus height—has long been known (Batchelor, G. K. (1967) An Introduction to Fluid Dynamics, chapter 1: The physical properties of fluids. Cambridge). Here, we provide an explicit solution as meniscus height versus distance from the wall to elucidate structural similarities to the Sakiadis boundary layer. Although power series solutions are readily obtainable to the governing nonlinear ordinary differential equations, we show that—in both problems—the series diverge due to non-physical complex or negative real-valued singularities. In both cases, these singularities can be moved by expanding in exponential gauge functions motivated by their respective large distance asymptotic behaviours to enable series convergence over their full semi-infinite domains. For the Sakiadis problem, this not only provides a convergent Taylor series (and conjectured exact) solution to the ODE, but also a means to evaluate the wall shear parameter (and other properties) to within any desired precision. Although the nature of nonlinear ODEs precludes general conclusions, our results indicate that asymptotic behaviours can be useful when proposing variable transformations to overcome power series divergence. |
---|---|
AbstractList | We examine the power series solutions of two classical nonlinear ordinary differential equations of fluid mechanics that are mathematically related by their large-distance asymptotic behaviours in semi-infinite domains. The first problem is that of the ‘Sakiadis’ boundary layer over a moving flat wall, for which no exact analytic solution has been put forward. The second problem is that of a static air–liquid meniscus with surface tension that intersects a flat wall at a given contact angle and limits to a flat pool away from the wall. For the latter problem, the exact analytic solution—given as distance from the wall as a function of meniscus height—has long been known (Batchelor, G. K. (1967) An Introduction to Fluid Dynamics, chapter 1: The physical properties of fluids. Cambridge). Here, we provide an explicit solution as meniscus height versus distance from the wall to elucidate structural similarities to the Sakiadis boundary layer. Although power series solutions are readily obtainable to the governing nonlinear ordinary differential equations, we show that—in both problems—the series diverge due to non-physical complex or negative real-valued singularities. In both cases, these singularities can be moved by expanding in exponential gauge functions motivated by their respective large distance asymptotic behaviours to enable series convergence over their full semi-infinite domains. For the Sakiadis problem, this not only provides a convergent Taylor series (and conjectured exact) solution to the ODE, but also a means to evaluate the wall shear parameter (and other properties) to within any desired precision. Although the nature of nonlinear ODEs precludes general conclusions, our results indicate that asymptotic behaviours can be useful when proposing variable transformations to overcome power series divergence. |
Author | Reinberger, W Cade Samaha, Mohamed A Weinstein, Steven J Naghshineh, Nastaran Barlow, Nathaniel S |
Author_xml | – sequence: 1 givenname: Nastaran surname: Naghshineh fullname: Naghshineh, Nastaran – sequence: 2 givenname: W Cade surname: Reinberger fullname: Reinberger, W Cade – sequence: 3 givenname: Nathaniel S surname: Barlow fullname: Barlow, Nathaniel S – sequence: 4 givenname: Mohamed A surname: Samaha fullname: Samaha, Mohamed A – sequence: 5 givenname: Steven J surname: Weinstein fullname: Weinstein, Steven J |
BookMark | eNp1kE1PwzAMhiM0JLbBlXP-QDe3aTNyRGN8SJN2gXPlps4W1CZTkiH27-m0iQMSvtiH97HsZ8JGzjti7D6HWQ5KzG2PPab57htbAHnFxnkpy0xIUY7YGIpFkZVKwg2bxPgJAHm1gDFzG8fTjvghEveGYzz2--ST1dh1R94P0xcmavkWD1vi5uB0st5Fnjz3TULruPbui8KWXOKRgqXIo-8Ov6nhyM46wsA3T6t4y64NdpHuLn3KPp5X78vXbL15eVs-rjNdCJWyiiqtmrZptEahqBlKYKFaIbFSha6UIAGtVq0x0kgBhZEaH0yFShiEUospm5336uBjDGTqfRj8hGOdQ32yVZ9t1RdbA1D-AbRNePoiBbTdf9gP1E55Dw |
CitedBy_id | crossref_primary_10_1063_5_0199302 crossref_primary_10_1093_imamat_hxad037 crossref_primary_10_1063_5_0218229 crossref_primary_10_1063_5_0149786 |
Cites_doi | 10.1016/j.physd.2020.132540 10.1016/j.compfluid.2014.10.007 10.1007/BF01170800 10.1146/annurev.fluid.36.050802.122049 10.1098/rspa.1957.0078 10.1093/qjmam/hbac013 10.1080/10586458.1999.10504626 10.1017/CBO9780511801655 10.1016/j.physd.2020.132633 10.1088/1361-6382/aae0cd 10.1093/qjmam/hbz021 10.1145/320815.320819 10.1016/j.amc.2011.07.035 10.1016/0021-9991(71)90090-8 10.1088/1361-6382/aa7538 10.1093/imamat/hxab038 10.1002/aic.690070211 10.1002/aic.690400205 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1093/imamat/hxad006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-3634 |
EndPage | 66 |
ExternalDocumentID | 10_1093_imamat_hxad006 |
GroupedDBID | -E4 -~X .2P .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 70D AAIJN AAJKP AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAVAP AAYXX ABDBF ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJNI ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABZBJ ACGFO ACGFS ACGOD ACIWK ACUFI ACUHS ACUTJ ACUXJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHGBF AHXPO AIAGR AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMVHM ANAKG APIBT APWMN ATGXG AXUDD AZVOD BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN CDBKE CITATION CS3 CZ4 DAKXR DILTD DU5 D~K EBS EE~ ESX F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ I-F IOX J21 JAVBF JXSIZ KAQDR KOP KSI KSN M-Z M43 N9A NGC NMDNZ NOMLY NU- O9- ODMLO OJQWA OJZSN OXVGQ P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TJP TN5 TUS UPT WH7 X7H YAYTL YKOAZ YXANX ZKX ~91 |
ID | FETCH-LOGICAL-c239t-5e5c9bdbbcca39ebbbb3a29d36a592c593e30dc9dff6f6302f6ca8f5a93fa04c3 |
ISSN | 0272-4960 |
IngestDate | Thu Apr 24 22:54:53 EDT 2025 Tue Jul 01 01:59:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c239t-5e5c9bdbbcca39ebbbb3a29d36a592c593e30dc9dff6f6302f6ca8f5a93fa04c3 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1093_imamat_hxad006 crossref_citationtrail_10_1093_imamat_hxad006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IMA journal of applied mathematics |
PublicationYear | 2023 |
References | Ramé (2023092304470539400_ref25) 2021; 86 Watson (2023092304470539400_ref31) 1914 Boyd (2023092304470539400_ref12) 1997; 11 Boyd (2023092304470539400_ref13) 1999; 8 Henrici (2023092304470539400_ref22) 1956; 3 Domb (2023092304470539400_ref17) 1957; 240 Bender (2023092304470539400_ref9) 1978 Cortell (2023092304470539400_ref16) 2010; 26 Van Dyke (2023092304470539400_ref29) 1975 Blake (2023092304470539400_ref10) 1994; 40 Batchelor (2023092304470539400_ref6) 1967 Beachley (2023092304470539400_ref7) 2018; 35 Fazio (2023092304470539400_ref19) 1992; 895 Turner (2023092304470539400_ref28) 1966 Reinberger (2023092304470539400_ref26) 2022; 75 Churchill (2023092304470539400_ref15) 1948 Leal (2023092304470539400_ref23) 1992 Barlow (2023092304470539400_ref3) 2020; 408 Barlow (2023092304470539400_ref4) 2017; 70 Weinstein (2023092304470539400_ref33) 2020; 411 Cebeci (2023092304470539400_ref14) 1971; 7 Baker (2023092304470539400_ref2) 1990 Flajolet (2023092304470539400_ref21) 2009 Eftekhari (2023092304470539400_ref18) 2013; 20 Barlow (2023092304470539400_ref5) 2017; 34 Van Dyke (2023092304470539400_ref30) 1975 Fazio (2023092304470539400_ref20) 2015; 106 Weinstein (2023092304470539400_ref32) 2004; 36 Belden (2023092304470539400_ref8) 2020; 73 Sakiadis (2023092304470539400_ref27) 1961; 7 Blasius (2023092304470539400_ref11) 1908; 56 Abbasbandy (2023092304470539400_ref1) 2011; 218 Probstein (2023092304470539400_ref24) 2003 |
References_xml | – volume: 408 start-page: 132540 year: 2020 ident: 2023092304470539400_ref3 article-title: Accurate closed-form solution of the SIR epidemic model publication-title: Phys. D doi: 10.1016/j.physd.2020.132540 – volume: 106 start-page: 196 year: 2015 ident: 2023092304470539400_ref20 article-title: The iterative transformation method for the Sakiadis problem publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2014.10.007 – volume: 895 start-page: 1 year: 1992 ident: 2023092304470539400_ref19 article-title: The Blasius problem formulated as a free boundary problem publication-title: Acta Mech. doi: 10.1007/BF01170800 – volume-title: Inverse of the Vandermonde matrix with applications. Technical Note D-3547 year: 1966 ident: 2023092304470539400_ref28 – volume: 36 start-page: 29 year: 2004 ident: 2023092304470539400_ref32 article-title: Coating flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.36.050802.122049 – volume-title: Quantitative Theory of Critical Phenomenon, chapter 14: Padé approximants, algebraic aspects year: 1990 ident: 2023092304470539400_ref2 – volume: 240 start-page: 214 year: 1957 ident: 2023092304470539400_ref17 article-title: On the susceptibility of a ferromagnetic above the curie point publication-title: Proc. Roy. Soc. London A doi: 10.1098/rspa.1957.0078 – volume: 26 start-page: 187 year: 2010 ident: 2023092304470539400_ref16 article-title: Numerical comparisons of Blasius and Sakiadis flows publication-title: MATEMATIKA – volume-title: Complex Variables, chapter VI: Power series year: 1948 ident: 2023092304470539400_ref15 – volume-title: An Introduction to Fluid Dynamics year: 1967 ident: 2023092304470539400_ref6 – volume-title: Perturbation Methods in Fluid Mechanics year: 1975 ident: 2023092304470539400_ref29 – volume-title: Perturbation Methods in Fluid Mechanics year: 1975 ident: 2023092304470539400_ref30 – volume: 11 start-page: 299 year: 1997 ident: 2023092304470539400_ref12 article-title: Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain publication-title: Compr. Physiol. – volume: 75 start-page: 347 year: 2022 ident: 2023092304470539400_ref26 article-title: On the power series solution to the nonlinear pendulum publication-title: Q. J. Mech. Appl. Math doi: 10.1093/qjmam/hbac013 – volume: 8 start-page: 381 year: 1999 ident: 2023092304470539400_ref13 article-title: The Blasius function in the complex plane publication-title: Experiment. Math. doi: 10.1080/10586458.1999.10504626 – volume-title: Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory year: 1978 ident: 2023092304470539400_ref9 – volume: 70 start-page: 21 year: 2017 ident: 2023092304470539400_ref4 article-title: On the summation of divergent, truncated, and underspecified power series via asymptotic approximants publication-title: Q. J. Mech. Appl. Math. – volume-title: Analytic Combinatorics, chapter IV.3: Singularities and exponential growth of coefficients year: 2009 ident: 2023092304470539400_ref21 doi: 10.1017/CBO9780511801655 – volume: 411 start-page: 1 year: 2020 ident: 2023092304470539400_ref33 article-title: Analytic solution of the SEIR epidemic model via asymptotic approximant publication-title: Phys. D doi: 10.1016/j.physd.2020.132633 – volume: 35 start-page: 1 year: 2018 ident: 2023092304470539400_ref7 article-title: Accurate closed-form trajectories of light around a Kerr black hole using asymptotic approximants publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aae0cd – volume: 56 start-page: 1 year: 1908 ident: 2023092304470539400_ref11 article-title: Grenzschichten in Flussigkeiten mit kleiner Reibung publication-title: Zeitschrift fur Mathematik und Physik – volume: 20 start-page: 1278 year: 2013 ident: 2023092304470539400_ref18 article-title: Numerical solution of general boundary layer problems by the method of differential quadrature publication-title: Sci. Iran. – volume-title: Complex Integration and Cauchy’s Theorem, chapter VII: Expansions in series year: 1914 ident: 2023092304470539400_ref31 – volume-title: Laminar flow and convective transport processes. Scaling Principles and asymptotic analysis, chapter 6.B: Asymptotic Expansions - General Considerations year: 1992 ident: 2023092304470539400_ref23 – volume: 73 start-page: 36 year: 2020 ident: 2023092304470539400_ref8 article-title: Asymptotic approximant for the Falkner-Skan boundary layer equation publication-title: Q. J. Mech. Appl. Math. doi: 10.1093/qjmam/hbz021 – volume: 3 start-page: 10 year: 1956 ident: 2023092304470539400_ref22 article-title: Automatic computations with power series publication-title: JACM doi: 10.1145/320815.320819 – volume: 218 start-page: 2179 year: 2011 ident: 2023092304470539400_ref1 article-title: Analytic continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2011.07.035 – volume: 7 start-page: 289 year: 1971 ident: 2023092304470539400_ref14 article-title: Shooting and parallel shooting methods for solving the Falkner-Skan boundary-layer equation publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(71)90090-8 – volume: 34 start-page: 1 year: 2017 ident: 2023092304470539400_ref5 article-title: An asymptotically consistent approximant for the equatorial bending angle of light due to Kerr black holes publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aa7538 – volume: 86 start-page: 1266 year: 2021 ident: 2023092304470539400_ref25 article-title: Free surface shapes in rigid body rotation: exact solutions, asymptotics and approximants publication-title: IMA J. Appl. Math. doi: 10.1093/imamat/hxab038 – volume: 7 start-page: 221 year: 1961 ident: 2023092304470539400_ref27 article-title: Boundary-layer behavior on continuous solid surfaces: II the boundary layer on a continuous flat surface publication-title: AlChE J. doi: 10.1002/aic.690070211 – volume: 40 start-page: 229 year: 1994 ident: 2023092304470539400_ref10 article-title: Hydrodynamic assist of dynamic wetting publication-title: AIChE J. doi: 10.1002/aic.690400205 – volume-title: Physicochemical Hydrodynamics, chapter 10.3: Coating Flows year: 2003 ident: 2023092304470539400_ref24 |
SSID | ssj0001570 |
Score | 2.3150086 |
Snippet | We examine the power series solutions of two classical nonlinear ordinary differential equations of fluid mechanics that are mathematically related by their... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 43 |
Title | On the use of asymptotically motivated gauge functions to obtain convergent series solutions to nonlinear ODEs |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9owELcYfdkepn1q7T7kh0l7iNJS2zHJI_1A3SRA2lqtb8hxHEAipIIgrfvH9u_tnPOcbGVSNx4iiA5jcj_d_Xw-3xHyXmR9JQEX4XFqW5hlkQxjo9JQRlHOja2XUu_gj8by4kp8uo6uO50fraylbZUe6u87z5X8j1bhHujVnpL9B836QeEGvAf9whU0DNd76XiCOYpbjMerzW1xU5V1cHp5GxTYuQwI5UxtZyawHgzT3oBulqkNCWDOuT1-WQV2wmYT-AlbqRXW0VDrYHJ2vmnz2I-jQbvohHJctvBFYD1VH6vZ3Ia5zByNObDRdYPIz2ZRZ5ghcL4GpyprtvnVeok7T-M6wL8wyyZQ-0UVCveqRuVcgUt3QVkXwGC8lfeCdo71WSgSbCtwaNAOCylCLl2c0xnqOL4DSLS6WOjJ-W9s4nLHM2DVrEUBswPvNpx_U1mvt6MI9x_O0acs4mY9n-IIU_f9B2SPwfqEdcne4OTsZOhJwHHUx_Ce-2--Xig_whGO3AgtPtQiNpdPyGO3IqEDhNdT0jGrZ-TRqNHkc7KarCh8pAA0Wub0d6BRDzRaA416oNGqpAg02gCNItCoB5qV8kCjFmgvyNXw_PL0InSNOkLNeFKFkYl0kmZpCuaAJyaFF1csybhUUcJ0lHDDe5lOsjyXueQ9lkut4jxSCc9VT2j-knThh8wrQnWeAQfOYdErmdBawDMSmekrlTARw2p-n4S_HtdUuyr2tpnKcrpbQfvkg5e_wfotf5E8uLfka_KwwfEb0q3WW_MWqGmVvnMw-AmA6Jz8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+use+of+asymptotically+motivated+gauge+functions+to+obtain+convergent+series+solutions+to+nonlinear+ODEs&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Naghshineh%2C+Nastaran&rft.au=Reinberger%2C+W+Cade&rft.au=Barlow%2C+Nathaniel+S&rft.au=Samaha%2C+Mohamed+A&rft.date=2023-04-01&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=88&rft.issue=1&rft.spage=43&rft.epage=66&rft_id=info:doi/10.1093%2Fimamat%2Fhxad006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imamat_hxad006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon |