On the use of asymptotically motivated gauge functions to obtain convergent series solutions to nonlinear ODEs

We examine the power series solutions of two classical nonlinear ordinary differential equations of fluid mechanics that are mathematically related by their large-distance asymptotic behaviours in semi-infinite domains. The first problem is that of the ‘Sakiadis’ boundary layer over a moving flat wa...

Full description

Saved in:
Bibliographic Details
Published inIMA journal of applied mathematics Vol. 88; no. 1; pp. 43 - 66
Main Authors Naghshineh, Nastaran, Reinberger, W Cade, Barlow, Nathaniel S, Samaha, Mohamed A, Weinstein, Steven J
Format Journal Article
LanguageEnglish
Published 01.04.2023
Online AccessGet full text
ISSN0272-4960
1464-3634
DOI10.1093/imamat/hxad006

Cover

Loading…
Abstract We examine the power series solutions of two classical nonlinear ordinary differential equations of fluid mechanics that are mathematically related by their large-distance asymptotic behaviours in semi-infinite domains. The first problem is that of the ‘Sakiadis’ boundary layer over a moving flat wall, for which no exact analytic solution has been put forward. The second problem is that of a static air–liquid meniscus with surface tension that intersects a flat wall at a given contact angle and limits to a flat pool away from the wall. For the latter problem, the exact analytic solution—given as distance from the wall as a function of meniscus height—has long been known (Batchelor, G. K. (1967) An Introduction to Fluid Dynamics, chapter 1: The physical properties of fluids. Cambridge). Here, we provide an explicit solution as meniscus height versus distance from the wall to elucidate structural similarities to the Sakiadis boundary layer. Although power series solutions are readily obtainable to the governing nonlinear ordinary differential equations, we show that—in both problems—the series diverge due to non-physical complex or negative real-valued singularities. In both cases, these singularities can be moved by expanding in exponential gauge functions motivated by their respective large distance asymptotic behaviours to enable series convergence over their full semi-infinite domains. For the Sakiadis problem, this not only provides a convergent Taylor series (and conjectured exact) solution to the ODE, but also a means to evaluate the wall shear parameter (and other properties) to within any desired precision. Although the nature of nonlinear ODEs precludes general conclusions, our results indicate that asymptotic behaviours can be useful when proposing variable transformations to overcome power series divergence.
AbstractList We examine the power series solutions of two classical nonlinear ordinary differential equations of fluid mechanics that are mathematically related by their large-distance asymptotic behaviours in semi-infinite domains. The first problem is that of the ‘Sakiadis’ boundary layer over a moving flat wall, for which no exact analytic solution has been put forward. The second problem is that of a static air–liquid meniscus with surface tension that intersects a flat wall at a given contact angle and limits to a flat pool away from the wall. For the latter problem, the exact analytic solution—given as distance from the wall as a function of meniscus height—has long been known (Batchelor, G. K. (1967) An Introduction to Fluid Dynamics, chapter 1: The physical properties of fluids. Cambridge). Here, we provide an explicit solution as meniscus height versus distance from the wall to elucidate structural similarities to the Sakiadis boundary layer. Although power series solutions are readily obtainable to the governing nonlinear ordinary differential equations, we show that—in both problems—the series diverge due to non-physical complex or negative real-valued singularities. In both cases, these singularities can be moved by expanding in exponential gauge functions motivated by their respective large distance asymptotic behaviours to enable series convergence over their full semi-infinite domains. For the Sakiadis problem, this not only provides a convergent Taylor series (and conjectured exact) solution to the ODE, but also a means to evaluate the wall shear parameter (and other properties) to within any desired precision. Although the nature of nonlinear ODEs precludes general conclusions, our results indicate that asymptotic behaviours can be useful when proposing variable transformations to overcome power series divergence.
Author Reinberger, W Cade
Samaha, Mohamed A
Weinstein, Steven J
Naghshineh, Nastaran
Barlow, Nathaniel S
Author_xml – sequence: 1
  givenname: Nastaran
  surname: Naghshineh
  fullname: Naghshineh, Nastaran
– sequence: 2
  givenname: W Cade
  surname: Reinberger
  fullname: Reinberger, W Cade
– sequence: 3
  givenname: Nathaniel S
  surname: Barlow
  fullname: Barlow, Nathaniel S
– sequence: 4
  givenname: Mohamed A
  surname: Samaha
  fullname: Samaha, Mohamed A
– sequence: 5
  givenname: Steven J
  surname: Weinstein
  fullname: Weinstein, Steven J
BookMark eNp1kE1PwzAMhiM0JLbBlXP-QDe3aTNyRGN8SJN2gXPlps4W1CZTkiH27-m0iQMSvtiH97HsZ8JGzjti7D6HWQ5KzG2PPab57htbAHnFxnkpy0xIUY7YGIpFkZVKwg2bxPgJAHm1gDFzG8fTjvghEveGYzz2--ST1dh1R94P0xcmavkWD1vi5uB0st5Fnjz3TULruPbui8KWXOKRgqXIo-8Ov6nhyM46wsA3T6t4y64NdpHuLn3KPp5X78vXbL15eVs-rjNdCJWyiiqtmrZptEahqBlKYKFaIbFSha6UIAGtVq0x0kgBhZEaH0yFShiEUospm5336uBjDGTqfRj8hGOdQ32yVZ9t1RdbA1D-AbRNePoiBbTdf9gP1E55Dw
CitedBy_id crossref_primary_10_1063_5_0199302
crossref_primary_10_1093_imamat_hxad037
crossref_primary_10_1063_5_0218229
crossref_primary_10_1063_5_0149786
Cites_doi 10.1016/j.physd.2020.132540
10.1016/j.compfluid.2014.10.007
10.1007/BF01170800
10.1146/annurev.fluid.36.050802.122049
10.1098/rspa.1957.0078
10.1093/qjmam/hbac013
10.1080/10586458.1999.10504626
10.1017/CBO9780511801655
10.1016/j.physd.2020.132633
10.1088/1361-6382/aae0cd
10.1093/qjmam/hbz021
10.1145/320815.320819
10.1016/j.amc.2011.07.035
10.1016/0021-9991(71)90090-8
10.1088/1361-6382/aa7538
10.1093/imamat/hxab038
10.1002/aic.690070211
10.1002/aic.690400205
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1093/imamat/hxad006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3634
EndPage 66
ExternalDocumentID 10_1093_imamat_hxad006
GroupedDBID -E4
-~X
.2P
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
70D
AAIJN
AAJKP
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAYXX
ABDBF
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACUFI
ACUHS
ACUTJ
ACUXJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHGBF
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMVHM
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
CDBKE
CITATION
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EE~
ESX
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
I-F
IOX
J21
JAVBF
JXSIZ
KAQDR
KOP
KSI
KSN
M-Z
M43
N9A
NGC
NMDNZ
NOMLY
NU-
O9-
ODMLO
OJQWA
OJZSN
OXVGQ
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TJP
TN5
TUS
UPT
WH7
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
ID FETCH-LOGICAL-c239t-5e5c9bdbbcca39ebbbb3a29d36a592c593e30dc9dff6f6302f6ca8f5a93fa04c3
ISSN 0272-4960
IngestDate Thu Apr 24 22:54:53 EDT 2025
Tue Jul 01 01:59:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c239t-5e5c9bdbbcca39ebbbb3a29d36a592c593e30dc9dff6f6302f6ca8f5a93fa04c3
PageCount 24
ParticipantIDs crossref_primary_10_1093_imamat_hxad006
crossref_citationtrail_10_1093_imamat_hxad006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle IMA journal of applied mathematics
PublicationYear 2023
References Ramé (2023092304470539400_ref25) 2021; 86
Watson (2023092304470539400_ref31) 1914
Boyd (2023092304470539400_ref12) 1997; 11
Boyd (2023092304470539400_ref13) 1999; 8
Henrici (2023092304470539400_ref22) 1956; 3
Domb (2023092304470539400_ref17) 1957; 240
Bender (2023092304470539400_ref9) 1978
Cortell (2023092304470539400_ref16) 2010; 26
Van Dyke (2023092304470539400_ref29) 1975
Blake (2023092304470539400_ref10) 1994; 40
Batchelor (2023092304470539400_ref6) 1967
Beachley (2023092304470539400_ref7) 2018; 35
Fazio (2023092304470539400_ref19) 1992; 895
Turner (2023092304470539400_ref28) 1966
Reinberger (2023092304470539400_ref26) 2022; 75
Churchill (2023092304470539400_ref15) 1948
Leal (2023092304470539400_ref23) 1992
Barlow (2023092304470539400_ref3) 2020; 408
Barlow (2023092304470539400_ref4) 2017; 70
Weinstein (2023092304470539400_ref33) 2020; 411
Cebeci (2023092304470539400_ref14) 1971; 7
Baker (2023092304470539400_ref2) 1990
Flajolet (2023092304470539400_ref21) 2009
Eftekhari (2023092304470539400_ref18) 2013; 20
Barlow (2023092304470539400_ref5) 2017; 34
Van Dyke (2023092304470539400_ref30) 1975
Fazio (2023092304470539400_ref20) 2015; 106
Weinstein (2023092304470539400_ref32) 2004; 36
Belden (2023092304470539400_ref8) 2020; 73
Sakiadis (2023092304470539400_ref27) 1961; 7
Blasius (2023092304470539400_ref11) 1908; 56
Abbasbandy (2023092304470539400_ref1) 2011; 218
Probstein (2023092304470539400_ref24) 2003
References_xml – volume: 408
  start-page: 132540
  year: 2020
  ident: 2023092304470539400_ref3
  article-title: Accurate closed-form solution of the SIR epidemic model
  publication-title: Phys. D
  doi: 10.1016/j.physd.2020.132540
– volume: 106
  start-page: 196
  year: 2015
  ident: 2023092304470539400_ref20
  article-title: The iterative transformation method for the Sakiadis problem
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2014.10.007
– volume: 895
  start-page: 1
  year: 1992
  ident: 2023092304470539400_ref19
  article-title: The Blasius problem formulated as a free boundary problem
  publication-title: Acta Mech.
  doi: 10.1007/BF01170800
– volume-title: Inverse of the Vandermonde matrix with applications. Technical Note D-3547
  year: 1966
  ident: 2023092304470539400_ref28
– volume: 36
  start-page: 29
  year: 2004
  ident: 2023092304470539400_ref32
  article-title: Coating flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.36.050802.122049
– volume-title: Quantitative Theory of Critical Phenomenon, chapter 14: Padé approximants, algebraic aspects
  year: 1990
  ident: 2023092304470539400_ref2
– volume: 240
  start-page: 214
  year: 1957
  ident: 2023092304470539400_ref17
  article-title: On the susceptibility of a ferromagnetic above the curie point
  publication-title: Proc. Roy. Soc. London A
  doi: 10.1098/rspa.1957.0078
– volume: 26
  start-page: 187
  year: 2010
  ident: 2023092304470539400_ref16
  article-title: Numerical comparisons of Blasius and Sakiadis flows
  publication-title: MATEMATIKA
– volume-title: Complex Variables, chapter VI: Power series
  year: 1948
  ident: 2023092304470539400_ref15
– volume-title: An Introduction to Fluid Dynamics
  year: 1967
  ident: 2023092304470539400_ref6
– volume-title: Perturbation Methods in Fluid Mechanics
  year: 1975
  ident: 2023092304470539400_ref29
– volume-title: Perturbation Methods in Fluid Mechanics
  year: 1975
  ident: 2023092304470539400_ref30
– volume: 11
  start-page: 299
  year: 1997
  ident: 2023092304470539400_ref12
  article-title: Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain
  publication-title: Compr. Physiol.
– volume: 75
  start-page: 347
  year: 2022
  ident: 2023092304470539400_ref26
  article-title: On the power series solution to the nonlinear pendulum
  publication-title: Q. J. Mech. Appl. Math
  doi: 10.1093/qjmam/hbac013
– volume: 8
  start-page: 381
  year: 1999
  ident: 2023092304470539400_ref13
  article-title: The Blasius function in the complex plane
  publication-title: Experiment. Math.
  doi: 10.1080/10586458.1999.10504626
– volume-title: Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory
  year: 1978
  ident: 2023092304470539400_ref9
– volume: 70
  start-page: 21
  year: 2017
  ident: 2023092304470539400_ref4
  article-title: On the summation of divergent, truncated, and underspecified power series via asymptotic approximants
  publication-title: Q. J. Mech. Appl. Math.
– volume-title: Analytic Combinatorics, chapter IV.3: Singularities and exponential growth of coefficients
  year: 2009
  ident: 2023092304470539400_ref21
  doi: 10.1017/CBO9780511801655
– volume: 411
  start-page: 1
  year: 2020
  ident: 2023092304470539400_ref33
  article-title: Analytic solution of the SEIR epidemic model via asymptotic approximant
  publication-title: Phys. D
  doi: 10.1016/j.physd.2020.132633
– volume: 35
  start-page: 1
  year: 2018
  ident: 2023092304470539400_ref7
  article-title: Accurate closed-form trajectories of light around a Kerr black hole using asymptotic approximants
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aae0cd
– volume: 56
  start-page: 1
  year: 1908
  ident: 2023092304470539400_ref11
  article-title: Grenzschichten in Flussigkeiten mit kleiner Reibung
  publication-title: Zeitschrift fur Mathematik und Physik
– volume: 20
  start-page: 1278
  year: 2013
  ident: 2023092304470539400_ref18
  article-title: Numerical solution of general boundary layer problems by the method of differential quadrature
  publication-title: Sci. Iran.
– volume-title: Complex Integration and Cauchy’s Theorem, chapter VII: Expansions in series
  year: 1914
  ident: 2023092304470539400_ref31
– volume-title: Laminar flow and convective transport processes. Scaling Principles and asymptotic analysis, chapter 6.B: Asymptotic Expansions - General Considerations
  year: 1992
  ident: 2023092304470539400_ref23
– volume: 73
  start-page: 36
  year: 2020
  ident: 2023092304470539400_ref8
  article-title: Asymptotic approximant for the Falkner-Skan boundary layer equation
  publication-title: Q. J. Mech. Appl. Math.
  doi: 10.1093/qjmam/hbz021
– volume: 3
  start-page: 10
  year: 1956
  ident: 2023092304470539400_ref22
  article-title: Automatic computations with power series
  publication-title: JACM
  doi: 10.1145/320815.320819
– volume: 218
  start-page: 2179
  year: 2011
  ident: 2023092304470539400_ref1
  article-title: Analytic continuation of Taylor series and the boundary value problems of some nonlinear ordinary differential equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2011.07.035
– volume: 7
  start-page: 289
  year: 1971
  ident: 2023092304470539400_ref14
  article-title: Shooting and parallel shooting methods for solving the Falkner-Skan boundary-layer equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(71)90090-8
– volume: 34
  start-page: 1
  year: 2017
  ident: 2023092304470539400_ref5
  article-title: An asymptotically consistent approximant for the equatorial bending angle of light due to Kerr black holes
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aa7538
– volume: 86
  start-page: 1266
  year: 2021
  ident: 2023092304470539400_ref25
  article-title: Free surface shapes in rigid body rotation: exact solutions, asymptotics and approximants
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxab038
– volume: 7
  start-page: 221
  year: 1961
  ident: 2023092304470539400_ref27
  article-title: Boundary-layer behavior on continuous solid surfaces: II the boundary layer on a continuous flat surface
  publication-title: AlChE J.
  doi: 10.1002/aic.690070211
– volume: 40
  start-page: 229
  year: 1994
  ident: 2023092304470539400_ref10
  article-title: Hydrodynamic assist of dynamic wetting
  publication-title: AIChE J.
  doi: 10.1002/aic.690400205
– volume-title: Physicochemical Hydrodynamics, chapter 10.3: Coating Flows
  year: 2003
  ident: 2023092304470539400_ref24
SSID ssj0001570
Score 2.3150086
Snippet We examine the power series solutions of two classical nonlinear ordinary differential equations of fluid mechanics that are mathematically related by their...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 43
Title On the use of asymptotically motivated gauge functions to obtain convergent series solutions to nonlinear ODEs
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9owELcYfdkepn1q7T7kh0l7iNJS2zHJI_1A3SRA2lqtb8hxHEAipIIgrfvH9u_tnPOcbGVSNx4iiA5jcj_d_Xw-3xHyXmR9JQEX4XFqW5hlkQxjo9JQRlHOja2XUu_gj8by4kp8uo6uO50fraylbZUe6u87z5X8j1bhHujVnpL9B836QeEGvAf9whU0DNd76XiCOYpbjMerzW1xU5V1cHp5GxTYuQwI5UxtZyawHgzT3oBulqkNCWDOuT1-WQV2wmYT-AlbqRXW0VDrYHJ2vmnz2I-jQbvohHJctvBFYD1VH6vZ3Ia5zByNObDRdYPIz2ZRZ5ghcL4GpyprtvnVeok7T-M6wL8wyyZQ-0UVCveqRuVcgUt3QVkXwGC8lfeCdo71WSgSbCtwaNAOCylCLl2c0xnqOL4DSLS6WOjJ-W9s4nLHM2DVrEUBswPvNpx_U1mvt6MI9x_O0acs4mY9n-IIU_f9B2SPwfqEdcne4OTsZOhJwHHUx_Ce-2--Xig_whGO3AgtPtQiNpdPyGO3IqEDhNdT0jGrZ-TRqNHkc7KarCh8pAA0Wub0d6BRDzRaA416oNGqpAg02gCNItCoB5qV8kCjFmgvyNXw_PL0InSNOkLNeFKFkYl0kmZpCuaAJyaFF1csybhUUcJ0lHDDe5lOsjyXueQ9lkut4jxSCc9VT2j-knThh8wrQnWeAQfOYdErmdBawDMSmekrlTARw2p-n4S_HtdUuyr2tpnKcrpbQfvkg5e_wfotf5E8uLfka_KwwfEb0q3WW_MWqGmVvnMw-AmA6Jz8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+use+of+asymptotically+motivated+gauge+functions+to+obtain+convergent+series+solutions+to+nonlinear+ODEs&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Naghshineh%2C+Nastaran&rft.au=Reinberger%2C+W+Cade&rft.au=Barlow%2C+Nathaniel+S&rft.au=Samaha%2C+Mohamed+A&rft.date=2023-04-01&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=88&rft.issue=1&rft.spage=43&rft.epage=66&rft_id=info:doi/10.1093%2Fimamat%2Fhxad006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_imamat_hxad006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon