Vitamin D–VDR Signaling Inhibits Wnt/β-Catenin–Mediated Melanoma Progression and Promotes Antitumor Immunity

1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome, although a causal mechanism has not been established. As patients with melanoma commonly avoid sun exposure, and consequent vitamin D deficiency...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 79; no. 23; pp. 5986 - 5998
Main Authors Muralidhar, Sathya, Filia, Anastasia, Nsengimana, Jérémie, Poźniak, Joanna, O'Shea, Sally J., Diaz, Joey M., Harland, Mark, Randerson-Moor, Juliette A., Reichrath, Jörg, Laye, Jonathan P., van der Weyden, Louise, Adams, David J., Bishop, D.T., Newton-Bishop, Julia
Format Journal Article
LanguageEnglish
Published United States 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome, although a causal mechanism has not been established. As patients with melanoma commonly avoid sun exposure, and consequent vitamin D deficiency might worsen outcomes, we interrogated 703 primary melanoma transcriptomes to understand the role of vitamin D-VDR signaling and replicated the findings in The Cancer Genome Atlas metastases. expression was independently protective for melanoma-related death in both primary and metastatic disease. High tumor expression was associated with upregulation of pathways mediating antitumor immunity and corresponding with higher imputed immune cell scores and histologically detected tumor-infiltrating lymphocytes. High -expressing tumors had downregulation of proliferative pathways, notably Wnt/β-catenin signaling. Deleterious low levels resulted from promoter methylation and gene deletion in metastases. Vitamin D deficiency (<25 nmol/L ∼ 10 ng/mL) shortened survival in primary melanoma in a -dependent manner. functional validation studies showed that elevated vitamin D-VDR signaling inhibited Wnt/β-catenin signaling genes. Murine melanoma cells overexpressing produced fewer pulmonary metastases than controls in tail-vein metastasis assays. In summary, vitamin D-VDR signaling contributes to controlling pro-proliferative/immunosuppressive Wnt/β-catenin signaling in melanoma and this is associated with less metastatic disease and stronger host immune responses. This is evidence of a causal relationship between vitamin D-VDR signaling and melanoma survival, which should be explored as a therapeutic target in primary resistance to checkpoint blockade. SIGNIFICANCE: VDR expression could potentially be used as a biomarker to stratify patients with melanoma that may respond better to immunotherapy.
AbstractList 1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome, although a causal mechanism has not been established. As patients with melanoma commonly avoid sun exposure, and consequent vitamin D deficiency might worsen outcomes, we interrogated 703 primary melanoma transcriptomes to understand the role of vitamin D-VDR signaling and replicated the findings in The Cancer Genome Atlas metastases. VDR expression was independently protective for melanoma-related death in both primary and metastatic disease. High tumor VDR expression was associated with upregulation of pathways mediating antitumor immunity and corresponding with higher imputed immune cell scores and histologically detected tumor-infiltrating lymphocytes. High VDR-expressing tumors had downregulation of proliferative pathways, notably Wnt/β-catenin signaling. Deleterious low VDR levels resulted from promoter methylation and gene deletion in metastases. Vitamin D deficiency (<25 nmol/L ∼ 10 ng/mL) shortened survival in primary melanoma in a VDR-dependent manner. In vitro functional validation studies showed that elevated vitamin D-VDR signaling inhibited Wnt/β-catenin signaling genes. Murine melanoma cells overexpressing VDR produced fewer pulmonary metastases than controls in tail-vein metastasis assays. In summary, vitamin D-VDR signaling contributes to controlling pro-proliferative/immunosuppressive Wnt/β-catenin signaling in melanoma and this is associated with less metastatic disease and stronger host immune responses. This is evidence of a causal relationship between vitamin D-VDR signaling and melanoma survival, which should be explored as a therapeutic target in primary resistance to checkpoint blockade. SIGNIFICANCE: VDR expression could potentially be used as a biomarker to stratify patients with melanoma that may respond better to immunotherapy.1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome, although a causal mechanism has not been established. As patients with melanoma commonly avoid sun exposure, and consequent vitamin D deficiency might worsen outcomes, we interrogated 703 primary melanoma transcriptomes to understand the role of vitamin D-VDR signaling and replicated the findings in The Cancer Genome Atlas metastases. VDR expression was independently protective for melanoma-related death in both primary and metastatic disease. High tumor VDR expression was associated with upregulation of pathways mediating antitumor immunity and corresponding with higher imputed immune cell scores and histologically detected tumor-infiltrating lymphocytes. High VDR-expressing tumors had downregulation of proliferative pathways, notably Wnt/β-catenin signaling. Deleterious low VDR levels resulted from promoter methylation and gene deletion in metastases. Vitamin D deficiency (<25 nmol/L ∼ 10 ng/mL) shortened survival in primary melanoma in a VDR-dependent manner. In vitro functional validation studies showed that elevated vitamin D-VDR signaling inhibited Wnt/β-catenin signaling genes. Murine melanoma cells overexpressing VDR produced fewer pulmonary metastases than controls in tail-vein metastasis assays. In summary, vitamin D-VDR signaling contributes to controlling pro-proliferative/immunosuppressive Wnt/β-catenin signaling in melanoma and this is associated with less metastatic disease and stronger host immune responses. This is evidence of a causal relationship between vitamin D-VDR signaling and melanoma survival, which should be explored as a therapeutic target in primary resistance to checkpoint blockade. SIGNIFICANCE: VDR expression could potentially be used as a biomarker to stratify patients with melanoma that may respond better to immunotherapy.
1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome, although a causal mechanism has not been established. As patients with melanoma commonly avoid sun exposure, and consequent vitamin D deficiency might worsen outcomes, we interrogated 703 primary melanoma transcriptomes to understand the role of vitamin D-VDR signaling and replicated the findings in The Cancer Genome Atlas metastases. expression was independently protective for melanoma-related death in both primary and metastatic disease. High tumor expression was associated with upregulation of pathways mediating antitumor immunity and corresponding with higher imputed immune cell scores and histologically detected tumor-infiltrating lymphocytes. High -expressing tumors had downregulation of proliferative pathways, notably Wnt/β-catenin signaling. Deleterious low levels resulted from promoter methylation and gene deletion in metastases. Vitamin D deficiency (<25 nmol/L ∼ 10 ng/mL) shortened survival in primary melanoma in a -dependent manner. functional validation studies showed that elevated vitamin D-VDR signaling inhibited Wnt/β-catenin signaling genes. Murine melanoma cells overexpressing produced fewer pulmonary metastases than controls in tail-vein metastasis assays. In summary, vitamin D-VDR signaling contributes to controlling pro-proliferative/immunosuppressive Wnt/β-catenin signaling in melanoma and this is associated with less metastatic disease and stronger host immune responses. This is evidence of a causal relationship between vitamin D-VDR signaling and melanoma survival, which should be explored as a therapeutic target in primary resistance to checkpoint blockade. SIGNIFICANCE: VDR expression could potentially be used as a biomarker to stratify patients with melanoma that may respond better to immunotherapy.
Author Randerson-Moor, Juliette A.
Reichrath, Jörg
Adams, David J.
Filia, Anastasia
O'Shea, Sally J.
Muralidhar, Sathya
Bishop, D.T.
Diaz, Joey M.
Harland, Mark
Laye, Jonathan P.
Poźniak, Joanna
van der Weyden, Louise
Nsengimana, Jérémie
Newton-Bishop, Julia
Author_xml – sequence: 1
  givenname: Sathya
  surname: Muralidhar
  fullname: Muralidhar, Sathya
– sequence: 2
  givenname: Anastasia
  surname: Filia
  fullname: Filia, Anastasia
– sequence: 3
  givenname: Jérémie
  surname: Nsengimana
  fullname: Nsengimana, Jérémie
– sequence: 4
  givenname: Joanna
  surname: Poźniak
  fullname: Poźniak, Joanna
– sequence: 5
  givenname: Sally J.
  surname: O'Shea
  fullname: O'Shea, Sally J.
– sequence: 6
  givenname: Joey M.
  surname: Diaz
  fullname: Diaz, Joey M.
– sequence: 7
  givenname: Mark
  surname: Harland
  fullname: Harland, Mark
– sequence: 8
  givenname: Juliette A.
  surname: Randerson-Moor
  fullname: Randerson-Moor, Juliette A.
– sequence: 9
  givenname: Jörg
  surname: Reichrath
  fullname: Reichrath, Jörg
– sequence: 10
  givenname: Jonathan P.
  surname: Laye
  fullname: Laye, Jonathan P.
– sequence: 11
  givenname: Louise
  surname: van der Weyden
  fullname: van der Weyden, Louise
– sequence: 12
  givenname: David J.
  surname: Adams
  fullname: Adams, David J.
– sequence: 13
  givenname: D.T.
  orcidid: 0000-0002-8752-8785
  surname: Bishop
  fullname: Bishop, D.T.
– sequence: 14
  givenname: Julia
  orcidid: 0000-0001-9147-6802
  surname: Newton-Bishop
  fullname: Newton-Bishop, Julia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31690667$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9OHSEchYmx0av1Edqw7GaU33CBuenq5trqTbQa658lYRi8pRlAgVm48x18Ex_Eh_BJZKJ14aYrOMl3CPnOFlr3wRuEvgDZBWDNHiGkqdhU1LuL-a8KmorOarGGJsBoU4nplK2jyTuzibZS-lsiA8I20CYFPiOciwm6vbRZOevx_vP9w-X-Gf5tV1711q_w0v-xrc0JX_m89_RYLVQ23vrCHZvOltDhY9MrH5zCpzGsoknJBo-V78bsQjYJz322eXAh4qVzg7f57jP6dK36ZHbezm108fPH-eKwOjo5WC7mR5Wu6SxXIFhNDWjKWwDKRaMFUEHbTgNo0jFOQBtDGjY1XAum23LRTLCO05oxBXQbfXt99yaG28GkLJ1N2vTlxyYMSdYUCkig5gX9-oYOrTOdvInWqXgn_2kqAHsFdAwpRXP9jgCR4xxyVC1H1bLMIaGR4xyl9_1DTxfduVjKUdn-P-0XbV2SOg
CitedBy_id crossref_primary_10_1038_s41388_021_01912_4
crossref_primary_10_3390_cimb46040191
crossref_primary_10_1016_j_intimp_2023_110424
crossref_primary_10_1200_PO_24_00375
crossref_primary_10_3390_nu14235104
crossref_primary_10_1016_j_isci_2020_101974
crossref_primary_10_25259_IJDVL_1236_2021
crossref_primary_10_1016_j_ad_2024_05_017
crossref_primary_10_1093_bjd_ljae302
crossref_primary_10_1126_science_adh7954
crossref_primary_10_3389_fendo_2021_725708
crossref_primary_10_3390_cancers13133111
crossref_primary_10_3390_nu15112592
crossref_primary_10_3390_nu15204409
crossref_primary_10_1111_febs_16417
crossref_primary_10_1016_j_jid_2024_04_022
crossref_primary_10_3390_ijms25168719
crossref_primary_10_1016_j_jid_2021_11_017
crossref_primary_10_1186_s12903_023_03026_7
crossref_primary_10_1530_EJE_21_0879
crossref_primary_10_1002_term_3239
crossref_primary_10_1093_burnst_tkae063
crossref_primary_10_1016_j_intimp_2024_111989
crossref_primary_10_1080_00914037_2020_1809406
crossref_primary_10_3390_nu15204483
crossref_primary_10_1016_j_jpba_2024_116510
crossref_primary_10_3390_ijms21207697
crossref_primary_10_1016_j_biochi_2020_11_019
crossref_primary_10_1111_exd_14750
crossref_primary_10_12968_hmed_2020_0128
crossref_primary_10_18632_aging_103510
crossref_primary_10_1016_j_mce_2022_111757
crossref_primary_10_31011_reaid_2025_v_99_n_1_art_2397
crossref_primary_10_3390_nu14061291
crossref_primary_10_1093_bjd_ljae257
crossref_primary_10_1016_j_nut_2021_111413
crossref_primary_10_3389_fphar_2021_714065
crossref_primary_10_3390_ph16050637
crossref_primary_10_1186_s12885_024_11907_5
crossref_primary_10_3390_cells9020335
crossref_primary_10_1007_s13577_023_01002_5
crossref_primary_10_1016_j_bbcan_2021_188564
crossref_primary_10_1111_pcmr_13040
crossref_primary_10_3390_cancers16122262
crossref_primary_10_1016_j_ijbiomac_2024_130405
crossref_primary_10_1016_j_steroids_2024_109488
crossref_primary_10_7717_peerj_15777
crossref_primary_10_3390_ijms252111651
crossref_primary_10_1111_exd_14147
crossref_primary_10_1186_s12885_023_10690_z
crossref_primary_10_57582_IJBF_230301_027
crossref_primary_10_2174_1389201024666230330075550
crossref_primary_10_3390_ijms252010914
crossref_primary_10_1177_15330338221089933
crossref_primary_10_1007_s11033_023_09111_y
crossref_primary_10_3389_fonc_2022_839816
crossref_primary_10_1002_oby_23365
crossref_primary_10_3390_cancers12113434
crossref_primary_10_1007_s10787_022_01027_6
crossref_primary_10_3389_fendo_2022_992666
crossref_primary_10_1016_j_jid_2024_02_034
crossref_primary_10_3390_ijms241713661
crossref_primary_10_3389_frmbi_2022_1049688
crossref_primary_10_1016_j_ad_2024_03_019
crossref_primary_10_1097_CMR_0000000000000897
crossref_primary_10_3389_fonc_2021_763895
crossref_primary_10_3389_fonc_2021_743667
crossref_primary_10_1016_j_bbrc_2020_02_027
crossref_primary_10_3390_nu13124227
crossref_primary_10_1038_s41467_023_39858_8
crossref_primary_10_3389_fonc_2020_00891
crossref_primary_10_3390_cells11091460
crossref_primary_10_1016_j_pharmr_2024_100032
Cites_doi 10.1038/labinvest.2017.3
10.1210/jc.2016-3189
10.1210/me.2014-1315
10.1038/srep40370
10.1152/physiolgenomics.00002.2003
10.1158/0008-5472.CAN-11-3218
10.18632/oncotarget.15803
10.1016/j.gene.2015.02.024
10.1038/nature20792
10.1002/jcb.20182
10.1056/NEJMoa1709684
10.1158/0008-5472.CAN-17-0491
10.1371/journal.pone.0126394
10.1093/jnci/djv264
10.1016/j.jid.2016.05.119
10.1158/1078-0432.CCR-04-0713
10.1126/science.aad0095
10.1111/j.1365-2133.2012.11212.x
10.11131/2015/101182
10.1186/s13059-015-0620-6
10.1073/pnas.0915174107
10.1158/1078-0432.CCR-09-2509
10.1007/s11154-011-9194-0
10.1093/carcin/bgm094
10.1016/j.cell.2017.01.010
10.1038/nbt.1630
10.1038/s41598-019-45210-2
10.1002/jcb.21151
10.1038/nature14404
10.1200/JCO.2015.64.1357
10.1038/sdata.2017.129
10.1016/j.bcp.2009.09.005
10.18632/oncotarget.14316
10.1172/JCI95351
10.1371/journal.pone.0096105
10.1023/A:1024487118457
10.1158/0008-5472.CAN-18-2864
10.1002/(SICI)1097-0142(19960401)77:7<1303::AID-CNCR12>3.0.CO;2-5
10.18632/oncotarget.3549
10.1186/gb-2012-13-12-r112
10.1089/cbr.2014.1736
10.2220/biomedres.27.99
10.1210/me.2005-0106
10.2105/AJPH.2004.045260
10.1016/j.yexcr.2014.07.028
10.1200/JCO.2009.22.1135
10.1189/jlb.0411208
10.1016/j.cell.2015.05.044
10.1002/ijc.11696
10.1210/me.2004-0415
10.1093/ije/dyp166
10.1016/j.ejcsup.2013.07.013
10.1016/S2213-8587(13)70165-7
10.1016/j.beem.2011.05.010
ContentType Journal Article
Copyright 2019 American Association for Cancer Research.
Copyright_xml – notice: 2019 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/0008-5472.CAN-18-3927
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 5998
ExternalDocumentID 31690667
10_1158_0008_5472_CAN_18_3927
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 11963
– fundername: Cancer Research UK
  grantid: 10589
– fundername: Cancer Research UK
  grantid: 21717
– fundername: Medical Research Council
  grantid: MR/L01629X/1
– fundername: Cancer Research UK
  grantid: 19167
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c239t-17523e1c36b113678c71373bdc11c0d5601cee0854e6c75cb54ec575d63255a13
ISSN 0008-5472
1538-7445
IngestDate Fri Jul 11 16:23:01 EDT 2025
Mon Jul 21 05:43:13 EDT 2025
Tue Jul 01 01:27:24 EDT 2025
Thu Apr 24 23:03:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License 2019 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c239t-17523e1c36b113678c71373bdc11c0d5601cee0854e6c75cb54ec575d63255a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9147-6802
0000-0002-8752-8785
PMID 31690667
PQID 2312550126
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2312550126
pubmed_primary_31690667
crossref_primary_10_1158_0008_5472_CAN_18_3927
crossref_citationtrail_10_1158_0008_5472_CAN_18_3927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2019
References Slominski (2022061706295804100_bib44) 2017; 97
Long (2022061706295804100_bib45) 2015; 2
Gambichler (2022061706295804100_bib14) 2013; 168
Jonsson (2022061706295804100_bib36) 2010; 16
SACN TSACoN (2022061706295804100_bib30)
Swami (2022061706295804100_bib6) 2003; 80
Ryu (2022061706295804100_bib34) 2014; 327
Spath (2022061706295804100_bib51) 2017; 7
Campbell (2022061706295804100_bib2) 2010; 79
Bennesch (2022061706295804100_bib48) 2015; 29
Nsengimana (2022061706295804100_bib21) 2015; 6
Oble (2022061706295804100_bib37) 2009; 9
Umeshappa (2022061706295804100_bib56) 2015; 30
Wood (2022061706295804100_bib7) 2004; 17
The Cancer Genome Atlas Network (2022061706295804100_bib20) 2015; 161
Hugo (2022061706295804100_bib27) 2017; 168
Xu (2022061706295804100_bib35) 2004; 109
Van Allen (2022061706295804100_bib28) 2015; 350
Cianferotti (2022061706295804100_bib52) 2007; 101
Newton-Bishop (2022061706295804100_bib10) 2009; 27
Tuoresmaki (2022061706295804100_bib23) 2014; 9
Wyatt (2022061706295804100_bib13) 2015; 10
Clemente (2022061706295804100_bib38) 1996; 77
McLean (2022061706295804100_bib24) 2010; 28
Filia (2022061706295804100_bib17) 2019; 9
Camp (2022061706295804100_bib29) 2004; 10
Garland (2022061706295804100_bib3) 2006; 96
Lauss (2022061706295804100_bib19) 2016; 136
Haanen (2022061706295804100_bib40) 2013; 11
Timerman (2022061706295804100_bib11) 2017; 8
Pozniak (2022061706295804100_bib25) 2019; 79
Skorija (2022061706295804100_bib49) 2005; 19
Suzuki (2022061706295804100_bib8) 2006; 27
Aguilera (2022061706295804100_bib47) 2007; 28
Spranger (2022061706295804100_bib42) 2015; 523
Wang (2022061706295804100_bib9) 2005; 19
Erdag (2022061706295804100_bib39) 2012; 72
Taylor (2022061706295804100_bib57) 2018; 78
van der Weyden (2022061706295804100_bib32) 2017; 541
Angelova (2022061706295804100_bib26) 2015; 16
Saccone (2022061706295804100_bib46) 2015; 561
Takeda (2022061706295804100_bib54) 2011; 90
Guzey (2022061706295804100_bib5) 2004; 93
Brozyna (2022061706295804100_bib43) 2014; 34
Autier (2022061706295804100_bib4) 2014; 2
Trivedi (2022061706295804100_bib50) 2017; 8
Curran (2022061706295804100_bib33) 2010; 107
Haussler (2022061706295804100_bib1) 2011; 25
Wolchok (2022061706295804100_bib41) 2017; 377
Nsengimana (2022061706295804100_bib16) 2018; 128
van der Weyden (2022061706295804100_bib55) 2017; 4
Wu (2022061706295804100_bib22) 2012; 13
Chang (2022061706295804100_bib58) 2009; 38
Saiag (2022061706295804100_bib15) 2015; 107
Shah (2022061706295804100_bib31) 2017; 102
Fang (2022061706295804100_bib12) 2016; 34
Bikle (2022061706295804100_bib18) 2012; 13
Katoh (2022061706295804100_bib53) 2005; 14
References_xml – volume: 97
  start-page: 706
  year: 2017
  ident: 2022061706295804100_bib44
  article-title: Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management
  publication-title: Lab Invest
  doi: 10.1038/labinvest.2017.3
– volume: 102
  start-page: 2321
  year: 2017
  ident: 2022061706295804100_bib31
  article-title: Serum 25-hydroxyvitamin D insufficiency in search of a bone disease
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2016-3189
– volume: 29
  start-page: 349
  year: 2015
  ident: 2022061706295804100_bib48
  article-title: Minireview: tipping the balance: ligand-independent activation of steroid receptors
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2014-1315
– volume: 7
  start-page: 40370
  year: 2017
  ident: 2022061706295804100_bib51
  article-title: Antiproliferative effects of 1alpha-OH-vitD3 in malignant melanoma: potential therapeutic implications
  publication-title: Sci Rep
  doi: 10.1038/srep40370
– volume: 17
  start-page: 122
  year: 2004
  ident: 2022061706295804100_bib7
  article-title: DNA microarray analysis of vitamin D-induced gene expression in a human colon carcinoma cell line
  publication-title: Physiol Genomics
  doi: 10.1152/physiolgenomics.00002.2003
– volume: 72
  start-page: 1070
  year: 2012
  ident: 2022061706295804100_bib39
  article-title: Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-3218
– volume: 8
  start-page: 26687
  year: 2017
  ident: 2022061706295804100_bib50
  article-title: The vitamin D receptor is involved in the regulation of human breast cancer cell growth via a ligand-independent function in cytoplasm
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.15803
– volume: 561
  start-page: 171
  year: 2015
  ident: 2022061706295804100_bib46
  article-title: Regulation of the vitamin D receptor gene by environment, genetics and epigenetics
  publication-title: Gene
  doi: 10.1016/j.gene.2015.02.024
– volume: 541
  start-page: 233
  year: 2017
  ident: 2022061706295804100_bib32
  article-title: Genome-wide in vivo screen identifies novel host regulators of metastatic colonization
  publication-title: Nature
  doi: 10.1038/nature20792
– volume: 93
  start-page: 271
  year: 2004
  ident: 2022061706295804100_bib5
  article-title: Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.20182
– volume: 377
  start-page: 1345
  year: 2017
  ident: 2022061706295804100_bib41
  article-title: Overall survival with combined nivolumab and ipilimumab in advanced melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1709684
– volume: 78
  start-page: 706
  year: 2018
  ident: 2022061706295804100_bib57
  article-title: Small-molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in cancer therapy
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0491
– volume: 10
  start-page: e0126394
  year: 2015
  ident: 2022061706295804100_bib13
  article-title: Vitamin D deficiency at melanoma diagnosis is associated with higher Breslow thickness
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0126394
– volume: 107
  start-page: djv264
  year: 2015
  ident: 2022061706295804100_bib15
  article-title: Prognostic value of 25-hydroxyvitamin D3 levels at diagnosis and during follow-up in melanoma patients
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djv264
– volume: 136
  start-page: 2502
  year: 2016
  ident: 2022061706295804100_bib19
  article-title: Consensus of melanoma gene expression subtypes converges on biological entities
  publication-title: J Invest Dermatol
  doi: 10.1016/j.jid.2016.05.119
– volume: 10
  start-page: 7252
  year: 2004
  ident: 2022061706295804100_bib29
  article-title: X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-0713
– volume: 350
  start-page: 207
  year: 2015
  ident: 2022061706295804100_bib28
  article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
  publication-title: Science
  doi: 10.1126/science.aad0095
– volume: 168
  start-page: 625
  year: 2013
  ident: 2022061706295804100_bib14
  article-title: Serum 25-hydroxyvitamin D serum levels in a large German cohort of patients with melanoma
  publication-title: Br J Dermatol
  doi: 10.1111/j.1365-2133.2012.11212.x
– volume: 2
  year: 2015
  ident: 2022061706295804100_bib45
  article-title: Pan-cancer analyses of the nuclear receptor superfamily
  publication-title: Nucl Receptor Res
  doi: 10.11131/2015/101182
– volume: 16
  start-page: 64
  year: 2015
  ident: 2022061706295804100_bib26
  article-title: Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0620-6
– volume: 9
  start-page: 3
  year: 2009
  ident: 2022061706295804100_bib37
  article-title: Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma
  publication-title: Cancer Immun
– volume: 107
  start-page: 4275
  year: 2010
  ident: 2022061706295804100_bib33
  article-title: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0915174107
– volume: 16
  start-page: 3356
  year: 2010
  ident: 2022061706295804100_bib36
  article-title: Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-2509
– volume: 13
  start-page: 3
  year: 2012
  ident: 2022061706295804100_bib18
  article-title: Vitamin D and the skin: physiology and pathophysiology
  publication-title: Rev Endocr Metab Disord
  doi: 10.1007/s11154-011-9194-0
– volume: 28
  start-page: 1877
  year: 2007
  ident: 2022061706295804100_bib47
  article-title: The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgm094
– volume: 168
  start-page: 542
  year: 2017
  ident: 2022061706295804100_bib27
  article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2017.01.010
– volume: 28
  start-page: 495
  year: 2010
  ident: 2022061706295804100_bib24
  article-title: GREAT improves functional interpretation of cis-regulatory regions
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1630
– volume: 9
  start-page: 8908
  year: 2019
  ident: 2022061706295804100_bib17
  article-title: High-resolution copy number patterns from clinically relevant FFPE material
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45210-2
– volume: 101
  start-page: 80
  year: 2007
  ident: 2022061706295804100_bib52
  article-title: VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.21151
– volume: 523
  start-page: 231
  year: 2015
  ident: 2022061706295804100_bib42
  article-title: Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity
  publication-title: Nature
  doi: 10.1038/nature14404
– volume: 34
  start-page: 1741
  year: 2016
  ident: 2022061706295804100_bib12
  article-title: Association of vitamin D levels with outcome in patients with melanoma after adjustment for C-reactive protein
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2015.64.1357
– volume: 4
  start-page: 170129
  year: 2017
  ident: 2022061706295804100_bib55
  article-title: Genome wide in vivo mouse screen data from studies to assess host regulation of metastatic colonisation
  publication-title: Sci Data
  doi: 10.1038/sdata.2017.129
– volume: 14
  start-page: 1583
  year: 2005
  ident: 2022061706295804100_bib53
  article-title: WNT/PCP signaling pathway and human cancer (review)
  publication-title: Oncol Rep
– volume: 79
  start-page: 1
  year: 2010
  ident: 2022061706295804100_bib2
  article-title: The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: operational networks and tissue-specific growth control
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2009.09.005
– volume: 8
  start-page: 6873
  year: 2017
  ident: 2022061706295804100_bib11
  article-title: Vitamin D deficiency is associated with a worse prognosis in metastatic melanoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14316
– volume: 128
  start-page: 2048
  year: 2018
  ident: 2022061706295804100_bib16
  article-title: β-Catenin-mediated immune evasion pathway frequently operates in primary cutaneous melanomas
  publication-title: J Clin Invest
  doi: 10.1172/JCI95351
– volume: 9
  start-page: e96105
  year: 2014
  ident: 2022061706295804100_bib23
  article-title: Patterns of genome-wide VDR locations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0096105
– volume: 80
  start-page: 49
  year: 2003
  ident: 2022061706295804100_bib6
  article-title: Vitamin D growth inhibition of breast cancer cells: gene expression patterns assessed by cDNA microarray
  publication-title: Breast Cancer Res Treat
  doi: 10.1023/A:1024487118457
– volume: 79
  start-page: 2684
  year: 2019
  ident: 2022061706295804100_bib25
  article-title: Genetic and environmental determinants of immune response to cutaneous melanoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-2864
– volume: 77
  start-page: 1303
  year: 1996
  ident: 2022061706295804100_bib38
  article-title: Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(19960401)77:7<1303::AID-CNCR12>3.0.CO;2-5
– volume: 34
  start-page: 2735
  year: 2014
  ident: 2022061706295804100_bib43
  article-title: Decreased VDR expression in cutaneous melanomas as marker of tumor progression: new data and analyses
  publication-title: Anticancer Res
– ident: 2022061706295804100_bib30
– volume: 6
  start-page: 11683
  year: 2015
  ident: 2022061706295804100_bib21
  article-title: Independent replication of a melanoma subtype gene signature and evaluation of its prognostic value and biological correlates in a population cohort
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.3549
– volume: 13
  start-page: R112
  year: 2012
  ident: 2022061706295804100_bib22
  article-title: A network module-based method for identifying cancer prognostic signatures
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-12-r112
– volume: 30
  start-page: 72
  year: 2015
  ident: 2022061706295804100_bib56
  article-title: Innate and adoptive immune cells contribute to natural resistance to systemic metastasis of B16 melanoma
  publication-title: Cancer Biother Radiopharm
  doi: 10.1089/cbr.2014.1736
– volume: 27
  start-page: 99
  year: 2006
  ident: 2022061706295804100_bib8
  article-title: DNA microarray analysis of changes in gene expression induced by 1,25-dihydroxyvitamin D3 in human promyelocytic leukemia HL-60 cells
  publication-title: Biomed Res
  doi: 10.2220/biomedres.27.99
– volume: 19
  start-page: 2685
  year: 2005
  ident: 2022061706295804100_bib9
  article-title: Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2005-0106
– volume: 96
  start-page: 252
  year: 2006
  ident: 2022061706295804100_bib3
  article-title: The role of vitamin D in cancer prevention
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.2004.045260
– volume: 327
  start-page: 209
  year: 2014
  ident: 2022061706295804100_bib34
  article-title: Accumulation of cytolytic CD8+ T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2014.07.028
– volume: 27
  start-page: 5439
  year: 2009
  ident: 2022061706295804100_bib10
  article-title: Serum 25-hydroxyvitamin D3 levels are associated with Breslow thickness at presentation and survival from melanoma
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2009.22.1135
– volume: 90
  start-page: 777
  year: 2011
  ident: 2022061706295804100_bib54
  article-title: IFN-γ production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0411208
– volume: 161
  start-page: 1681
  year: 2015
  ident: 2022061706295804100_bib20
  article-title: Genomic classification of cutaneous melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.044
– volume: 109
  start-page: 499
  year: 2004
  ident: 2022061706295804100_bib35
  article-title: NK and CD8+ T cell-mediated eradication of poorly immunogenic B16-F10 melanoma by the combined action of IL-12 gene therapy and 4-1BB costimulation
  publication-title: Int J Cancer
  doi: 10.1002/ijc.11696
– volume: 19
  start-page: 855
  year: 2005
  ident: 2022061706295804100_bib49
  article-title: Ligand-independent actions of the vitamin D receptor maintain hair follicle homeostasis
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2004-0415
– volume: 38
  start-page: 814
  year: 2009
  ident: 2022061706295804100_bib58
  article-title: Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyp166
– volume: 11
  start-page: 97
  year: 2013
  ident: 2022061706295804100_bib40
  article-title: Immunotherapy of melanoma
  publication-title: EJC Suppl
  doi: 10.1016/j.ejcsup.2013.07.013
– volume: 2
  start-page: 76
  year: 2014
  ident: 2022061706295804100_bib4
  article-title: Vitamin D status and ill health: a systematic review
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(13)70165-7
– volume: 25
  start-page: 543
  year: 2011
  ident: 2022061706295804100_bib1
  article-title: Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms
  publication-title: Best Pract Res Clin Endocrinol Metab
  doi: 10.1016/j.beem.2011.05.010
SSID ssj0005105
Score 2.5722244
Snippet 1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 5986
SubjectTerms Animals
beta Catenin - metabolism
Calcitriol - blood
Calcitriol - deficiency
Cell Line, Tumor
Datasets as Topic
Disease Progression
Female
Humans
Lymphocytes, Tumor-Infiltrating - immunology
Male
Melanoma - blood
Melanoma - immunology
Melanoma - mortality
Melanoma - pathology
Mice
Receptors, Calcitriol - metabolism
Skin - metabolism
Skin Neoplasms - blood
Skin Neoplasms - immunology
Skin Neoplasms - mortality
Skin Neoplasms - pathology
Survival Analysis
Time Factors
Vitamin D Deficiency - blood
Vitamin D Deficiency - immunology
Vitamin D Deficiency - pathology
Wnt Signaling Pathway
Title Vitamin D–VDR Signaling Inhibits Wnt/β-Catenin–Mediated Melanoma Progression and Promotes Antitumor Immunity
URI https://www.ncbi.nlm.nih.gov/pubmed/31690667
https://www.proquest.com/docview/2312550126
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXcFAhyKbrH3cAC9cmgU2qh5KOjxEhb2GibpbkJEkXbQi06sOVD-0e99kP6TR2Soqy0DrpcBEG0KMPvefhGM5xB6BXLQBMEXp_0hSOI52SUpBn8r7yEuR5XCxLX2RZjdnLuvb30L1utb42spXWZ9vjXrftK_gdVuAa4ql2y_4BsPSlcgHPAF46AMBz_CuMLcOyLXHaPyMXRx-5pPlWqWmcAzPJURQQ-qaoCw0503Dl0SASyUuaSjHR3DhCaIzFP5KJI1G6BqcmHlXb3ACAoVqq0QF6ui8Wy-0bvIymvBYEjxZhlt6oXNNMBYZPZoS3PfN5rvGcYqfoeeTYzCd2nIDy_1CvCMK9ydgcyAbW6yuuR8UrIaa5SbDXdTFi_iu4XeU3K94tO5HcOBzJPPpuYQCJNW3D7RoP2G9khYmOFA8_UmbRm2vScqejouA2jq0rMb18N_NCkT4bE9wKnFw3GhIYEJGHQ_DyAelVoirgqaMhMf5BfynDboVvotgMeiTKp7z5sCtMrnVptEIOnHmx95h7atbNcV0E3uDZa4pzdRXcq3wQPDNHuoZaQ99HuqMq-eICKim9Y8w3XfMOWbxj4dvDj-29Mw5ZpuME0DEzDlmm4Zhq2THuIzofHZ9EJqdp1EO64_ZKAEHVcQbnLUtUoKAh5QN3ATTNOKX-dKdcfFBlIfE8wHvg8hRMO3kLGXPBrE-o-QjtyIcU-wnTCk0nqJRwMjMdhkLGJ4LAWTSjzs37WRp79-WJe1bJXLVXmsfZp_VDlVISxAiAGAGIaxgqANurVt12ZYi5_uuGlxSYGs6tiaYkUi_UqBrcIvjSoO9ZGjw1o9ZQW5Cc3jjxFexviP0M75XItnoO4LdMXmlY_ASwBnSk
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vitamin+D-VDR+Signaling+Inhibits+Wnt%2F%CE%B2-Catenin-Mediated+Melanoma+Progression+and+Promotes+Antitumor+Immunity&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Muralidhar%2C+Sathya&rft.au=Filia%2C+Anastasia&rft.au=Nsengimana%2C+J%C3%A9r%C3%A9mie&rft.au=Po%C5%BAniak%2C+Joanna&rft.date=2019-12-01&rft.eissn=1538-7445&rft.volume=79&rft.issue=23&rft.spage=5986&rft_id=info:doi/10.1158%2F0008-5472.CAN-18-3927&rft_id=info%3Apmid%2F31690667&rft.externalDocID=31690667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon