Vitamin D–VDR Signaling Inhibits Wnt/β-Catenin–Mediated Melanoma Progression and Promotes Antitumor Immunity
1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome, although a causal mechanism has not been established. As patients with melanoma commonly avoid sun exposure, and consequent vitamin D deficiency...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 79; no. 23; pp. 5986 - 5998 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome, although a causal mechanism has not been established. As patients with melanoma commonly avoid sun exposure, and consequent vitamin D deficiency might worsen outcomes, we interrogated 703 primary melanoma transcriptomes to understand the role of vitamin D-VDR signaling and replicated the findings in The Cancer Genome Atlas metastases.
expression was independently protective for melanoma-related death in both primary and metastatic disease. High tumor
expression was associated with upregulation of pathways mediating antitumor immunity and corresponding with higher imputed immune cell scores and histologically detected tumor-infiltrating lymphocytes. High
-expressing tumors had downregulation of proliferative pathways, notably Wnt/β-catenin signaling. Deleterious low
levels resulted from promoter methylation and gene deletion in metastases. Vitamin D deficiency (<25 nmol/L ∼ 10 ng/mL) shortened survival in primary melanoma in a
-dependent manner.
functional validation studies showed that elevated vitamin D-VDR signaling inhibited Wnt/β-catenin signaling genes. Murine melanoma cells overexpressing
produced fewer pulmonary metastases than controls in tail-vein metastasis assays. In summary, vitamin D-VDR signaling contributes to controlling pro-proliferative/immunosuppressive Wnt/β-catenin signaling in melanoma and this is associated with less metastatic disease and stronger host immune responses. This is evidence of a causal relationship between vitamin D-VDR signaling and melanoma survival, which should be explored as a therapeutic target in primary resistance to checkpoint blockade. SIGNIFICANCE: VDR expression could potentially be used as a biomarker to stratify patients with melanoma that may respond better to immunotherapy. |
---|---|
AbstractList | 1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome, although a causal mechanism has not been established. As patients with melanoma commonly avoid sun exposure, and consequent vitamin D deficiency might worsen outcomes, we interrogated 703 primary melanoma transcriptomes to understand the role of vitamin D-VDR signaling and replicated the findings in The Cancer Genome Atlas metastases. VDR expression was independently protective for melanoma-related death in both primary and metastatic disease. High tumor VDR expression was associated with upregulation of pathways mediating antitumor immunity and corresponding with higher imputed immune cell scores and histologically detected tumor-infiltrating lymphocytes. High VDR-expressing tumors had downregulation of proliferative pathways, notably Wnt/β-catenin signaling. Deleterious low VDR levels resulted from promoter methylation and gene deletion in metastases. Vitamin D deficiency (<25 nmol/L ∼ 10 ng/mL) shortened survival in primary melanoma in a VDR-dependent manner. In vitro functional validation studies showed that elevated vitamin D-VDR signaling inhibited Wnt/β-catenin signaling genes. Murine melanoma cells overexpressing VDR produced fewer pulmonary metastases than controls in tail-vein metastasis assays. In summary, vitamin D-VDR signaling contributes to controlling pro-proliferative/immunosuppressive Wnt/β-catenin signaling in melanoma and this is associated with less metastatic disease and stronger host immune responses. This is evidence of a causal relationship between vitamin D-VDR signaling and melanoma survival, which should be explored as a therapeutic target in primary resistance to checkpoint blockade. SIGNIFICANCE: VDR expression could potentially be used as a biomarker to stratify patients with melanoma that may respond better to immunotherapy.1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome, although a causal mechanism has not been established. As patients with melanoma commonly avoid sun exposure, and consequent vitamin D deficiency might worsen outcomes, we interrogated 703 primary melanoma transcriptomes to understand the role of vitamin D-VDR signaling and replicated the findings in The Cancer Genome Atlas metastases. VDR expression was independently protective for melanoma-related death in both primary and metastatic disease. High tumor VDR expression was associated with upregulation of pathways mediating antitumor immunity and corresponding with higher imputed immune cell scores and histologically detected tumor-infiltrating lymphocytes. High VDR-expressing tumors had downregulation of proliferative pathways, notably Wnt/β-catenin signaling. Deleterious low VDR levels resulted from promoter methylation and gene deletion in metastases. Vitamin D deficiency (<25 nmol/L ∼ 10 ng/mL) shortened survival in primary melanoma in a VDR-dependent manner. In vitro functional validation studies showed that elevated vitamin D-VDR signaling inhibited Wnt/β-catenin signaling genes. Murine melanoma cells overexpressing VDR produced fewer pulmonary metastases than controls in tail-vein metastasis assays. In summary, vitamin D-VDR signaling contributes to controlling pro-proliferative/immunosuppressive Wnt/β-catenin signaling in melanoma and this is associated with less metastatic disease and stronger host immune responses. This is evidence of a causal relationship between vitamin D-VDR signaling and melanoma survival, which should be explored as a therapeutic target in primary resistance to checkpoint blockade. SIGNIFICANCE: VDR expression could potentially be used as a biomarker to stratify patients with melanoma that may respond better to immunotherapy. 1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome, although a causal mechanism has not been established. As patients with melanoma commonly avoid sun exposure, and consequent vitamin D deficiency might worsen outcomes, we interrogated 703 primary melanoma transcriptomes to understand the role of vitamin D-VDR signaling and replicated the findings in The Cancer Genome Atlas metastases. expression was independently protective for melanoma-related death in both primary and metastatic disease. High tumor expression was associated with upregulation of pathways mediating antitumor immunity and corresponding with higher imputed immune cell scores and histologically detected tumor-infiltrating lymphocytes. High -expressing tumors had downregulation of proliferative pathways, notably Wnt/β-catenin signaling. Deleterious low levels resulted from promoter methylation and gene deletion in metastases. Vitamin D deficiency (<25 nmol/L ∼ 10 ng/mL) shortened survival in primary melanoma in a -dependent manner. functional validation studies showed that elevated vitamin D-VDR signaling inhibited Wnt/β-catenin signaling genes. Murine melanoma cells overexpressing produced fewer pulmonary metastases than controls in tail-vein metastasis assays. In summary, vitamin D-VDR signaling contributes to controlling pro-proliferative/immunosuppressive Wnt/β-catenin signaling in melanoma and this is associated with less metastatic disease and stronger host immune responses. This is evidence of a causal relationship between vitamin D-VDR signaling and melanoma survival, which should be explored as a therapeutic target in primary resistance to checkpoint blockade. SIGNIFICANCE: VDR expression could potentially be used as a biomarker to stratify patients with melanoma that may respond better to immunotherapy. |
Author | Randerson-Moor, Juliette A. Reichrath, Jörg Adams, David J. Filia, Anastasia O'Shea, Sally J. Muralidhar, Sathya Bishop, D.T. Diaz, Joey M. Harland, Mark Laye, Jonathan P. Poźniak, Joanna van der Weyden, Louise Nsengimana, Jérémie Newton-Bishop, Julia |
Author_xml | – sequence: 1 givenname: Sathya surname: Muralidhar fullname: Muralidhar, Sathya – sequence: 2 givenname: Anastasia surname: Filia fullname: Filia, Anastasia – sequence: 3 givenname: Jérémie surname: Nsengimana fullname: Nsengimana, Jérémie – sequence: 4 givenname: Joanna surname: Poźniak fullname: Poźniak, Joanna – sequence: 5 givenname: Sally J. surname: O'Shea fullname: O'Shea, Sally J. – sequence: 6 givenname: Joey M. surname: Diaz fullname: Diaz, Joey M. – sequence: 7 givenname: Mark surname: Harland fullname: Harland, Mark – sequence: 8 givenname: Juliette A. surname: Randerson-Moor fullname: Randerson-Moor, Juliette A. – sequence: 9 givenname: Jörg surname: Reichrath fullname: Reichrath, Jörg – sequence: 10 givenname: Jonathan P. surname: Laye fullname: Laye, Jonathan P. – sequence: 11 givenname: Louise surname: van der Weyden fullname: van der Weyden, Louise – sequence: 12 givenname: David J. surname: Adams fullname: Adams, David J. – sequence: 13 givenname: D.T. orcidid: 0000-0002-8752-8785 surname: Bishop fullname: Bishop, D.T. – sequence: 14 givenname: Julia orcidid: 0000-0001-9147-6802 surname: Newton-Bishop fullname: Newton-Bishop, Julia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31690667$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9OHSEchYmx0av1Edqw7GaU33CBuenq5trqTbQa658lYRi8pRlAgVm48x18Ex_Eh_BJZKJ14aYrOMl3CPnOFlr3wRuEvgDZBWDNHiGkqdhU1LuL-a8KmorOarGGJsBoU4nplK2jyTuzibZS-lsiA8I20CYFPiOciwm6vbRZOevx_vP9w-X-Gf5tV1711q_w0v-xrc0JX_m89_RYLVQ23vrCHZvOltDhY9MrH5zCpzGsoknJBo-V78bsQjYJz322eXAh4qVzg7f57jP6dK36ZHbezm108fPH-eKwOjo5WC7mR5Wu6SxXIFhNDWjKWwDKRaMFUEHbTgNo0jFOQBtDGjY1XAum23LRTLCO05oxBXQbfXt99yaG28GkLJ1N2vTlxyYMSdYUCkig5gX9-oYOrTOdvInWqXgn_2kqAHsFdAwpRXP9jgCR4xxyVC1H1bLMIaGR4xyl9_1DTxfduVjKUdn-P-0XbV2SOg |
CitedBy_id | crossref_primary_10_1038_s41388_021_01912_4 crossref_primary_10_3390_cimb46040191 crossref_primary_10_1016_j_intimp_2023_110424 crossref_primary_10_1200_PO_24_00375 crossref_primary_10_3390_nu14235104 crossref_primary_10_1016_j_isci_2020_101974 crossref_primary_10_25259_IJDVL_1236_2021 crossref_primary_10_1016_j_ad_2024_05_017 crossref_primary_10_1093_bjd_ljae302 crossref_primary_10_1126_science_adh7954 crossref_primary_10_3389_fendo_2021_725708 crossref_primary_10_3390_cancers13133111 crossref_primary_10_3390_nu15112592 crossref_primary_10_3390_nu15204409 crossref_primary_10_1111_febs_16417 crossref_primary_10_1016_j_jid_2024_04_022 crossref_primary_10_3390_ijms25168719 crossref_primary_10_1016_j_jid_2021_11_017 crossref_primary_10_1186_s12903_023_03026_7 crossref_primary_10_1530_EJE_21_0879 crossref_primary_10_1002_term_3239 crossref_primary_10_1093_burnst_tkae063 crossref_primary_10_1016_j_intimp_2024_111989 crossref_primary_10_1080_00914037_2020_1809406 crossref_primary_10_3390_nu15204483 crossref_primary_10_1016_j_jpba_2024_116510 crossref_primary_10_3390_ijms21207697 crossref_primary_10_1016_j_biochi_2020_11_019 crossref_primary_10_1111_exd_14750 crossref_primary_10_12968_hmed_2020_0128 crossref_primary_10_18632_aging_103510 crossref_primary_10_1016_j_mce_2022_111757 crossref_primary_10_31011_reaid_2025_v_99_n_1_art_2397 crossref_primary_10_3390_nu14061291 crossref_primary_10_1093_bjd_ljae257 crossref_primary_10_1016_j_nut_2021_111413 crossref_primary_10_3389_fphar_2021_714065 crossref_primary_10_3390_ph16050637 crossref_primary_10_1186_s12885_024_11907_5 crossref_primary_10_3390_cells9020335 crossref_primary_10_1007_s13577_023_01002_5 crossref_primary_10_1016_j_bbcan_2021_188564 crossref_primary_10_1111_pcmr_13040 crossref_primary_10_3390_cancers16122262 crossref_primary_10_1016_j_ijbiomac_2024_130405 crossref_primary_10_1016_j_steroids_2024_109488 crossref_primary_10_7717_peerj_15777 crossref_primary_10_3390_ijms252111651 crossref_primary_10_1111_exd_14147 crossref_primary_10_1186_s12885_023_10690_z crossref_primary_10_57582_IJBF_230301_027 crossref_primary_10_2174_1389201024666230330075550 crossref_primary_10_3390_ijms252010914 crossref_primary_10_1177_15330338221089933 crossref_primary_10_1007_s11033_023_09111_y crossref_primary_10_3389_fonc_2022_839816 crossref_primary_10_1002_oby_23365 crossref_primary_10_3390_cancers12113434 crossref_primary_10_1007_s10787_022_01027_6 crossref_primary_10_3389_fendo_2022_992666 crossref_primary_10_1016_j_jid_2024_02_034 crossref_primary_10_3390_ijms241713661 crossref_primary_10_3389_frmbi_2022_1049688 crossref_primary_10_1016_j_ad_2024_03_019 crossref_primary_10_1097_CMR_0000000000000897 crossref_primary_10_3389_fonc_2021_763895 crossref_primary_10_3389_fonc_2021_743667 crossref_primary_10_1016_j_bbrc_2020_02_027 crossref_primary_10_3390_nu13124227 crossref_primary_10_1038_s41467_023_39858_8 crossref_primary_10_3389_fonc_2020_00891 crossref_primary_10_3390_cells11091460 crossref_primary_10_1016_j_pharmr_2024_100032 |
Cites_doi | 10.1038/labinvest.2017.3 10.1210/jc.2016-3189 10.1210/me.2014-1315 10.1038/srep40370 10.1152/physiolgenomics.00002.2003 10.1158/0008-5472.CAN-11-3218 10.18632/oncotarget.15803 10.1016/j.gene.2015.02.024 10.1038/nature20792 10.1002/jcb.20182 10.1056/NEJMoa1709684 10.1158/0008-5472.CAN-17-0491 10.1371/journal.pone.0126394 10.1093/jnci/djv264 10.1016/j.jid.2016.05.119 10.1158/1078-0432.CCR-04-0713 10.1126/science.aad0095 10.1111/j.1365-2133.2012.11212.x 10.11131/2015/101182 10.1186/s13059-015-0620-6 10.1073/pnas.0915174107 10.1158/1078-0432.CCR-09-2509 10.1007/s11154-011-9194-0 10.1093/carcin/bgm094 10.1016/j.cell.2017.01.010 10.1038/nbt.1630 10.1038/s41598-019-45210-2 10.1002/jcb.21151 10.1038/nature14404 10.1200/JCO.2015.64.1357 10.1038/sdata.2017.129 10.1016/j.bcp.2009.09.005 10.18632/oncotarget.14316 10.1172/JCI95351 10.1371/journal.pone.0096105 10.1023/A:1024487118457 10.1158/0008-5472.CAN-18-2864 10.1002/(SICI)1097-0142(19960401)77:7<1303::AID-CNCR12>3.0.CO;2-5 10.18632/oncotarget.3549 10.1186/gb-2012-13-12-r112 10.1089/cbr.2014.1736 10.2220/biomedres.27.99 10.1210/me.2005-0106 10.2105/AJPH.2004.045260 10.1016/j.yexcr.2014.07.028 10.1200/JCO.2009.22.1135 10.1189/jlb.0411208 10.1016/j.cell.2015.05.044 10.1002/ijc.11696 10.1210/me.2004-0415 10.1093/ije/dyp166 10.1016/j.ejcsup.2013.07.013 10.1016/S2213-8587(13)70165-7 10.1016/j.beem.2011.05.010 |
ContentType | Journal Article |
Copyright | 2019 American Association for Cancer Research. |
Copyright_xml | – notice: 2019 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1158/0008-5472.CAN-18-3927 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 5998 |
ExternalDocumentID | 31690667 10_1158_0008_5472_CAN_18_3927 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Cancer Research UK grantid: 11963 – fundername: Cancer Research UK grantid: 10589 – fundername: Cancer Research UK grantid: 21717 – fundername: Medical Research Council grantid: MR/L01629X/1 – fundername: Cancer Research UK grantid: 19167 |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c239t-17523e1c36b113678c71373bdc11c0d5601cee0854e6c75cb54ec575d63255a13 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Fri Jul 11 16:23:01 EDT 2025 Mon Jul 21 05:43:13 EDT 2025 Tue Jul 01 01:27:24 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | 2019 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c239t-17523e1c36b113678c71373bdc11c0d5601cee0854e6c75cb54ec575d63255a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9147-6802 0000-0002-8752-8785 |
PMID | 31690667 |
PQID | 2312550126 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2312550126 pubmed_primary_31690667 crossref_primary_10_1158_0008_5472_CAN_18_3927 crossref_citationtrail_10_1158_0008_5472_CAN_18_3927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2019 |
References | Slominski (2022061706295804100_bib44) 2017; 97 Long (2022061706295804100_bib45) 2015; 2 Gambichler (2022061706295804100_bib14) 2013; 168 Jonsson (2022061706295804100_bib36) 2010; 16 SACN TSACoN (2022061706295804100_bib30) Swami (2022061706295804100_bib6) 2003; 80 Ryu (2022061706295804100_bib34) 2014; 327 Spath (2022061706295804100_bib51) 2017; 7 Campbell (2022061706295804100_bib2) 2010; 79 Bennesch (2022061706295804100_bib48) 2015; 29 Nsengimana (2022061706295804100_bib21) 2015; 6 Oble (2022061706295804100_bib37) 2009; 9 Umeshappa (2022061706295804100_bib56) 2015; 30 Wood (2022061706295804100_bib7) 2004; 17 The Cancer Genome Atlas Network (2022061706295804100_bib20) 2015; 161 Hugo (2022061706295804100_bib27) 2017; 168 Xu (2022061706295804100_bib35) 2004; 109 Van Allen (2022061706295804100_bib28) 2015; 350 Cianferotti (2022061706295804100_bib52) 2007; 101 Newton-Bishop (2022061706295804100_bib10) 2009; 27 Tuoresmaki (2022061706295804100_bib23) 2014; 9 Wyatt (2022061706295804100_bib13) 2015; 10 Clemente (2022061706295804100_bib38) 1996; 77 McLean (2022061706295804100_bib24) 2010; 28 Filia (2022061706295804100_bib17) 2019; 9 Camp (2022061706295804100_bib29) 2004; 10 Garland (2022061706295804100_bib3) 2006; 96 Lauss (2022061706295804100_bib19) 2016; 136 Haanen (2022061706295804100_bib40) 2013; 11 Timerman (2022061706295804100_bib11) 2017; 8 Pozniak (2022061706295804100_bib25) 2019; 79 Skorija (2022061706295804100_bib49) 2005; 19 Suzuki (2022061706295804100_bib8) 2006; 27 Aguilera (2022061706295804100_bib47) 2007; 28 Spranger (2022061706295804100_bib42) 2015; 523 Wang (2022061706295804100_bib9) 2005; 19 Erdag (2022061706295804100_bib39) 2012; 72 Taylor (2022061706295804100_bib57) 2018; 78 van der Weyden (2022061706295804100_bib32) 2017; 541 Angelova (2022061706295804100_bib26) 2015; 16 Saccone (2022061706295804100_bib46) 2015; 561 Takeda (2022061706295804100_bib54) 2011; 90 Guzey (2022061706295804100_bib5) 2004; 93 Brozyna (2022061706295804100_bib43) 2014; 34 Autier (2022061706295804100_bib4) 2014; 2 Trivedi (2022061706295804100_bib50) 2017; 8 Curran (2022061706295804100_bib33) 2010; 107 Haussler (2022061706295804100_bib1) 2011; 25 Wolchok (2022061706295804100_bib41) 2017; 377 Nsengimana (2022061706295804100_bib16) 2018; 128 van der Weyden (2022061706295804100_bib55) 2017; 4 Wu (2022061706295804100_bib22) 2012; 13 Chang (2022061706295804100_bib58) 2009; 38 Saiag (2022061706295804100_bib15) 2015; 107 Shah (2022061706295804100_bib31) 2017; 102 Fang (2022061706295804100_bib12) 2016; 34 Bikle (2022061706295804100_bib18) 2012; 13 Katoh (2022061706295804100_bib53) 2005; 14 |
References_xml | – volume: 97 start-page: 706 year: 2017 ident: 2022061706295804100_bib44 article-title: Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management publication-title: Lab Invest doi: 10.1038/labinvest.2017.3 – volume: 102 start-page: 2321 year: 2017 ident: 2022061706295804100_bib31 article-title: Serum 25-hydroxyvitamin D insufficiency in search of a bone disease publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2016-3189 – volume: 29 start-page: 349 year: 2015 ident: 2022061706295804100_bib48 article-title: Minireview: tipping the balance: ligand-independent activation of steroid receptors publication-title: Mol Endocrinol doi: 10.1210/me.2014-1315 – volume: 7 start-page: 40370 year: 2017 ident: 2022061706295804100_bib51 article-title: Antiproliferative effects of 1alpha-OH-vitD3 in malignant melanoma: potential therapeutic implications publication-title: Sci Rep doi: 10.1038/srep40370 – volume: 17 start-page: 122 year: 2004 ident: 2022061706295804100_bib7 article-title: DNA microarray analysis of vitamin D-induced gene expression in a human colon carcinoma cell line publication-title: Physiol Genomics doi: 10.1152/physiolgenomics.00002.2003 – volume: 72 start-page: 1070 year: 2012 ident: 2022061706295804100_bib39 article-title: Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-3218 – volume: 8 start-page: 26687 year: 2017 ident: 2022061706295804100_bib50 article-title: The vitamin D receptor is involved in the regulation of human breast cancer cell growth via a ligand-independent function in cytoplasm publication-title: Oncotarget doi: 10.18632/oncotarget.15803 – volume: 561 start-page: 171 year: 2015 ident: 2022061706295804100_bib46 article-title: Regulation of the vitamin D receptor gene by environment, genetics and epigenetics publication-title: Gene doi: 10.1016/j.gene.2015.02.024 – volume: 541 start-page: 233 year: 2017 ident: 2022061706295804100_bib32 article-title: Genome-wide in vivo screen identifies novel host regulators of metastatic colonization publication-title: Nature doi: 10.1038/nature20792 – volume: 93 start-page: 271 year: 2004 ident: 2022061706295804100_bib5 article-title: Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells publication-title: J Cell Biochem doi: 10.1002/jcb.20182 – volume: 377 start-page: 1345 year: 2017 ident: 2022061706295804100_bib41 article-title: Overall survival with combined nivolumab and ipilimumab in advanced melanoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1709684 – volume: 78 start-page: 706 year: 2018 ident: 2022061706295804100_bib57 article-title: Small-molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in cancer therapy publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0491 – volume: 10 start-page: e0126394 year: 2015 ident: 2022061706295804100_bib13 article-title: Vitamin D deficiency at melanoma diagnosis is associated with higher Breslow thickness publication-title: PLoS One doi: 10.1371/journal.pone.0126394 – volume: 107 start-page: djv264 year: 2015 ident: 2022061706295804100_bib15 article-title: Prognostic value of 25-hydroxyvitamin D3 levels at diagnosis and during follow-up in melanoma patients publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djv264 – volume: 136 start-page: 2502 year: 2016 ident: 2022061706295804100_bib19 article-title: Consensus of melanoma gene expression subtypes converges on biological entities publication-title: J Invest Dermatol doi: 10.1016/j.jid.2016.05.119 – volume: 10 start-page: 7252 year: 2004 ident: 2022061706295804100_bib29 article-title: X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-0713 – volume: 350 start-page: 207 year: 2015 ident: 2022061706295804100_bib28 article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma publication-title: Science doi: 10.1126/science.aad0095 – volume: 168 start-page: 625 year: 2013 ident: 2022061706295804100_bib14 article-title: Serum 25-hydroxyvitamin D serum levels in a large German cohort of patients with melanoma publication-title: Br J Dermatol doi: 10.1111/j.1365-2133.2012.11212.x – volume: 2 year: 2015 ident: 2022061706295804100_bib45 article-title: Pan-cancer analyses of the nuclear receptor superfamily publication-title: Nucl Receptor Res doi: 10.11131/2015/101182 – volume: 16 start-page: 64 year: 2015 ident: 2022061706295804100_bib26 article-title: Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy publication-title: Genome Biol doi: 10.1186/s13059-015-0620-6 – volume: 9 start-page: 3 year: 2009 ident: 2022061706295804100_bib37 article-title: Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma publication-title: Cancer Immun – volume: 107 start-page: 4275 year: 2010 ident: 2022061706295804100_bib33 article-title: PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0915174107 – volume: 16 start-page: 3356 year: 2010 ident: 2022061706295804100_bib36 article-title: Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-2509 – volume: 13 start-page: 3 year: 2012 ident: 2022061706295804100_bib18 article-title: Vitamin D and the skin: physiology and pathophysiology publication-title: Rev Endocr Metab Disord doi: 10.1007/s11154-011-9194-0 – volume: 28 start-page: 1877 year: 2007 ident: 2022061706295804100_bib47 article-title: The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells publication-title: Carcinogenesis doi: 10.1093/carcin/bgm094 – volume: 168 start-page: 542 year: 2017 ident: 2022061706295804100_bib27 article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma publication-title: Cell doi: 10.1016/j.cell.2017.01.010 – volume: 28 start-page: 495 year: 2010 ident: 2022061706295804100_bib24 article-title: GREAT improves functional interpretation of cis-regulatory regions publication-title: Nat Biotechnol doi: 10.1038/nbt.1630 – volume: 9 start-page: 8908 year: 2019 ident: 2022061706295804100_bib17 article-title: High-resolution copy number patterns from clinically relevant FFPE material publication-title: Sci Rep doi: 10.1038/s41598-019-45210-2 – volume: 101 start-page: 80 year: 2007 ident: 2022061706295804100_bib52 article-title: VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells publication-title: J Cell Biochem doi: 10.1002/jcb.21151 – volume: 523 start-page: 231 year: 2015 ident: 2022061706295804100_bib42 article-title: Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity publication-title: Nature doi: 10.1038/nature14404 – volume: 34 start-page: 1741 year: 2016 ident: 2022061706295804100_bib12 article-title: Association of vitamin D levels with outcome in patients with melanoma after adjustment for C-reactive protein publication-title: J Clin Oncol doi: 10.1200/JCO.2015.64.1357 – volume: 4 start-page: 170129 year: 2017 ident: 2022061706295804100_bib55 article-title: Genome wide in vivo mouse screen data from studies to assess host regulation of metastatic colonisation publication-title: Sci Data doi: 10.1038/sdata.2017.129 – volume: 14 start-page: 1583 year: 2005 ident: 2022061706295804100_bib53 article-title: WNT/PCP signaling pathway and human cancer (review) publication-title: Oncol Rep – volume: 79 start-page: 1 year: 2010 ident: 2022061706295804100_bib2 article-title: The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: operational networks and tissue-specific growth control publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2009.09.005 – volume: 8 start-page: 6873 year: 2017 ident: 2022061706295804100_bib11 article-title: Vitamin D deficiency is associated with a worse prognosis in metastatic melanoma publication-title: Oncotarget doi: 10.18632/oncotarget.14316 – volume: 128 start-page: 2048 year: 2018 ident: 2022061706295804100_bib16 article-title: β-Catenin-mediated immune evasion pathway frequently operates in primary cutaneous melanomas publication-title: J Clin Invest doi: 10.1172/JCI95351 – volume: 9 start-page: e96105 year: 2014 ident: 2022061706295804100_bib23 article-title: Patterns of genome-wide VDR locations publication-title: PLoS One doi: 10.1371/journal.pone.0096105 – volume: 80 start-page: 49 year: 2003 ident: 2022061706295804100_bib6 article-title: Vitamin D growth inhibition of breast cancer cells: gene expression patterns assessed by cDNA microarray publication-title: Breast Cancer Res Treat doi: 10.1023/A:1024487118457 – volume: 79 start-page: 2684 year: 2019 ident: 2022061706295804100_bib25 article-title: Genetic and environmental determinants of immune response to cutaneous melanoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-2864 – volume: 77 start-page: 1303 year: 1996 ident: 2022061706295804100_bib38 article-title: Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma publication-title: Cancer doi: 10.1002/(SICI)1097-0142(19960401)77:7<1303::AID-CNCR12>3.0.CO;2-5 – volume: 34 start-page: 2735 year: 2014 ident: 2022061706295804100_bib43 article-title: Decreased VDR expression in cutaneous melanomas as marker of tumor progression: new data and analyses publication-title: Anticancer Res – ident: 2022061706295804100_bib30 – volume: 6 start-page: 11683 year: 2015 ident: 2022061706295804100_bib21 article-title: Independent replication of a melanoma subtype gene signature and evaluation of its prognostic value and biological correlates in a population cohort publication-title: Oncotarget doi: 10.18632/oncotarget.3549 – volume: 13 start-page: R112 year: 2012 ident: 2022061706295804100_bib22 article-title: A network module-based method for identifying cancer prognostic signatures publication-title: Genome Biol doi: 10.1186/gb-2012-13-12-r112 – volume: 30 start-page: 72 year: 2015 ident: 2022061706295804100_bib56 article-title: Innate and adoptive immune cells contribute to natural resistance to systemic metastasis of B16 melanoma publication-title: Cancer Biother Radiopharm doi: 10.1089/cbr.2014.1736 – volume: 27 start-page: 99 year: 2006 ident: 2022061706295804100_bib8 article-title: DNA microarray analysis of changes in gene expression induced by 1,25-dihydroxyvitamin D3 in human promyelocytic leukemia HL-60 cells publication-title: Biomed Res doi: 10.2220/biomedres.27.99 – volume: 19 start-page: 2685 year: 2005 ident: 2022061706295804100_bib9 article-title: Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes publication-title: Mol Endocrinol doi: 10.1210/me.2005-0106 – volume: 96 start-page: 252 year: 2006 ident: 2022061706295804100_bib3 article-title: The role of vitamin D in cancer prevention publication-title: Am J Public Health doi: 10.2105/AJPH.2004.045260 – volume: 327 start-page: 209 year: 2014 ident: 2022061706295804100_bib34 article-title: Accumulation of cytolytic CD8+ T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2014.07.028 – volume: 27 start-page: 5439 year: 2009 ident: 2022061706295804100_bib10 article-title: Serum 25-hydroxyvitamin D3 levels are associated with Breslow thickness at presentation and survival from melanoma publication-title: J Clin Oncol doi: 10.1200/JCO.2009.22.1135 – volume: 90 start-page: 777 year: 2011 ident: 2022061706295804100_bib54 article-title: IFN-γ production by lung NK cells is critical for the natural resistance to pulmonary metastasis of B16 melanoma in mice publication-title: J Leukoc Biol doi: 10.1189/jlb.0411208 – volume: 161 start-page: 1681 year: 2015 ident: 2022061706295804100_bib20 article-title: Genomic classification of cutaneous melanoma publication-title: Cell doi: 10.1016/j.cell.2015.05.044 – volume: 109 start-page: 499 year: 2004 ident: 2022061706295804100_bib35 article-title: NK and CD8+ T cell-mediated eradication of poorly immunogenic B16-F10 melanoma by the combined action of IL-12 gene therapy and 4-1BB costimulation publication-title: Int J Cancer doi: 10.1002/ijc.11696 – volume: 19 start-page: 855 year: 2005 ident: 2022061706295804100_bib49 article-title: Ligand-independent actions of the vitamin D receptor maintain hair follicle homeostasis publication-title: Mol Endocrinol doi: 10.1210/me.2004-0415 – volume: 38 start-page: 814 year: 2009 ident: 2022061706295804100_bib58 article-title: Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls publication-title: Int J Epidemiol doi: 10.1093/ije/dyp166 – volume: 11 start-page: 97 year: 2013 ident: 2022061706295804100_bib40 article-title: Immunotherapy of melanoma publication-title: EJC Suppl doi: 10.1016/j.ejcsup.2013.07.013 – volume: 2 start-page: 76 year: 2014 ident: 2022061706295804100_bib4 article-title: Vitamin D status and ill health: a systematic review publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(13)70165-7 – volume: 25 start-page: 543 year: 2011 ident: 2022061706295804100_bib1 article-title: Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)(2)vitamin D(3): genomic and non-genomic mechanisms publication-title: Best Pract Res Clin Endocrinol Metab doi: 10.1016/j.beem.2011.05.010 |
SSID | ssj0005105 |
Score | 2.5722244 |
Snippet | 1α,25-Dihydroxyvitamin D3 signals via the vitamin D receptor (VDR). Higher serum vitamin D is associated with thinner primary melanoma and better outcome,... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 5986 |
SubjectTerms | Animals beta Catenin - metabolism Calcitriol - blood Calcitriol - deficiency Cell Line, Tumor Datasets as Topic Disease Progression Female Humans Lymphocytes, Tumor-Infiltrating - immunology Male Melanoma - blood Melanoma - immunology Melanoma - mortality Melanoma - pathology Mice Receptors, Calcitriol - metabolism Skin - metabolism Skin Neoplasms - blood Skin Neoplasms - immunology Skin Neoplasms - mortality Skin Neoplasms - pathology Survival Analysis Time Factors Vitamin D Deficiency - blood Vitamin D Deficiency - immunology Vitamin D Deficiency - pathology Wnt Signaling Pathway |
Title | Vitamin D–VDR Signaling Inhibits Wnt/β-Catenin–Mediated Melanoma Progression and Promotes Antitumor Immunity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31690667 https://www.proquest.com/docview/2312550126 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXcFAhyKbrH3cAC9cmgU2qh5KOjxEhb2GibpbkJEkXbQi06sOVD-0e99kP6TR2Soqy0DrpcBEG0KMPvefhGM5xB6BXLQBMEXp_0hSOI52SUpBn8r7yEuR5XCxLX2RZjdnLuvb30L1utb42spXWZ9vjXrftK_gdVuAa4ql2y_4BsPSlcgHPAF46AMBz_CuMLcOyLXHaPyMXRx-5pPlWqWmcAzPJURQQ-qaoCw0503Dl0SASyUuaSjHR3DhCaIzFP5KJI1G6BqcmHlXb3ACAoVqq0QF6ui8Wy-0bvIymvBYEjxZhlt6oXNNMBYZPZoS3PfN5rvGcYqfoeeTYzCd2nIDy_1CvCMK9ydgcyAbW6yuuR8UrIaa5SbDXdTFi_iu4XeU3K94tO5HcOBzJPPpuYQCJNW3D7RoP2G9khYmOFA8_UmbRm2vScqejouA2jq0rMb18N_NCkT4bE9wKnFw3GhIYEJGHQ_DyAelVoirgqaMhMf5BfynDboVvotgMeiTKp7z5sCtMrnVptEIOnHmx95h7atbNcV0E3uDZa4pzdRXcq3wQPDNHuoZaQ99HuqMq-eICKim9Y8w3XfMOWbxj4dvDj-29Mw5ZpuME0DEzDlmm4Zhq2THuIzofHZ9EJqdp1EO64_ZKAEHVcQbnLUtUoKAh5QN3ATTNOKX-dKdcfFBlIfE8wHvg8hRMO3kLGXPBrE-o-QjtyIcU-wnTCk0nqJRwMjMdhkLGJ4LAWTSjzs37WRp79-WJe1bJXLVXmsfZp_VDlVISxAiAGAGIaxgqANurVt12ZYi5_uuGlxSYGs6tiaYkUi_UqBrcIvjSoO9ZGjw1o9ZQW5Cc3jjxFexviP0M75XItnoO4LdMXmlY_ASwBnSk |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vitamin+D-VDR+Signaling+Inhibits+Wnt%2F%CE%B2-Catenin-Mediated+Melanoma+Progression+and+Promotes+Antitumor+Immunity&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Muralidhar%2C+Sathya&rft.au=Filia%2C+Anastasia&rft.au=Nsengimana%2C+J%C3%A9r%C3%A9mie&rft.au=Po%C5%BAniak%2C+Joanna&rft.date=2019-12-01&rft.eissn=1538-7445&rft.volume=79&rft.issue=23&rft.spage=5986&rft_id=info:doi/10.1158%2F0008-5472.CAN-18-3927&rft_id=info%3Apmid%2F31690667&rft.externalDocID=31690667 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |