Human behavior recognition method based on wearable devices

Human behavior recognition remains a prevalent subject of inquiry in contemporary scientific studies. Behavior recognition technology has penetrated into every aspect of our lives, mainly in video surveillance, health monitoring, and smart homes. Aiming at some people who need behavioral monitoring...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 2858; no. 1; pp. 12046 - 12052
Main Authors Zhang, Wei, Yu, Guibo, Deng, Shijie
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.10.2024
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
DOI10.1088/1742-6596/2858/1/012046

Cover

Loading…
Abstract Human behavior recognition remains a prevalent subject of inquiry in contemporary scientific studies. Behavior recognition technology has penetrated into every aspect of our lives, mainly in video surveillance, health monitoring, and smart homes. Aiming at some people who need behavioral monitoring to prevent danger, a human behavior recognition method based on wearable devices is proposed, which first acquires the three-axis acceleration data of behavioral activities of such people through wearable devices and then performs sliding window segmentation and feature extraction on the acquired data and finally inputs the obtained features into the dual-directional long and short term memory framework (BiLSTM) model to complete the identification of human behavior. To affirm the method’s reliability, we performed activity detection tests on a dataset from UCI featuring a non-powered wearable sensor used by the senior population. The outcomes indicate that the method is proficient in identifying the routine daily activities of this demographic, demonstrating its practical utility.
AbstractList Human behavior recognition remains a prevalent subject of inquiry in contemporary scientific studies. Behavior recognition technology has penetrated into every aspect of our lives, mainly in video surveillance, health monitoring, and smart homes. Aiming at some people who need behavioral monitoring to prevent danger, a human behavior recognition method based on wearable devices is proposed, which first acquires the three-axis acceleration data of behavioral activities of such people through wearable devices and then performs sliding window segmentation and feature extraction on the acquired data and finally inputs the obtained features into the dual-directional long and short term memory framework (BiLSTM) model to complete the identification of human behavior. To affirm the method’s reliability, we performed activity detection tests on a dataset from UCI featuring a non-powered wearable sensor used by the senior population. The outcomes indicate that the method is proficient in identifying the routine daily activities of this demographic, demonstrating its practical utility.
Author Yu, Guibo
Deng, Shijie
Zhang, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: University of Army Engineering Shijiazhuang School District, Shijiazhuang, 050000, China
– sequence: 2
  givenname: Guibo
  surname: Yu
  fullname: Yu, Guibo
  organization: University of Army Engineering Shijiazhuang School District, Shijiazhuang, 050000, China
– sequence: 3
  givenname: Shijie
  surname: Deng
  fullname: Deng, Shijie
  organization: University of Army Engineering Shijiazhuang School District, Shijiazhuang, 050000, China
BookMark eNqFkE9LAzEQxYNUsK1-Bhc8r80kmz-LJynaCgUveg5JdtZuaTc1aSt-e3dZqUfnMvOYeW_gNyGjNrRIyC3Qe6Baz0AVLJeilDOmRSdnFBgt5AUZnzej86z1FZmktKGUd6XG5GF53Nk2c7i2pybELKIPH21zaEKb7fCwDlXmbMIq6_QX2mjdFrMKT43HdE0ua7tNePPbp-T9-eltvsxXr4uX-eMq94yXMleCQuUAa88dE7YsBaVMOVUI5worvVcoGPKKy7qqBVilJTDAonbSK6YUn5K7IXcfw-cR08FswjG23UvDAQSVIEvdXanhyseQUsTa7GOzs_HbADU9KdMzMD0P05MyYAZSnZMPzibs_6L_c_0AC3drfQ
Cites_doi 10.1093/ageing/afad246.100
10.1145/2523819
10.1016/j.asoc.2020.106788
10.1162/neco.1997.9.8.1735
10.1109/IJCNN.2005.1556215
10.1016/j.aej.2023.09.013
10.1016/j.jmsy.2018.01.003
10.1142/S1793351X16500045
10.1016/j.procs.2017.06.121
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/2858/1/012046
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_2858_1_012046
JPCS_2858_1_012046
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2396-7501db1efc3b25a9950027b745bb4a6cc7e52e3d36fdf51a786121e4fb6c72773
IEDL.DBID O3W
ISSN 1742-6588
IngestDate Sun Jul 13 05:14:23 EDT 2025
Tue Jul 01 02:20:27 EDT 2025
Tue Oct 15 22:51:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2396-7501db1efc3b25a9950027b745bb4a6cc7e52e3d36fdf51a786121e4fb6c72773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/2858/1/012046
PQID 3115061698
PQPubID 4998668
PageCount 7
ParticipantIDs crossref_primary_10_1088_1742_6596_2858_1_012046
proquest_journals_3115061698
iop_journals_10_1088_1742_6596_2858_1_012046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241001
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Graves (JPCS_2858_1_012046bib9) 2005
Hao (JPCS_2858_1_012046bib5) 2016; 10
P. (JPCS_2858_1_012046bib2) 2014
Wang (JPCS_2858_1_012046bib4) 2018; 48
Rodriguez (JPCS_2858_1_012046bib1) 2014; 46
Jameer (JPCS_2858_1_012046bib10) 2023; 80
Bollen (JPCS_2858_1_012046bib3) 2024
Hochreiter (JPCS_2858_1_012046bib8) 1997
Tao (JPCS_2858_1_012046bib6) 2021; 99
Arifoglu (JPCS_2858_1_012046bib7) 2017; 110
References_xml – year: 2024
  ident: JPCS_2858_1_012046bib3
  article-title: 1964 wearable devices to measure gait and balance remotely that could be used in comprehensive geriatric assessment: a scoping review
  doi: 10.1093/ageing/afad246.100
– volume: 46
  start-page: 1
  year: 2014
  ident: JPCS_2858_1_012046bib1
  article-title: A survey on ontologies for human behavior recognition
  publication-title: Acm Computing Surveys
  doi: 10.1145/2523819
– volume: 99
  year: 2021
  ident: JPCS_2858_1_012046bib6
  article-title: Jointly optimization for activity recognition in secure IoT-enabled elderly care applications
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106788
– year: 1997
  ident: JPCS_2858_1_012046bib8
  doi: 10.1162/neco.1997.9.8.1735
– year: 2005
  ident: JPCS_2858_1_012046bib9
  doi: 10.1109/IJCNN.2005.1556215
– volume: 80
  start-page: 542
  year: 2023
  ident: JPCS_2858_1_012046bib10
  article-title: A DCNN-LSTM based human activity recognition by mobile and wearable sensor networks
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2023.09.013
– year: 2014
  ident: JPCS_2858_1_012046bib2
  article-title: A survey on ontologies for human behavior recognition
  doi: 10.1145/2523819
– volume: 48
  start-page: 144
  year: 2018
  ident: JPCS_2858_1_012046bib4
  article-title: Deep learning for smart manufacturing: Methods and applications
  publication-title: Journal of manufacturing systems
  doi: 10.1016/j.jmsy.2018.01.003
– volume: 10
  start-page: 417
  year: 2016
  ident: JPCS_2858_1_012046bib5
  article-title: Deep learning
  publication-title: International Journal of Semantic Computing
  doi: 10.1142/S1793351X16500045
– volume: 110
  start-page: 86
  year: 2017
  ident: JPCS_2858_1_012046bib7
  article-title: Activity recognition and abnormal behaviour detection with recurrent neural networks
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.06.121
SSID ssj0033337
Score 2.3742542
Snippet Human behavior recognition remains a prevalent subject of inquiry in contemporary scientific studies. Behavior recognition technology has penetrated into every...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 12046
SubjectTerms Behavior
Data acquisition
Feature extraction
Human behavior
Memory devices
Smart buildings
Wearable computers
Wearable technology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JSwMxFA7aIngRV6xWycGjoc5kHTyISksRLCIWegvZBrxMq634932ZyVhB0LlllsuXzPe9l7wFoQsaeCa844RzHsBBkSUxzgbCmXXUFCyTPiY4P07EeMoeZnyWNtyWKayy5cSaqP3cxT3yQawKA9ojCnWzeCOxa1Q8XU0tNDZRFyhYgfPVvRtOnp5bLqZwySYlMiegtaqN8AK3L90rxCBXHIaDmEYa7eAf-rT5Ol_8IulaeUa7aCeZjPi2meM9tBGqfbRVh2665QG6rvfhcZtvj79DguYVbvpD4yhVHsP4E9Z1zJXCPtQMcYimo-HL_ZiklgjE5bQQBPQ98zYLpaM256YoePQrrWTcWmaEczLwPFBPRelLnhmpYoWwwEorHFgqkh6hTjWvwjHC1ITMSgfmkTAst-A2mNgfxcQ-oFYF1kNXLRB60VS-0PWJtVI6YqcjdjpipzPdYNdDlwCYTn_B8v_X-y2y62_W83zy9-NTtJ2DgdEE1vVRZ_X-Ec7AQFjZ87QKvgDCJ7Lx
  priority: 102
  providerName: ProQuest
Title Human behavior recognition method based on wearable devices
URI https://iopscience.iop.org/article/10.1088/1742-6596/2858/1/012046
https://www.proquest.com/docview/3115061698
Volume 2858
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5si-BFfGK1lhw8utbdPBdPKq1VsC1i0VtIstljW2zFv-9kHz4QEfe0gU0IH9mZb3bnmwE4oZ7HInM84px7DFBkHhlnfcSZddSkLJZZEDjfj8Rwyu6e-fNXLcx8UZn-M7wtCwWXEFYJcaqHHDqJBE9FL1Ech72g_2SiAS2qhAoB2Jg-1daY4iVLUWSYpFSd4_X7Qt88VAN38cNMF75nsAWbFWkkl-UWt2HNz3ZgvUjedMtduCi-xJNacU8-koLmM1J2iCbBWWUEx294soNaimS-sBF7MB30H6-HUdUUIXIJTUWEHj7ObOxzR23CTZryEFlaybi1zAjnpOeJpxkVeZbz2EgVaoR5llvhkKtIug_N2XzmD4BQ42MrHRIkYVhiMXAwoUOKCZ1ArfKsDec1EHpR1r7QxT9rpXTATgfsdMBOx7rErg2nCJiu3oPl3493amQ_54T6P8gyRKoO_7faEWwkSDnKVLsONFcvr_4YKcPKdqGhBjddaF31R5MHHN2OJ93inLwDLvO1bQ
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xCMEFsYodH-BGVOItiRBCCCgt0J5A4mZsx5G4tIWCED_FNzKTNBQJCU7k5myHl8m8GXueB2BPBBXr3KtIKRUwQUmKyHoXIiWdFzaTcZKTwLnT1a07eXWv7ifgo9bCUFll7RNLR533Pc2RN2hXGOQenaUng6eIukbR6mrdQqMyi-vw_oYp2_C4fY7fd5_z5sXtWSsadRWIPBeZjpAi49zFofDCcWWzTFFq5hKpnJNWe58ExYPIhS7yQsU2SWmTrSALpz2SfSLwvZMwLQW-jJTpzcva8ws8kkqAySNk9rSuJ8Mkc3Qu0w2eKhw2SLRKUfc3Npx87A9-UELJc80FmB8FqOy0sqhFmAi9JZgpC0X9cBmOyll_Vqv72VcBUr_Hqm7UjIgxZzh-Q7hImcXyUPqjFbj7F6hWYarX74U1YMKG2CUegzFtJXeYpFjqxmKp66hLg1yHwxoIM6j22TDl-niaGsLOEHaGsDOxqbBbhwMEzIz-ueHft2_VyI6fGVvVxu-Xd2G2ddu5MTft7vUmzHEMbaqSvi2Yenl-DdsYmry4ndIeGDz8twF-Aij97bM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WFcWL-MTVVXPwaK1tnsWTqGV9rR5c3FtI0vTYXdwV_75J066IiNhTA00IH-nMN-18MwAn2NKEFYZGlFLrAhReRspoG1GiDVYZSXjhBc6PQzYYkbsxHXcgX2hhJtPG9J-521AoOEDYJMSJ2HHoNGI0Y3EqqBvGXv9JWDwtyiVYppgx38LhCb-2Fhm7iwdhpJ8oRJvn9fti37zUktvJD1Nd-598A9Yb4oguwzY3oWOrLVipEzjNbBsu6q_xqFXdo0Vi0KRCoUs08g6rQG784U63V0yhwtZ2YgdG-c3L1SBqGiNEJsUZi5yXTwqd2NJgnVKVZdRHl5oTqjVRzBhuaWpxgVlZlDRRXPg6YZaUmhnHVzjehW41qeweIKxsorlxJIkpkmoXPCjfJUX5bqBaWNKD8xYIOQ31L2T931oI6bGTHjvpsZOJDNj14NQBJpt3Yfb34_0W2a85vgaQYxosE_v_W-0YVp-vc_lwO7w_gLXUMZCQedeH7vzt3R46BjHXR_Xx-ARqwrXT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+behavior+recognition+method+based+on+wearable+devices&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Zhang%2C+Wei&rft.au=Yu%2C+Guibo&rft.au=Deng%2C+Shijie&rft.date=2024-10-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=2858&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F2858%2F1%2F012046&rft.externalDocID=JPCS_2858_1_012046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon