EASDM: Explainable Autism Spectrum Disorder Model Based on Deep Learning

A neuro-developmental disorder known as autism spectrum disorder (ASD) affects a significant portion of the global population. Those with ASD frequently struggle to interact and communicate with others and may engage in restricted or repetitive behaviors or interests. The symptoms of autism begin ea...

Full description

Saved in:
Bibliographic Details
Published inJournal of Disability Research Vol. 3; no. 1
Main Authors Atlam, El-Sayed, Masud, Mehedi, Rokaya, Mahmoud, Meshref, Hossam, Gad, Ibrahim, Almars, Abdulqader M.
Format Journal Article
LanguageEnglish
Published 03.02.2024
Online AccessGet full text

Cover

Loading…
Abstract A neuro-developmental disorder known as autism spectrum disorder (ASD) affects a significant portion of the global population. Those with ASD frequently struggle to interact and communicate with others and may engage in restricted or repetitive behaviors or interests. The symptoms of autism begin early in childhood and can continue into adulthood. Machine learning and deep learning (DL) models are employed in clinical research for the early identification and diagnosis of ASD. However, the majority of the existing models lack interpretability in their results for ASD diagnosis. The explainable artificial intelligence (XAI) concepts can be used to provide transparent and understandable explanations for models’ decisions. In this work, we present an explainable autism spectrum disorder model based on DL for autism disorder detection in toddlers and children. The primary objective of this study is to better understand and interpret the classification process and to discern the significant features that contribute to the prediction of ASD. The proposed model is divided into two distinct components. The first component employs a DL model for autism disorder detection. The second uses an XAI technique known as shapley additive explanations (SHAP) to emphasis key characteristics and explain the model’s outcomes. The model showed perfect performance on the training set, with an accuracy of 1 and a receiver operating characteristic score of 1. On the test set, the model achieved an accuracy score of 0.9886, indicating that it performed nearly as well as on the training set. The experimental results demonstrate that the proposed model has the capability to accurately predict and diagnose ASD while also providing explanatory insights into the obtained results. Furthermore, the results indicate that the proposed model performs competitively compared to the state-of-the-art models in terms of accuracy and F1-score. The results highlight the efficacy and potential of the proposed model in accurately predicting ASD in binary classification tasks.
AbstractList A neuro-developmental disorder known as autism spectrum disorder (ASD) affects a significant portion of the global population. Those with ASD frequently struggle to interact and communicate with others and may engage in restricted or repetitive behaviors or interests. The symptoms of autism begin early in childhood and can continue into adulthood. Machine learning and deep learning (DL) models are employed in clinical research for the early identification and diagnosis of ASD. However, the majority of the existing models lack interpretability in their results for ASD diagnosis. The explainable artificial intelligence (XAI) concepts can be used to provide transparent and understandable explanations for models’ decisions. In this work, we present an explainable autism spectrum disorder model based on DL for autism disorder detection in toddlers and children. The primary objective of this study is to better understand and interpret the classification process and to discern the significant features that contribute to the prediction of ASD. The proposed model is divided into two distinct components. The first component employs a DL model for autism disorder detection. The second uses an XAI technique known as shapley additive explanations (SHAP) to emphasis key characteristics and explain the model’s outcomes. The model showed perfect performance on the training set, with an accuracy of 1 and a receiver operating characteristic score of 1. On the test set, the model achieved an accuracy score of 0.9886, indicating that it performed nearly as well as on the training set. The experimental results demonstrate that the proposed model has the capability to accurately predict and diagnose ASD while also providing explanatory insights into the obtained results. Furthermore, the results indicate that the proposed model performs competitively compared to the state-of-the-art models in terms of accuracy and F1-score. The results highlight the efficacy and potential of the proposed model in accurately predicting ASD in binary classification tasks.
Author Almars, Abdulqader M.
Atlam, El-Sayed
Rokaya, Mahmoud
Meshref, Hossam
Masud, Mehedi
Gad, Ibrahim
Author_xml – sequence: 1
  givenname: El-Sayed
  orcidid: 0000-0002-4728-590X
  surname: Atlam
  fullname: Atlam, El-Sayed
– sequence: 2
  givenname: Mehedi
  surname: Masud
  fullname: Masud, Mehedi
– sequence: 3
  givenname: Mahmoud
  surname: Rokaya
  fullname: Rokaya, Mahmoud
– sequence: 4
  givenname: Hossam
  surname: Meshref
  fullname: Meshref, Hossam
– sequence: 5
  givenname: Ibrahim
  surname: Gad
  fullname: Gad, Ibrahim
– sequence: 6
  givenname: Abdulqader M.
  surname: Almars
  fullname: Almars, Abdulqader M.
BookMark eNp1j01LAzEURbOoYK3dus4fmJqPmWTirnaqVaYIVtfDM3mVyDQzJFPQf29bXQmuLtzLuXAuyCh0AQm54mxWaG709WP1nAkm8owxJkdkzFVRZsZwcU6mKX0cW8lzposxWS3nm2p9Q5effQs-wFuLdL4ffNrRTY92iPsdrXzqosNI153Dlt5CQke7QCvEntYIMfjwfknOttAmnP7mhLzeLV8Wq6x-un9YzOvMCmlkVmgDohRWMyu3TKkcFZfGWceNcMpCgaBKy4yCHEt9WJxWTAojSqc55CAnZPbza2OXUsRt00e_g_jVcNac9JuDfnPUb06iE5L_AawfYPBdGCL49j_sG9TYX-Y
CitedBy_id crossref_primary_10_3390_diagnostics14232638
crossref_primary_10_1016_j_jksus_2024_103468
crossref_primary_10_3390_diagnostics15020130
crossref_primary_10_1016_j_aej_2024_09_057
crossref_primary_10_1016_j_aej_2024_12_120
crossref_primary_10_1080_17483107_2025_2477678
crossref_primary_10_4236_jcc_2024_125006
Cites_doi 10.1007/s00521-020-05434-0
10.1007/978-3-030-86993-9_40
10.3390/electronics11233986
10.32604/cmc.2022.022170
10.1016/j.ijmedinf.2018.06.009
10.1007/s12559-018-9543-3
10.1007/s10578-022-01328-5
10.1016/b978-0-12-822822-7.00008-9
10.1016/j.braindev.2008.09.009
10.3390/brainsci12010094
10.3389/fmed.2023.1106717
10.1007/s11042-019-07959-6
10.1093/jamia/ocaa053
10.1038/tp.2015.221
10.1016/j.heliyon.2023.e21530
10.1038/s41598-023-35910-1
10.1016/j.neuroimage.2016.10.045
10.1016/j.aej.2020.10.052
10.1016/S0306-4573(03)00019-0
10.1093/scan/nsw089
10.3390/s21134579
10.1007/978-3-540-76831-9_2
10.1016/j.nicl.2017.08.017
10.1109/jbhi.2022.3228577
10.1109/JBHI.2020.3001216
10.15585/mmwr.ss7011a1
10.1016/j.neubiorev.2014.03.013
10.1016/j.chaos.2020.110137
10.3390/app13084855
10.3390/s20092649
10.3390/diagnostics12092048
10.1007/978-3-319-76213-5_11
10.1016/j.aej.2021.10.046
10.3390/diagnostics11101936
10.1016/j.procs.2020.03.399
10.3390/diagnostics12020518
10.1016/j.jbi.2019.103313
10.1177/1460458218824711
10.1007/978-981-15-9682-7_10
10.1080/17538157.2017.1399132
10.1007/s11356-021-13824-7
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.57197/JDR-2024-0003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 10_57197_JDR_2024_0003
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c2393-579a282c70c3f0664e6139dcd192d6ca5ea68c096a4e8739dd76032928d71a4a3
ISSN 1658-9912
IngestDate Tue Jul 01 02:21:07 EDT 2025
Thu Apr 24 22:55:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2393-579a282c70c3f0664e6139dcd192d6ca5ea68c096a4e8739dd76032928d71a4a3
ORCID 0000-0002-4728-590X
OpenAccessLink https://www.scienceopen.com/hosted-document?doi=10.57197/JDR-2024-0003
ParticipantIDs crossref_primary_10_57197_JDR_2024_0003
crossref_citationtrail_10_57197_JDR_2024_0003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240203
PublicationDateYYYYMMDD 2024-02-03
PublicationDate_xml – month: 2
  year: 2024
  text: 20240203
  day: 3
PublicationDecade 2020
PublicationTitle Journal of Disability Research
PublicationYear 2024
References M Biswas (r16) 2021
HS Alarifi (r6) 2018
M Duda (r19) 2016; 6
C Georgoula (r25) 2023; 54
K Mujeeb Rahman (r41) 2022; 12
ES Atlam (r13) 2003; 39
R Carette (r17) 2018
A Garg (r24) 2022; 71
SM Plis (r44) 2014; 8
F Thabtah (r51) 2020; 26
E Atlam (r14) 2022; 61
MS Satu (r47) 2019
R Anirudh (r12) 2021
Z Malki (r39) 2020b; 138
MS Farooq (r21) 2023; 13
S Schelinski (r48) 2016; 11
F Thabtah (r50) 2018; 44
Q Guillon (r26) 2014; 42
AM Almars (r9) 2021; 11
AU Haq (r28) 2022
I Gad (r23) 2020; 44
H Alkahtani (r8) 2023; 13
MR Kanhirakadavath (r34) 2022; 12
K Howlader (r31) 2018
U Erkan (r20) 2019; 15
P Claudio (r18) 2023; 148
MJ Maenner (r36) 2021; 70
S Raj (r45) 2020; 167
J Adilakshmi (r2) 2023; 11
G Yolcu (r54) 2019; 78
Z Malki (r38) 2020a; 33
MS Kaiser (r33) 2020
AU Haq (r27) 2020; 20
Z Malki (r40) 2021; 28
M Alwateer (r11) 2021; 21
MA Hossain (r30) 2019; 100
T Noor (r42) 2022; 11
Ribeiro (r46) 2016
R Tuchman (r53) 2009; 31
S Koyamada (r35) 2015
AS Heinsfeld (r29) 2018; 17
M Farsi (r22) 2021; 60
SN Payrovnaziri (r43) 2020; 27
T Akter (r4) 2017; 15
A Akter (r5) 2021
F Thabtah (r49) 2017
M Badawy (r15) 2023; 10
A Abraham (r1) 2017; 147
F Thabtah (r52) 2018; 117
S Ahmad (r3) 2022; 73
M Mahmud (r37) 2018; 10
X Jiang (r32) 2008; Vol 91
TH Aldhyani (r7) 2022; 12
AM Almars (r10) 2023; 9
References_xml – volume: 44
  start-page: 414
  year: 2020
  ident: r23
  article-title: A comparative study of prediction and classification models on NCDC weather data
  publication-title: Int. J. Comput. Appl
– volume: 33
  start-page: 2929
  issue: 7
  year: 2020a
  ident: r38
  article-title: ARIMA models for predicting the end of COVID-19 pandemic and the risk of a second rebound
  publication-title: J. Neural Comput. Appl
  doi: 10.1007/s00521-020-05434-0
– start-page: 448
  volume-title: Brain Informatics
  year: 2021
  ident: r16
  article-title: An XAI based autism detection: the context behind the detection
  doi: 10.1007/978-3-030-86993-9_40
– volume: 11
  start-page: 3986
  issue: 23
  year: 2022
  ident: r42
  article-title: Sarima: a seasonal autoregressive integrated moving average model for crime analysis in Saudi Arabia
  publication-title: Electronics
  doi: 10.3390/electronics11233986
– volume: 71
  start-page: 1459
  issue: 1
  year: 2022
  ident: r24
  article-title: Autism spectrum disorder prediction by an explainable deep learning approach
  publication-title: Comput. Mater. Contin
  doi: 10.32604/cmc.2022.022170
– volume: 117
  start-page: 112
  year: 2018
  ident: r52
  article-title: A new computational intelligence approach to detect autistic features for autism screening
  publication-title: Int. J. Med. Inform
  doi: 10.1016/j.ijmedinf.2018.06.009
– start-page: 464
  year: 2018
  ident: r6
  article-title: Using multiple machine learning algorithms to predict autism in children
– volume: 10
  start-page: 864
  issue: 5
  year: 2018
  ident: r37
  article-title: A brain-inspired trust management model to assure security in a cloud based IoT framework for neuroscience applications
  publication-title: Cogn. Comput
  doi: 10.1007/s12559-018-9543-3
– volume: 54
  start-page: 1360
  year: 2023
  ident: r25
  article-title: A phase III study of bumetanide oral liquid formulation for the treatment of children and adolescents aged between 7 and 17 years with autism spectrum disorder (SIGN 1 trial): participant baseline characteristics
  publication-title: Child Psychiatry Hum. Dev
  doi: 10.1007/s10578-022-01328-5
– volume: 73
  start-page: 965
  issue: 1
  year: 2022
  ident: r3
  article-title: Deep learning enabled disease diagnosis for secure internet of medical things
  publication-title: Comput. Mater. Contin
– start-page: 151
  volume-title: Neural Engineering Techniques for Autism Spectrum Disorder
  year: 2021
  ident: r12
  article-title: Machine learning methods for autism spectrum disorder classification
  doi: 10.1016/b978-0-12-822822-7.00008-9
– start-page: 400
  volume-title: Proc. ICREST
  year: 2019
  ident: r47
  article-title: Early detection of autism by extracting features: a case study in Bangladesh
– volume: 31
  start-page: 95
  issue: 2
  year: 2009
  ident: r53
  article-title: Convulsing toward the pathophysiology of autism
  publication-title: Brain Dev
  doi: 10.1016/j.braindev.2008.09.009
– volume: 12
  start-page: 94
  issue: 1
  year: 2022
  ident: r41
  article-title: Identification of autism in children using static facial features and deep neural networks
  publication-title: Brain Sci
  doi: 10.3390/brainsci12010094
– volume: 10
  year: 2023
  ident: r15
  article-title: A two stage renal disease classification based on transfer learning with hyperparameters optimization
  publication-title: Front. Med
  doi: 10.3389/fmed.2023.1106717
– volume: 78
  start-page: 31581
  year: 2019
  ident: r54
  article-title: Facial expression recognition for monitoring neurological disorders based on convolutional neural network
  publication-title: Multimed. Tools Appl
  doi: 10.1007/s11042-019-07959-6
– volume: 27
  start-page: 1173
  issue: 7
  year: 2020
  ident: r43
  article-title: Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review
  publication-title: J. Am. Med. Inform. Assoc
  doi: 10.1093/jamia/ocaa053
– volume: 6
  start-page: e732
  issue: 2
  year: 2016
  ident: r19
  article-title: Use of machine learning for behavioral distinction of autism and ADHD
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2015.221
– volume: 15
  start-page: 331
  year: 2017
  ident: r4
  article-title: Statistical analysis of the activation area of fusiform gyrus of human brain to explore autism
  publication-title: Int. J. Comput. Sci. Inf. Secur
– volume: 9
  issue: 11
  year: 2023
  ident: r10
  article-title: ASD 2-TL GTO: Autism spectrum disorders detection via transfer learning with gorilla troops optimizer framework
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e21530
– volume: 13
  start-page: 9605
  issue: 1
  year: 2023
  ident: r21
  article-title: Detection of autism spectrum disorder (ASD) in children and adults using machine learning
  publication-title: Sci. Rep
  doi: 10.1038/s41598-023-35910-1
– start-page: 1
  year: 2017
  ident: r49
  article-title: Autism spectrum disorder screening: machine learning adaptation and DSM-5 fulfillment
– volume: 147
  start-page: 736
  year: 2017
  ident: r1
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.045
– volume: 60
  start-page: 1299
  issue: 1
  year: 2021
  ident: r22
  article-title: Parallel genetic algorithms for optimizing the SARIMA model for better forecasting of the NCDC weather data
  publication-title: Alex. Eng. J
  doi: 10.1016/j.aej.2020.10.052
– volume: 15
  start-page: 297
  year: 2019
  ident: r20
  article-title: Autism spectrum disorder detection with machine learning methods
  publication-title: Curr. Psychiatry Res. Rev. Former. Curr. Psychiatry Rev
– volume: 39
  start-page: 809
  issue: 6
  year: 2003
  ident: r13
  article-title: Document similarity measurement using field association term
  publication-title: Inform. Process. Manage. J
  doi: 10.1016/S0306-4573(03)00019-0
– volume: 11
  start-page: 1812
  issue: 11
  year: 2016
  ident: r48
  article-title: Temporal voice areas exist in autism spectrum disorder but are dysfunctional for voice identity recognition
  publication-title: Soc. Cogn. Affect. Neurosci
  doi: 10.1093/scan/nsw089
– volume: 21
  start-page: 4579
  issue: 13
  year: 2021
  ident: r11
  article-title: Ambient healthcare approach with hybrid whale optimization algorithm and naive bayes classifier
  publication-title: Sensors
  doi: 10.3390/s21134579
– volume: Vol 91
  start-page: 29
  volume-title: Applied Pattern Recognition
  year: 2008
  ident: r32
  article-title: Facial image processing
  doi: 10.1007/978-3-540-76831-9_2
– volume: 11
  start-page: 385
  issue: 65
  year: 2023
  ident: r2
  article-title: A medical diagnosis system based on explainable artificial intelligence: autism spectrum disorder diagnosis
  publication-title: Int. J. Intell. Syst. Appl. Eng
– volume: 17
  start-page: 16
  year: 2018
  ident: r29
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2017.08.017
– start-page: 1
  year: 2022
  ident: r28
  article-title: DEBCM: deep learning-based enhanced breast invasive ductal carcinoma classification model in IoMT healthcare systems
  publication-title: IEEE J. Biomed. Health Inform
  doi: 10.1109/jbhi.2022.3228577
– year: 2015
  ident: r35
  article-title: Deep learning of fMRI big data: a novel approach to subject-transfer decoding
  publication-title: arXiv preprint arXiv
– start-page: 742
  year: 2021
  ident: r5
  article-title: Improved machine learning based classification model for early autism detection
– start-page: 481
  year: 2018
  ident: r31
  article-title: Mining significant features of diabetes mellitus applying decision trees: a case study in Bangladesh
  publication-title: BioRxiv
  doi: 10.1109/JBHI.2020.3001216
– volume: 70
  start-page: 1
  issue: 11
  year: 2021
  ident: r36
  article-title: Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2018
  publication-title: MMWR Surveill Summ
  doi: 10.15585/mmwr.ss7011a1
– volume: 42
  start-page: 279
  year: 2014
  ident: r26
  article-title: Visual social attention in autism spectrum disorder: insights from eye tracking studies
  publication-title: Neurosci. Biobehav. Rev
  doi: 10.1016/j.neubiorev.2014.03.013
– volume: 138
  year: 2020b
  ident: r39
  article-title: Association between weather data and COVID-19 pandemic predicting mortality rate: machine learning approaches
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110137
– volume: 13
  start-page: 4855
  issue: 8
  year: 2023
  ident: r8
  article-title: Deep learning algorithms to identify autism spectrum disorder in children-based facial landmarks
  publication-title: Appl. Sci
  doi: 10.3390/app13084855
– volume: 20
  start-page: 2649
  issue: 9
  year: 2020
  ident: r27
  article-title: Intelligent machine learning approach for effective recognition of diabetes in E-healthcare using clinical data
  publication-title: Sensors
  doi: 10.3390/s20092649
– volume: 12
  start-page: 2048
  issue: 9
  year: 2022
  ident: r7
  article-title: Multi-class skin lesion classification using a lightweight dynamic kernel deep-learning-based convolutional neural network
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12092048
– start-page: 75
  volume-title: Internet of Things (IoT) Technologies for HealthCare
  year: 2018
  ident: r17
  article-title: Automatic autism spectrum disorder detection thanks to eye-tracking and neural network-based approach
  doi: 10.1007/978-3-319-76213-5_11
– volume: 61
  start-page: 5223
  issue: 7
  year: 2022
  ident: r14
  article-title: A new approach in identifying the psychological impact of COVID-19 on university student’s academic performance
  publication-title: Alex. Eng. J
  doi: 10.1016/j.aej.2021.10.046
– volume: 11
  start-page: 1936
  issue: 10
  year: 2021
  ident: r9
  article-title: Brain cancer prediction based on novel interpretable ensemble gene selection algorithm and classifier
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11101936
– volume: 167
  start-page: 994
  year: 2020
  ident: r45
  article-title: Analysis and detection of autism spectrum disorder using machine learning techniques
  publication-title: Proc. Comput. Sci
  doi: 10.1016/j.procs.2020.03.399
– volume: 12
  start-page: 518
  issue: 2
  year: 2022
  ident: r34
  article-title: Investigation of eye-tracking scan path as a biomarker for autism screening using machine learning algorithms
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12020518
– volume: 100
  year: 2019
  ident: r30
  article-title: Machine learning and bioinformatics models to identify gene expression patterns of ovarian cancer associated with disease progression and mortality
  publication-title: J. Biomed. Inform
  doi: 10.1016/j.jbi.2019.103313
– volume: 26
  start-page: 264
  issue: 1
  year: 2020
  ident: r51
  article-title: A new machine learning model based on induction of rules for autism detection
  publication-title: Health Inform. J
  doi: 10.1177/1460458218824711
– start-page: 1135
  year: 2016
  ident: r46
  article-title: Why should I trust you? Explaining the predictions of any classifier
– volume: 148
  start-page: 86
  issue: 3
  year: 2023
  ident: r18
  article-title: Early prediction of autism spectrum disorders through interaction analysis in home videos and explainable artificial intelligence
  publication-title: Comput. Hum. Behav
– start-page: 83
  volume-title: COVID-19: Prediction, Decision-Making, and its Impacts
  year: 2020
  ident: r33
  article-title: Healthcare robots to combat COVID-19
  doi: 10.1007/978-981-15-9682-7_10
– volume: 44
  start-page: 278
  issue: 3
  year: 2018
  ident: r50
  article-title: Machine learning in autistic spectrum disorder behavioral research: a review and ways forward
  publication-title: Inform. Health Soc. Care
  doi: 10.1080/17538157.2017.1399132
– volume: 28
  start-page: 40496
  issue: 30
  year: 2021
  ident: r40
  article-title: The covid-19 pandemic: prediction study based on machine learning model
  publication-title: J. Environ. Sci. Pollut. Res
  doi: 10.1007/s11356-021-13824-7
– volume: 8
  start-page: 229
  year: 2014
  ident: r44
  article-title: Deep learning for neuroimaging: a validation study
  publication-title: Front. Neurosci
SSID ssj0003314075
Score 2.3369684
Snippet A neuro-developmental disorder known as autism spectrum disorder (ASD) affects a significant portion of the global population. Those with ASD frequently...
SourceID crossref
SourceType Enrichment Source
Index Database
Title EASDM: Explainable Autism Spectrum Disorder Model Based on Deep Learning
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTgIxFG0UN26MRo34ShcmLkx1mM4LdygYQoILgYQdKZ0iibwisMCv97TzYCCQoCwmZOh0hjk3vee2vecScicUjMJyXRbYocVgFAUm9KZxiWCoJ4XVLSodKNbfvWrLqbXd9rLckckumXUf5c_GvJL_oIpzwFVnyf4B2bRTnMB34IsjEMZxJ4wrpUa5rmN6vZMuSYMq4YbToSksP_ueD1N9TVP2bPDwArcV6iWCslKTRF71cwtHLccKvIapZ-a9tIXMYluqDFhDLOIcKTO3PZ1HlYpVH55xuaLzJRYiSg_qD8fzZXs1hT0ZbcgqPLYYZicibMfsXeaZsRNkhoFurgyufN2G1ods1y8YLeBa-YNFvVpxpyva2Gs-K91JiBjG9NDB9R19vV5N5_vkwEbYkA2xtWfmHOGk0V5OnzXS8TRdPK08QoanZAhH85gcxSjQUgT7CdlTo1NSNZA_0wzgNAKcJoDTBHBqAKcGcDoeUQ04TQA_I623SvO1yuJiGExqlTrm-kWB8Fj6luQ98ERHgYgVQxmCooeeFK4SXiARkApHBT5-CX3P4nbRDkK_IBzBz0luNB6pC0J78Gldz7GEJ5QTgB9bggf4SIerApxOnrDkr3dkrBSvC5YMOpvfdp7cp-0nkUbKlpaXO7e8IodLG7smObw_dQP6N-veGkx_AcDrVGE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EASDM%3A+Explainable+Autism+Spectrum+Disorder+Model+Based+on+Deep+Learning&rft.jtitle=Journal+of+Disability+Research&rft.au=Atlam%2C+El-Sayed&rft.au=Masud%2C+Mehedi&rft.au=Rokaya%2C+Mahmoud&rft.au=Meshref%2C+Hossam&rft.date=2024-02-03&rft.issn=1658-9912&rft.volume=3&rft.issue=1&rft_id=info:doi/10.57197%2FJDR-2024-0003&rft.externalDBID=n%2Fa&rft.externalDocID=10_57197_JDR_2024_0003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1658-9912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1658-9912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1658-9912&client=summon