Multi-objective optimization of cycle time and energy consumption in parallel robotic assembly lines using a discrete firefly algorithm

PurposeAssembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only increases productivity but also increases energy consumption and carbon emissions. The purpose of this paper is to minimize the cycle time and...

Full description

Saved in:
Bibliographic Details
Published inEngineering computations Vol. 39; no. 6; pp. 2424 - 2448
Main Authors Soysal-Kurt, Halenur, İşleyen, Selçuk Kürşat
Format Journal Article
LanguageEnglish
Published Bradford Emerald Publishing Limited 07.06.2022
Emerald Group Publishing Limited
Subjects
Online AccessGet full text
ISSN0264-4401
1758-7077
DOI10.1108/EC-12-2020-0747

Cover

Abstract PurposeAssembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only increases productivity but also increases energy consumption and carbon emissions. The purpose of this paper is to minimize the cycle time and total energy consumption simultaneously in parallel robotic assembly lines (PRAL).Design/methodology/approachDue to the NP-hardness of the problem, A Pareto hybrid discrete firefly algorithm based on probability attraction (PHDFA-PA) is developed. The algorithm parameters are optimized using the Taguchi method. To evaluate the results of the algorithm, a multi-objective programming model and a restarted simulated annealing (RSA) algorithm are used.FindingsAccording to the comparative study, the PHDFA-PA has a competitive performance with the RSA. Thus, it is possible to achieve a sustainable PRAL through the proposed method by addressing the cycle time and total energy consumption simultaneously.Originality/valueTo the best knowledge of the authors, this is the first study addressing energy consumption in PRAL. The proposed method for PRAL is efficient in solving the multi-objective balancing problem.
AbstractList Purpose>Assembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only increases productivity but also increases energy consumption and carbon emissions. The purpose of this paper is to minimize the cycle time and total energy consumption simultaneously in parallel robotic assembly lines (PRAL).Design/methodology/approach>Due to the NP-hardness of the problem, A Pareto hybrid discrete firefly algorithm based on probability attraction (PHDFA-PA) is developed. The algorithm parameters are optimized using the Taguchi method. To evaluate the results of the algorithm, a multi-objective programming model and a restarted simulated annealing (RSA) algorithm are used.Findings>According to the comparative study, the PHDFA-PA has a competitive performance with the RSA. Thus, it is possible to achieve a sustainable PRAL through the proposed method by addressing the cycle time and total energy consumption simultaneously.Originality/value>To the best knowledge of the authors, this is the first study addressing energy consumption in PRAL. The proposed method for PRAL is efficient in solving the multi-objective balancing problem.
PurposeAssembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only increases productivity but also increases energy consumption and carbon emissions. The purpose of this paper is to minimize the cycle time and total energy consumption simultaneously in parallel robotic assembly lines (PRAL).Design/methodology/approachDue to the NP-hardness of the problem, A Pareto hybrid discrete firefly algorithm based on probability attraction (PHDFA-PA) is developed. The algorithm parameters are optimized using the Taguchi method. To evaluate the results of the algorithm, a multi-objective programming model and a restarted simulated annealing (RSA) algorithm are used.FindingsAccording to the comparative study, the PHDFA-PA has a competitive performance with the RSA. Thus, it is possible to achieve a sustainable PRAL through the proposed method by addressing the cycle time and total energy consumption simultaneously.Originality/valueTo the best knowledge of the authors, this is the first study addressing energy consumption in PRAL. The proposed method for PRAL is efficient in solving the multi-objective balancing problem.
Author Soysal-Kurt, Halenur
İşleyen, Selçuk Kürşat
Author_xml – sequence: 1
  givenname: Halenur
  orcidid: 0000-0001-6920-4448
  surname: Soysal-Kurt
  fullname: Soysal-Kurt, Halenur
  email: halenursoysal@osmaniye.edu.tr
– sequence: 2
  givenname: Selçuk Kürşat
  surname: İşleyen
  fullname: İşleyen, Selçuk Kürşat
  email: isleyens@gazi.edu.tr
BookMark eNp9kU1v3CAQhlGVSN2kOeeK1LOTAX9gH6vVtqmUKJf2jDAeNqwwuIArbf9A_3bZbC-tqp6QhveBmWeuyIUPHgm5ZXDHGPT3u23FeMWBQwWiEW_Ihom2rwQIcUE2wLumahpgb8lVSgcAEHUNG_LzaXXZVmE8oM72O9KwZDvbHyrb4GkwVB-1Q1pqSJWfKHqM-yPVwad1Xl5D1tNFReUcOhrDGLLVVKWE8-iO1FmPia7J-j1VdLJJR8xIjY1oyrVy-xBtfpnfkUujXMKb3-c1-fpx92X7UD0-f_q8_fBYaV73uTKqa8sQ_WgUIBtGY4ZpEmPTGKi1GEEPEx_6vgzN69aYWpmh4dPYAuip7wZVX5P353eXGL6tmLI8hDX68qXkneAD76EbSqo9p3QMKZVWpbb5VUmOyjrJQJ6cy91WMi5PzuXJeeHu_-KWaGcVj_8h7s4EzlgcTv8A_lhr_QshCpYY
CitedBy_id crossref_primary_10_1007_s00500_024_10311_2
crossref_primary_10_1007_s10696_024_09533_1
crossref_primary_10_1080_21693277_2024_2439275
crossref_primary_10_1007_s10696_024_09583_5
crossref_primary_10_1016_j_neucom_2022_05_100
crossref_primary_10_1016_j_cie_2024_110045
crossref_primary_10_1080_19397038_2024_2434099
crossref_primary_10_1007_s41660_024_00413_7
Cites_doi 10.1007/s00170-016-9086-2
10.1016/j.ijpe.2009.01.011
10.1016/S0007-8506(07)62494-9
10.1016/j.ejor.2004.07.030
10.1016/j.jclepro.2019.01.030
10.1080/00207549508904817
10.1016/j.jclepro.2017.04.032
10.1080/00207540903074991
10.1080/21681015.2015.1126656
10.1109/4235.996017
10.1016/j.procir.2012.07.082
10.1016/j.jclepro.2014.11.041
10.1016/j.ijpe.2005.12.001
10.1504/IJCSM.2016.081701
10.1016/j.cor.2015.05.014
10.1080/00207543.2018.1530479
10.1016/j.jmsy.2020.02.005
10.1016/j.asoc.2017.07.062
10.1016/j.asoc.2010.12.021
10.1007/978-3-030-14544-6_9
10.1016/j.cie.2008.09.027
10.1080/00207543.2013.879618
10.1007/978-3-642-23857-4_38
10.1016/j.jmsy.2011.10.002
10.1080/00207543.2018.1471238
10.1007/s10845-020-01641-7
10.1016/j.jclepro.2016.06.131
10.1007/s00170-014-5753-3
10.1080/00207540903055735
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7SC
7TB
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
F~G
GNUQQ
HCIFZ
JQ2
K6~
K7-
KR7
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1108/EC-12-2020-0747
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1758-7077
EndPage 2448
ExternalDocumentID 10_1108_EC_12_2020_0747
10.1108/EC-12-2020-0747
GroupedDBID 02
0R
29G
4.4
5GY
5VS
70U
7WY
9E0
AADTA
AADXL
AAGBP
AAMCF
AATHL
AAUDR
ABFLS
ABIJV
ABKQV
ABPTK
ABQIS
ABSDC
ACGFS
ACGOD
ACIWK
ADFRT
ADOMW
AEBVX
AEBZA
AENEX
AEUCW
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASMFL
AUCOK
AZQEC
BENPR
BPQFQ
CS3
DU5
EBS
ECCUG
FNNZZ
GEI
GEL
GQ.
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HZ
IPNFZ
J1Y
JI-
JL0
K6
K7-
KBGRL
M0C
O9-
P2P
RIG
RWL
TAE
TN5
U5U
UNMZH
V1G
0R~
8AO
8FE
8FG
8FW
8R4
8R5
AAYXX
ABJCF
ABJNI
ABYQI
ACBEA
ACZLT
AFKRA
AFNTC
AHMHQ
AODMV
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
HZ~
IJT
K6V
K6~
L6V
M2P
M42
M7S
P62
PHGZM
PHGZT
PQBIZ
PQGLB
PQQKQ
PROAC
PTHSS
Q2X
SBBZN
~02
7SC
7TB
7XB
8FD
FR3
JQ2
KR7
L.-
L.0
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c238t-fa654018bfa0e19bff9dd7b44f03c7b0c9d2988707235ff3af942db500cd869a3
IEDL.DBID 8FG
ISSN 0264-4401
IngestDate Fri Jul 25 10:47:45 EDT 2025
Thu Apr 24 23:12:15 EDT 2025
Thu Jul 31 00:33:41 EDT 2025
Sun Jun 05 01:30:56 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Energy consumption
Multi-objective optimization
Parallel
Discrete firefly algorithm
Robotic assembly line balancing
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c238t-fa654018bfa0e19bff9dd7b44f03c7b0c9d2988707235ff3af942db500cd869a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6920-4448
PQID 2672928069
PQPubID 26043
PageCount 25
ParticipantIDs crossref_primary_10_1108_EC_12_2020_0747
proquest_journals_2672928069
crossref_citationtrail_10_1108_EC_12_2020_0747
emerald_primary_10_1108_EC-12-2020-0747
PublicationCentury 2000
PublicationDate 2022-06-07
PublicationDateYYYYMMDD 2022-06-07
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-07
  day: 07
PublicationDecade 2020
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Engineering computations
PublicationYear 2022
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2022060409471950000_ref019) 2015; 90
(key2022060409471950000_ref023) 2011; 11
(key2022060409471950000_ref030) 2020; 146
(key2022060409471950000_ref031) 2000
(key2022060409471950000_ref003) 2022; 33
(key2022060409471950000_ref014) 2014; 52
(key2022060409471950000_ref029) 2009; 119
(key2022060409471950000_ref017) 2016; 135
(key2022060409471950000_ref002) 2019; 84
(key2022060409471950000_ref037) 2019; 57
(key2022060409471950000_ref041) 2018; 56
(key2022060409471950000_ref028) 1999
(key2022060409471950000_ref034) 2012; 31
(key2022060409471950000_ref001) 2020; 124
(key2022060409471950000_ref035) 2016; 7
(key2022060409471950000_ref005) 2002; 6
key2022060409471950000_ref006
(key2022060409471950000_ref024) 2010; 48
(key2022060409471950000_ref036) 2019; 215
(key2022060409471950000_ref004) 2017; 61
(key2022060409471950000_ref026) 2016; 33
(key2022060409471950000_ref021) 2017; 156
(key2022060409471950000_ref012) 2014; 72
(key2022060409471950000_ref040) 2020; 55
(key2022060409471950000_ref007) 2012; 3
(key2022060409471950000_ref008) 2009; 56
(key2022060409471950000_ref018) 2011
(key2022060409471950000_ref032) 2008
(key2022060409471950000_ref013) 1995; 33
(key2022060409471950000_ref038) 2021; 98
(key2022060409471950000_ref025) 2010; 48
(key2022060409471950000_ref039) 2019; 233
(key2022060409471950000_ref016) 2006; 168
(key2022060409471950000_ref033) 2010
key2022060409471950000_ref011
(key2022060409471950000_ref020) 2016; 33
(key2022060409471950000_ref027) 1993; 42
key2022060409471950000_ref010
(key2022060409471950000_ref009) 2006; 103
(key2022060409471950000_ref015) 2015; 64
(key2022060409471950000_ref022) 2017; 89
References_xml – volume: 89
  start-page: 311
  year: 2017
  ident: key2022060409471950000_ref022
  article-title: Differential evolution algorithm for solving RALB problem using cost- and time-based models
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-016-9086-2
– volume: 119
  start-page: 90
  issue: 1
  year: 2009
  ident: key2022060409471950000_ref029
  article-title: Designing parallel assembly lines with split workplaces: model and optimization procedure
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2009.01.011
– volume: 42
  start-page: 497
  issue: 1
  year: 1993
  ident: key2022060409471950000_ref027
  article-title: RALB – a heuristic algorithm for design and balancing of robotic assembly lines
  publication-title: CIRP Annals
  doi: 10.1016/S0007-8506(07)62494-9
– volume-title: Nature-Inspired Metaheuristic Algorithms
  year: 2010
  ident: key2022060409471950000_ref033
– volume: 168
  start-page: 811
  issue: 3
  year: 2006
  ident: key2022060409471950000_ref016
  article-title: A genetic algorithm for robotic assembly line balancing
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.07.030
– volume: 215
  start-page: 744
  year: 2019
  ident: key2022060409471950000_ref036
  article-title: Mathematical model and grey wolf optimization for low-carbon and low-noise U-shaped robotic assembly line balancing problem
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.01.030
– volume: 33
  start-page: 2311
  issue: 8
  year: 1995
  ident: key2022060409471950000_ref013
  article-title: A strong cutting plane algorithm for the robotic assembly line balancing problem
  publication-title: International Journal of Production Research
  doi: 10.1080/00207549508904817
– volume: 156
  start-page: 124
  year: 2017
  ident: key2022060409471950000_ref021
  article-title: Multi-objective co-operative co-evolutionary algorithm for minimizing carbon footprint and maximizing line efficiency in robotic assembly line systems
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2017.04.032
– volume: 48
  start-page: 4767
  issue: 16
  year: 2010
  ident: key2022060409471950000_ref025
  article-title: Balancing parallel two-sided assembly lines
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540903074991
– volume: 33
  start-page: 472
  issue: 7
  year: 2016
  ident: key2022060409471950000_ref026
  article-title: Multi-objective metaheuristics for solving a type II robotic mixed-model assembly line balancing problem
  publication-title: Journal of Industrial and Production Engineering
  doi: 10.1080/21681015.2015.1126656
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: key2022060409471950000_ref005
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 3
  start-page: 477
  year: 2012
  ident: key2022060409471950000_ref007
  article-title: An empirical study of the energy consumption in automotive assembly
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2012.07.082
– volume-title: Nature-Inspired Metaheuristic Algorithms
  year: 2008
  ident: key2022060409471950000_ref032
– volume: 90
  start-page: 311
  year: 2015
  ident: key2022060409471950000_ref019
  article-title: An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2014.11.041
– start-page: 204
  year: 2000
  ident: key2022060409471950000_ref031
  article-title: On measuring multiobjective evolutionary algorithm performance
– ident: key2022060409471950000_ref006
– volume: 103
  start-page: 600
  issue: 2
  year: 2006
  ident: key2022060409471950000_ref009
  article-title: Balancing of parallel assembly lines
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2005.12.001
– volume: 146
  year: 2020
  ident: key2022060409471950000_ref030
  article-title: Bound-guided hybrid estimation of distribution algorithm for energy-efficient robotic assembly line balancing
  publication-title: Computers and Industrial Engineering
– volume: 124
  year: 2020
  ident: key2022060409471950000_ref001
  article-title: A survey of the parallel assembly lines balancing problem
  publication-title: Computers and Operations Research
– volume: 7
  start-page: 530
  issue: 6
  year: 2016
  ident: key2022060409471950000_ref035
  article-title: An improved firefly algorithm based on probabilistic attraction
  publication-title: International Journal of Computing Science and Mathematics
  doi: 10.1504/IJCSM.2016.081701
– volume-title: Balancing and Sequencing Assembly Lines
  year: 1999
  ident: key2022060409471950000_ref028
– start-page: 507
  year: 2011
  ident: key2022060409471950000_ref018
  article-title: Energy efficient use of robotics in the automobile industry
– volume: 64
  start-page: 233
  year: 2015
  ident: key2022060409471950000_ref015
  article-title: Balancing of parallel U-shaped assembly lines
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2015.05.014
– volume: 233
  start-page: 2991
  issue: 9
  year: 2019
  ident: key2022060409471950000_ref039
  article-title: A multiobjective hybrid imperialist competitive algorithm for multirobot cooperative assembly line balancing problems with energy awareness
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
– volume: 33
  start-page: 580
  issue: 2
  year: 2016
  ident: key2022060409471950000_ref020
  article-title: Design of energy efficient RAL system using evolutionary algorithms
  publication-title: Engineering Computations
– volume: 57
  start-page: 5520
  issue: 17
  year: 2019
  ident: key2022060409471950000_ref037
  article-title: Modelling and optimisation of energy-efficient U-shaped robotic assembly line balancing problems
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2018.1530479
– volume: 55
  start-page: 30
  year: 2020
  ident: key2022060409471950000_ref040
  article-title: Decomposition-based bi-objective optimization for sustainable robotic assembly line balancing problems
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2020.02.005
– volume: 84
  year: 2019
  ident: key2022060409471950000_ref002
  article-title: An improved hybrid firefly algorithm for capacitated vehicle routing problem
  publication-title: Applied Soft Computing
– volume: 61
  start-page: 129
  year: 2017
  ident: key2022060409471950000_ref004
  article-title: A beam search approach for solving type II robotic parallel assembly line balancing problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.07.062
– volume: 11
  start-page: 3186
  issue: 3
  year: 2011
  ident: key2022060409471950000_ref023
  article-title: Multiple-colony ant algorithm for parallel assembly line balancing problem
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.12.021
– ident: key2022060409471950000_ref010
  doi: 10.1007/978-3-030-14544-6_9
– volume: 56
  start-page: 1065
  issue: 3
  year: 2009
  ident: key2022060409471950000_ref008
  article-title: An efficient approach for type II robotic assembly line balancing problems
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2008.09.027
– volume: 52
  start-page: 3665
  issue: 12
  year: 2014
  ident: key2022060409471950000_ref014
  article-title: Simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2013.879618
– ident: key2022060409471950000_ref011
  doi: 10.1007/978-3-642-23857-4_38
– volume: 31
  start-page: 139
  issue: 2
  year: 2012
  ident: key2022060409471950000_ref034
  article-title: Type II robotic assembly line balancing problem: an evolution strategies algorithm for a multi-objective model
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2011.10.002
– volume: 56
  start-page: 7354
  issue: 24
  year: 2018
  ident: key2022060409471950000_ref041
  article-title: A Pareto firefly algorithm for multi-objective disassembly line balancing problems with hazard evaluation
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2018.1471238
– volume: 33
  start-page: 1
  issue: 1
  year: 2022
  ident: key2022060409471950000_ref003
  article-title: A comprehensive review of robotic assembly line balancing problem
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/s10845-020-01641-7
– volume: 135
  start-page: 508
  year: 2016
  ident: key2022060409471950000_ref017
  article-title: Minimizing energy consumption and cycle time in two-sided robotic assembly line systems using restarted simulated annealing algorithm
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2016.06.131
– volume: 72
  start-page: 1567
  issue: 9-12
  year: 2014
  ident: key2022060409471950000_ref012
  article-title: A hybrid discrete firefly algorithm for multi-objective flexible job shop scheduling problem with limited resource constraints
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-014-5753-3
– volume: 48
  start-page: 5089
  issue: 17
  year: 2010
  ident: key2022060409471950000_ref024
  article-title: Balancing and sequencing of parallel mixed-model assembly lines
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540903055735
– volume: 98
  year: 2021
  ident: key2022060409471950000_ref038
  article-title: Balancing and sequencing problem of mixed-model U-shaped robotic assembly line: mathematical model and dragonfly algorithm based approach
  publication-title: Applied Soft Computing
SSID ssj0007330
Score 2.3548598
Snippet PurposeAssembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only...
Purpose>Assembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2424
SubjectTerms Algorithms
Alliances
Assembly lines
Comparative studies
Costs
Cycle time
Energy consumption
Energy efficiency
Heuristic methods
Integer programming
Linear programming
Literature reviews
Manufacturers
Manufacturing
Mathematical models
Mathematical programming
Multiple objective analysis
Mutation
Optimization
Pareto optimization
Productivity
Robotics
Robots
Simulated annealing
Taguchi methods
Title Multi-objective optimization of cycle time and energy consumption in parallel robotic assembly lines using a discrete firefly algorithm
URI https://www.emerald.com/insight/content/doi/10.1108/EC-12-2020-0747/full/html
https://www.proquest.com/docview/2672928069
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcABSgERaKs5INGLwV57Hz4hiBKqSq0QaqXeVn62oM1uScKhv4C_jcdxWopazvY-5Bl_83nGM0PIW9mwSJKFo1qVjkrJHFXGGepNqFVUIq1SuODouDo4lYdn5Vl2uC3ytco1JiagdoNFH_mHooo0EMOA6uPlT4pdozC6mltoPCSbPFoa1PNm-uUaiWshso9F4m_wXNoHO99MxngnocDDE5aQv2WV_knNvYHnZHOmW-RJJovwaSXdZ-SB77fJ00wcIW_LxTZ5_FdVwefkd0qqpYP5sQIzGCIszHK-JQwB7FV8G2BXedC9A5_S_8CmZMyEIPC9B6wJ3nW-g_lghvh9iCzbz0x3BUhMF4AX5s9BA6b1ziPzhhDBM8Rh3Z3HdVtezF6Q0-nkZHxAc78FaqPhXtKgq8jfeGOCZp4rE4JyrjZSBiZsbZhVrlARlFhdiDIEoYOShTMlY9Y1ldLiJdnoh96_IqBqYY0MVTB4wIkgYevKcy6CL4Xino_I-_V6tzYXI8eeGF2bDiWsaSfjlhctCqhFAY3I_vUDl6s6HPdPfZcFeMfMW1IfkZ21gNu8dRftjaK9_v_wG_KowFwIdMnUO2RjOf_ldyNDWZq9pIZ7ZPPz5Pjrtz_hx-SA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAceBQQgQJzAMHFYHvXdvaAEIRUKW0jhFqpt8X7Kq0cuyRBKL-Af8NvZMdZtxQBt553vZY9s998-_hmAJ7yQexJMjNRKTITcR6bSCijIqtcIbwTlaI9Ltib5OMD_uEwO1yDn50Whq5VdpjYArVpNO2Rv0pzTwPpGFC8Of0aUdUoOl3tSmis3GLHLr_7Jdv89fZ7b99nabo12h-Oo1BVINI-PC0iV-aepSQD5crYJkI5J4wpFOcuZrpQsRYmFX7qxUXKMudY6QRPjcriWJtBLkrmx70C65wUrT1YfzeafPx0hv0FY2FXh9OHJyGZENXaGQ3pFkRKyzVKWn8hDv4hBj4PCG2U27oFNwI9xbcrf7oNa7begJuBqmIAgvkGXP8tj-Ed-NHKeKNGnazgExsPRNOg8MTGoV760ZDq2GNZG7St4BB1K_9sMQuPa6Qs5FVlK5w1qvHvR8_r7VRVSyQqPEe6on-EJZKQeOa5PjoP1843l9WRt9Tiy_QuHFyKLe5Br25qex9QFEwr7nKnaEnlYUkXuU0S5mzGRGKTPrzs_rfUIf05VeGoZLsMigdyNJRJKslAkgzUhxdnD5yuMn_8u-vzYMC_9Lxg9T5sdgaWASzm8ty1H_y_-QlcHe_v7crd7cnOQ7iWkhKDNoSKTegtZt_sI8-PFupxcEqEz5c9D34BBJQh4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+cycle+time+and+energy+consumption+in+parallel+robotic+assembly+lines+using+a+discrete+firefly+algorithm&rft.jtitle=Engineering+computations&rft.au=Soysal-Kurt%2C+Halenur&rft.au=%C4%B0%C5%9Fleyen%2C+Sel%C3%A7uk+K%C3%BCr%C5%9Fat&rft.date=2022-06-07&rft.pub=Emerald+Publishing+Limited&rft.issn=0264-4401&rft.eissn=1758-7077&rft.volume=39&rft.issue=6&rft.spage=2424&rft.epage=2448&rft_id=info:doi/10.1108%2FEC-12-2020-0747&rft.externalDocID=10.1108%2FEC-12-2020-0747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-4401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-4401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-4401&client=summon