Multi-objective optimization of cycle time and energy consumption in parallel robotic assembly lines using a discrete firefly algorithm
PurposeAssembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only increases productivity but also increases energy consumption and carbon emissions. The purpose of this paper is to minimize the cycle time and...
Saved in:
Published in | Engineering computations Vol. 39; no. 6; pp. 2424 - 2448 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bradford
Emerald Publishing Limited
07.06.2022
Emerald Group Publishing Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0264-4401 1758-7077 |
DOI | 10.1108/EC-12-2020-0747 |
Cover
Abstract | PurposeAssembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only increases productivity but also increases energy consumption and carbon emissions. The purpose of this paper is to minimize the cycle time and total energy consumption simultaneously in parallel robotic assembly lines (PRAL).Design/methodology/approachDue to the NP-hardness of the problem, A Pareto hybrid discrete firefly algorithm based on probability attraction (PHDFA-PA) is developed. The algorithm parameters are optimized using the Taguchi method. To evaluate the results of the algorithm, a multi-objective programming model and a restarted simulated annealing (RSA) algorithm are used.FindingsAccording to the comparative study, the PHDFA-PA has a competitive performance with the RSA. Thus, it is possible to achieve a sustainable PRAL through the proposed method by addressing the cycle time and total energy consumption simultaneously.Originality/valueTo the best knowledge of the authors, this is the first study addressing energy consumption in PRAL. The proposed method for PRAL is efficient in solving the multi-objective balancing problem. |
---|---|
AbstractList | Purpose>Assembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only increases productivity but also increases energy consumption and carbon emissions. The purpose of this paper is to minimize the cycle time and total energy consumption simultaneously in parallel robotic assembly lines (PRAL).Design/methodology/approach>Due to the NP-hardness of the problem, A Pareto hybrid discrete firefly algorithm based on probability attraction (PHDFA-PA) is developed. The algorithm parameters are optimized using the Taguchi method. To evaluate the results of the algorithm, a multi-objective programming model and a restarted simulated annealing (RSA) algorithm are used.Findings>According to the comparative study, the PHDFA-PA has a competitive performance with the RSA. Thus, it is possible to achieve a sustainable PRAL through the proposed method by addressing the cycle time and total energy consumption simultaneously.Originality/value>To the best knowledge of the authors, this is the first study addressing energy consumption in PRAL. The proposed method for PRAL is efficient in solving the multi-objective balancing problem. PurposeAssembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only increases productivity but also increases energy consumption and carbon emissions. The purpose of this paper is to minimize the cycle time and total energy consumption simultaneously in parallel robotic assembly lines (PRAL).Design/methodology/approachDue to the NP-hardness of the problem, A Pareto hybrid discrete firefly algorithm based on probability attraction (PHDFA-PA) is developed. The algorithm parameters are optimized using the Taguchi method. To evaluate the results of the algorithm, a multi-objective programming model and a restarted simulated annealing (RSA) algorithm are used.FindingsAccording to the comparative study, the PHDFA-PA has a competitive performance with the RSA. Thus, it is possible to achieve a sustainable PRAL through the proposed method by addressing the cycle time and total energy consumption simultaneously.Originality/valueTo the best knowledge of the authors, this is the first study addressing energy consumption in PRAL. The proposed method for PRAL is efficient in solving the multi-objective balancing problem. |
Author | Soysal-Kurt, Halenur İşleyen, Selçuk Kürşat |
Author_xml | – sequence: 1 givenname: Halenur orcidid: 0000-0001-6920-4448 surname: Soysal-Kurt fullname: Soysal-Kurt, Halenur email: halenursoysal@osmaniye.edu.tr – sequence: 2 givenname: Selçuk Kürşat surname: İşleyen fullname: İşleyen, Selçuk Kürşat email: isleyens@gazi.edu.tr |
BookMark | eNp9kU1v3CAQhlGVSN2kOeeK1LOTAX9gH6vVtqmUKJf2jDAeNqwwuIArbf9A_3bZbC-tqp6QhveBmWeuyIUPHgm5ZXDHGPT3u23FeMWBQwWiEW_Ihom2rwQIcUE2wLumahpgb8lVSgcAEHUNG_LzaXXZVmE8oM72O9KwZDvbHyrb4GkwVB-1Q1pqSJWfKHqM-yPVwad1Xl5D1tNFReUcOhrDGLLVVKWE8-iO1FmPia7J-j1VdLJJR8xIjY1oyrVy-xBtfpnfkUujXMKb3-c1-fpx92X7UD0-f_q8_fBYaV73uTKqa8sQ_WgUIBtGY4ZpEmPTGKi1GEEPEx_6vgzN69aYWpmh4dPYAuip7wZVX5P353eXGL6tmLI8hDX68qXkneAD76EbSqo9p3QMKZVWpbb5VUmOyjrJQJ6cy91WMi5PzuXJeeHu_-KWaGcVj_8h7s4EzlgcTv8A_lhr_QshCpYY |
CitedBy_id | crossref_primary_10_1007_s00500_024_10311_2 crossref_primary_10_1007_s10696_024_09533_1 crossref_primary_10_1080_21693277_2024_2439275 crossref_primary_10_1007_s10696_024_09583_5 crossref_primary_10_1016_j_neucom_2022_05_100 crossref_primary_10_1016_j_cie_2024_110045 crossref_primary_10_1080_19397038_2024_2434099 crossref_primary_10_1007_s41660_024_00413_7 |
Cites_doi | 10.1007/s00170-016-9086-2 10.1016/j.ijpe.2009.01.011 10.1016/S0007-8506(07)62494-9 10.1016/j.ejor.2004.07.030 10.1016/j.jclepro.2019.01.030 10.1080/00207549508904817 10.1016/j.jclepro.2017.04.032 10.1080/00207540903074991 10.1080/21681015.2015.1126656 10.1109/4235.996017 10.1016/j.procir.2012.07.082 10.1016/j.jclepro.2014.11.041 10.1016/j.ijpe.2005.12.001 10.1504/IJCSM.2016.081701 10.1016/j.cor.2015.05.014 10.1080/00207543.2018.1530479 10.1016/j.jmsy.2020.02.005 10.1016/j.asoc.2017.07.062 10.1016/j.asoc.2010.12.021 10.1007/978-3-030-14544-6_9 10.1016/j.cie.2008.09.027 10.1080/00207543.2013.879618 10.1007/978-3-642-23857-4_38 10.1016/j.jmsy.2011.10.002 10.1080/00207543.2018.1471238 10.1007/s10845-020-01641-7 10.1016/j.jclepro.2016.06.131 10.1007/s00170-014-5753-3 10.1080/00207540903055735 |
ContentType | Journal Article |
Copyright | Emerald Publishing Limited Emerald Publishing Limited. |
Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited. |
DBID | AAYXX CITATION 7SC 7TB 7WY 7WZ 7XB 8AO 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 F~G GNUQQ HCIFZ JQ2 K6~ K7- KR7 L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1108/EC-12-2020-0747 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1758-7077 |
EndPage | 2448 |
ExternalDocumentID | 10_1108_EC_12_2020_0747 10.1108/EC-12-2020-0747 |
GroupedDBID | 02 0R 29G 4.4 5GY 5VS 70U 7WY 9E0 AADTA AADXL AAGBP AAMCF AATHL AAUDR ABFLS ABIJV ABKQV ABPTK ABQIS ABSDC ACGFS ACGOD ACIWK ADFRT ADOMW AEBVX AEBZA AENEX AEUCW AFYHH AFZLO AJEBP ALMA_UNASSIGNED_HOLDINGS ARAPS ASMFL AUCOK AZQEC BENPR BPQFQ CS3 DU5 EBS ECCUG FNNZZ GEI GEL GQ. GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HZ IPNFZ J1Y JI- JL0 K6 K7- KBGRL M0C O9- P2P RIG RWL TAE TN5 U5U UNMZH V1G 0R~ 8AO 8FE 8FG 8FW 8R4 8R5 AAYXX ABJCF ABJNI ABYQI ACBEA ACZLT AFKRA AFNTC AHMHQ AODMV BEZIV BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ HZ~ IJT K6V K6~ L6V M2P M42 M7S P62 PHGZM PHGZT PQBIZ PQGLB PQQKQ PROAC PTHSS Q2X SBBZN ~02 7SC 7TB 7XB 8FD FR3 JQ2 KR7 L.- L.0 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c238t-fa654018bfa0e19bff9dd7b44f03c7b0c9d2988707235ff3af942db500cd869a3 |
IEDL.DBID | 8FG |
ISSN | 0264-4401 |
IngestDate | Fri Jul 25 10:47:45 EDT 2025 Thu Apr 24 23:12:15 EDT 2025 Thu Jul 31 00:33:41 EDT 2025 Sun Jun 05 01:30:56 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Energy consumption Multi-objective optimization Parallel Discrete firefly algorithm Robotic assembly line balancing |
Language | English |
License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c238t-fa654018bfa0e19bff9dd7b44f03c7b0c9d2988707235ff3af942db500cd869a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6920-4448 |
PQID | 2672928069 |
PQPubID | 26043 |
PageCount | 25 |
ParticipantIDs | crossref_primary_10_1108_EC_12_2020_0747 proquest_journals_2672928069 crossref_citationtrail_10_1108_EC_12_2020_0747 emerald_primary_10_1108_EC-12-2020-0747 |
PublicationCentury | 2000 |
PublicationDate | 2022-06-07 |
PublicationDateYYYYMMDD | 2022-06-07 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Bradford |
PublicationPlace_xml | – name: Bradford |
PublicationTitle | Engineering computations |
PublicationYear | 2022 |
Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
References | (key2022060409471950000_ref019) 2015; 90 (key2022060409471950000_ref023) 2011; 11 (key2022060409471950000_ref030) 2020; 146 (key2022060409471950000_ref031) 2000 (key2022060409471950000_ref003) 2022; 33 (key2022060409471950000_ref014) 2014; 52 (key2022060409471950000_ref029) 2009; 119 (key2022060409471950000_ref017) 2016; 135 (key2022060409471950000_ref002) 2019; 84 (key2022060409471950000_ref037) 2019; 57 (key2022060409471950000_ref041) 2018; 56 (key2022060409471950000_ref028) 1999 (key2022060409471950000_ref034) 2012; 31 (key2022060409471950000_ref001) 2020; 124 (key2022060409471950000_ref035) 2016; 7 (key2022060409471950000_ref005) 2002; 6 key2022060409471950000_ref006 (key2022060409471950000_ref024) 2010; 48 (key2022060409471950000_ref036) 2019; 215 (key2022060409471950000_ref004) 2017; 61 (key2022060409471950000_ref026) 2016; 33 (key2022060409471950000_ref021) 2017; 156 (key2022060409471950000_ref012) 2014; 72 (key2022060409471950000_ref040) 2020; 55 (key2022060409471950000_ref007) 2012; 3 (key2022060409471950000_ref008) 2009; 56 (key2022060409471950000_ref018) 2011 (key2022060409471950000_ref032) 2008 (key2022060409471950000_ref013) 1995; 33 (key2022060409471950000_ref038) 2021; 98 (key2022060409471950000_ref025) 2010; 48 (key2022060409471950000_ref039) 2019; 233 (key2022060409471950000_ref016) 2006; 168 (key2022060409471950000_ref033) 2010 key2022060409471950000_ref011 (key2022060409471950000_ref020) 2016; 33 (key2022060409471950000_ref027) 1993; 42 key2022060409471950000_ref010 (key2022060409471950000_ref009) 2006; 103 (key2022060409471950000_ref015) 2015; 64 (key2022060409471950000_ref022) 2017; 89 |
References_xml | – volume: 89 start-page: 311 year: 2017 ident: key2022060409471950000_ref022 article-title: Differential evolution algorithm for solving RALB problem using cost- and time-based models publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-016-9086-2 – volume: 119 start-page: 90 issue: 1 year: 2009 ident: key2022060409471950000_ref029 article-title: Designing parallel assembly lines with split workplaces: model and optimization procedure publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2009.01.011 – volume: 42 start-page: 497 issue: 1 year: 1993 ident: key2022060409471950000_ref027 article-title: RALB – a heuristic algorithm for design and balancing of robotic assembly lines publication-title: CIRP Annals doi: 10.1016/S0007-8506(07)62494-9 – volume-title: Nature-Inspired Metaheuristic Algorithms year: 2010 ident: key2022060409471950000_ref033 – volume: 168 start-page: 811 issue: 3 year: 2006 ident: key2022060409471950000_ref016 article-title: A genetic algorithm for robotic assembly line balancing publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2004.07.030 – volume: 215 start-page: 744 year: 2019 ident: key2022060409471950000_ref036 article-title: Mathematical model and grey wolf optimization for low-carbon and low-noise U-shaped robotic assembly line balancing problem publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.01.030 – volume: 33 start-page: 2311 issue: 8 year: 1995 ident: key2022060409471950000_ref013 article-title: A strong cutting plane algorithm for the robotic assembly line balancing problem publication-title: International Journal of Production Research doi: 10.1080/00207549508904817 – volume: 156 start-page: 124 year: 2017 ident: key2022060409471950000_ref021 article-title: Multi-objective co-operative co-evolutionary algorithm for minimizing carbon footprint and maximizing line efficiency in robotic assembly line systems publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.04.032 – volume: 48 start-page: 4767 issue: 16 year: 2010 ident: key2022060409471950000_ref025 article-title: Balancing parallel two-sided assembly lines publication-title: International Journal of Production Research doi: 10.1080/00207540903074991 – volume: 33 start-page: 472 issue: 7 year: 2016 ident: key2022060409471950000_ref026 article-title: Multi-objective metaheuristics for solving a type II robotic mixed-model assembly line balancing problem publication-title: Journal of Industrial and Production Engineering doi: 10.1080/21681015.2015.1126656 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: key2022060409471950000_ref005 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 3 start-page: 477 year: 2012 ident: key2022060409471950000_ref007 article-title: An empirical study of the energy consumption in automotive assembly publication-title: Procedia CIRP doi: 10.1016/j.procir.2012.07.082 – volume-title: Nature-Inspired Metaheuristic Algorithms year: 2008 ident: key2022060409471950000_ref032 – volume: 90 start-page: 311 year: 2015 ident: key2022060409471950000_ref019 article-title: An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2014.11.041 – start-page: 204 year: 2000 ident: key2022060409471950000_ref031 article-title: On measuring multiobjective evolutionary algorithm performance – ident: key2022060409471950000_ref006 – volume: 103 start-page: 600 issue: 2 year: 2006 ident: key2022060409471950000_ref009 article-title: Balancing of parallel assembly lines publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2005.12.001 – volume: 146 year: 2020 ident: key2022060409471950000_ref030 article-title: Bound-guided hybrid estimation of distribution algorithm for energy-efficient robotic assembly line balancing publication-title: Computers and Industrial Engineering – volume: 124 year: 2020 ident: key2022060409471950000_ref001 article-title: A survey of the parallel assembly lines balancing problem publication-title: Computers and Operations Research – volume: 7 start-page: 530 issue: 6 year: 2016 ident: key2022060409471950000_ref035 article-title: An improved firefly algorithm based on probabilistic attraction publication-title: International Journal of Computing Science and Mathematics doi: 10.1504/IJCSM.2016.081701 – volume-title: Balancing and Sequencing Assembly Lines year: 1999 ident: key2022060409471950000_ref028 – start-page: 507 year: 2011 ident: key2022060409471950000_ref018 article-title: Energy efficient use of robotics in the automobile industry – volume: 64 start-page: 233 year: 2015 ident: key2022060409471950000_ref015 article-title: Balancing of parallel U-shaped assembly lines publication-title: Computers and Operations Research doi: 10.1016/j.cor.2015.05.014 – volume: 233 start-page: 2991 issue: 9 year: 2019 ident: key2022060409471950000_ref039 article-title: A multiobjective hybrid imperialist competitive algorithm for multirobot cooperative assembly line balancing problems with energy awareness publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 33 start-page: 580 issue: 2 year: 2016 ident: key2022060409471950000_ref020 article-title: Design of energy efficient RAL system using evolutionary algorithms publication-title: Engineering Computations – volume: 57 start-page: 5520 issue: 17 year: 2019 ident: key2022060409471950000_ref037 article-title: Modelling and optimisation of energy-efficient U-shaped robotic assembly line balancing problems publication-title: International Journal of Production Research doi: 10.1080/00207543.2018.1530479 – volume: 55 start-page: 30 year: 2020 ident: key2022060409471950000_ref040 article-title: Decomposition-based bi-objective optimization for sustainable robotic assembly line balancing problems publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2020.02.005 – volume: 84 year: 2019 ident: key2022060409471950000_ref002 article-title: An improved hybrid firefly algorithm for capacitated vehicle routing problem publication-title: Applied Soft Computing – volume: 61 start-page: 129 year: 2017 ident: key2022060409471950000_ref004 article-title: A beam search approach for solving type II robotic parallel assembly line balancing problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.07.062 – volume: 11 start-page: 3186 issue: 3 year: 2011 ident: key2022060409471950000_ref023 article-title: Multiple-colony ant algorithm for parallel assembly line balancing problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.12.021 – ident: key2022060409471950000_ref010 doi: 10.1007/978-3-030-14544-6_9 – volume: 56 start-page: 1065 issue: 3 year: 2009 ident: key2022060409471950000_ref008 article-title: An efficient approach for type II robotic assembly line balancing problems publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2008.09.027 – volume: 52 start-page: 3665 issue: 12 year: 2014 ident: key2022060409471950000_ref014 article-title: Simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines publication-title: International Journal of Production Research doi: 10.1080/00207543.2013.879618 – ident: key2022060409471950000_ref011 doi: 10.1007/978-3-642-23857-4_38 – volume: 31 start-page: 139 issue: 2 year: 2012 ident: key2022060409471950000_ref034 article-title: Type II robotic assembly line balancing problem: an evolution strategies algorithm for a multi-objective model publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2011.10.002 – volume: 56 start-page: 7354 issue: 24 year: 2018 ident: key2022060409471950000_ref041 article-title: A Pareto firefly algorithm for multi-objective disassembly line balancing problems with hazard evaluation publication-title: International Journal of Production Research doi: 10.1080/00207543.2018.1471238 – volume: 33 start-page: 1 issue: 1 year: 2022 ident: key2022060409471950000_ref003 article-title: A comprehensive review of robotic assembly line balancing problem publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01641-7 – volume: 135 start-page: 508 year: 2016 ident: key2022060409471950000_ref017 article-title: Minimizing energy consumption and cycle time in two-sided robotic assembly line systems using restarted simulated annealing algorithm publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2016.06.131 – volume: 72 start-page: 1567 issue: 9-12 year: 2014 ident: key2022060409471950000_ref012 article-title: A hybrid discrete firefly algorithm for multi-objective flexible job shop scheduling problem with limited resource constraints publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-014-5753-3 – volume: 48 start-page: 5089 issue: 17 year: 2010 ident: key2022060409471950000_ref024 article-title: Balancing and sequencing of parallel mixed-model assembly lines publication-title: International Journal of Production Research doi: 10.1080/00207540903055735 – volume: 98 year: 2021 ident: key2022060409471950000_ref038 article-title: Balancing and sequencing problem of mixed-model U-shaped robotic assembly line: mathematical model and dragonfly algorithm based approach publication-title: Applied Soft Computing |
SSID | ssj0007330 |
Score | 2.3548598 |
Snippet | PurposeAssembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only... Purpose>Assembly lines are one of the places where energy consumption is intensive in manufacturing enterprises. The use of robots in assembly lines not only... |
SourceID | proquest crossref emerald |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2424 |
SubjectTerms | Algorithms Alliances Assembly lines Comparative studies Costs Cycle time Energy consumption Energy efficiency Heuristic methods Integer programming Linear programming Literature reviews Manufacturers Manufacturing Mathematical models Mathematical programming Multiple objective analysis Mutation Optimization Pareto optimization Productivity Robotics Robots Simulated annealing Taguchi methods |
Title | Multi-objective optimization of cycle time and energy consumption in parallel robotic assembly lines using a discrete firefly algorithm |
URI | https://www.emerald.com/insight/content/doi/10.1108/EC-12-2020-0747/full/html https://www.proquest.com/docview/2672928069 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcABSgERaKs5INGLwV57Hz4hiBKqSq0QaqXeVn62oM1uScKhv4C_jcdxWopazvY-5Bl_83nGM0PIW9mwSJKFo1qVjkrJHFXGGepNqFVUIq1SuODouDo4lYdn5Vl2uC3ytco1JiagdoNFH_mHooo0EMOA6uPlT4pdozC6mltoPCSbPFoa1PNm-uUaiWshso9F4m_wXNoHO99MxngnocDDE5aQv2WV_knNvYHnZHOmW-RJJovwaSXdZ-SB77fJ00wcIW_LxTZ5_FdVwefkd0qqpYP5sQIzGCIszHK-JQwB7FV8G2BXedC9A5_S_8CmZMyEIPC9B6wJ3nW-g_lghvh9iCzbz0x3BUhMF4AX5s9BA6b1ziPzhhDBM8Rh3Z3HdVtezF6Q0-nkZHxAc78FaqPhXtKgq8jfeGOCZp4rE4JyrjZSBiZsbZhVrlARlFhdiDIEoYOShTMlY9Y1ldLiJdnoh96_IqBqYY0MVTB4wIkgYevKcy6CL4Xino_I-_V6tzYXI8eeGF2bDiWsaSfjlhctCqhFAY3I_vUDl6s6HPdPfZcFeMfMW1IfkZ21gNu8dRftjaK9_v_wG_KowFwIdMnUO2RjOf_ldyNDWZq9pIZ7ZPPz5Pjrtz_hx-SA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAceBQQgQJzAMHFYHvXdvaAEIRUKW0jhFqpt8X7Kq0cuyRBKL-Af8NvZMdZtxQBt553vZY9s998-_hmAJ7yQexJMjNRKTITcR6bSCijIqtcIbwTlaI9Ltib5OMD_uEwO1yDn50Whq5VdpjYArVpNO2Rv0pzTwPpGFC8Of0aUdUoOl3tSmis3GLHLr_7Jdv89fZ7b99nabo12h-Oo1BVINI-PC0iV-aepSQD5crYJkI5J4wpFOcuZrpQsRYmFX7qxUXKMudY6QRPjcriWJtBLkrmx70C65wUrT1YfzeafPx0hv0FY2FXh9OHJyGZENXaGQ3pFkRKyzVKWn8hDv4hBj4PCG2U27oFNwI9xbcrf7oNa7begJuBqmIAgvkGXP8tj-Ed-NHKeKNGnazgExsPRNOg8MTGoV760ZDq2GNZG7St4BB1K_9sMQuPa6Qs5FVlK5w1qvHvR8_r7VRVSyQqPEe6on-EJZKQeOa5PjoP1843l9WRt9Tiy_QuHFyKLe5Br25qex9QFEwr7nKnaEnlYUkXuU0S5mzGRGKTPrzs_rfUIf05VeGoZLsMigdyNJRJKslAkgzUhxdnD5yuMn_8u-vzYMC_9Lxg9T5sdgaWASzm8ty1H_y_-QlcHe_v7crd7cnOQ7iWkhKDNoSKTegtZt_sI8-PFupxcEqEz5c9D34BBJQh4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+cycle+time+and+energy+consumption+in+parallel+robotic+assembly+lines+using+a+discrete+firefly+algorithm&rft.jtitle=Engineering+computations&rft.au=Soysal-Kurt%2C+Halenur&rft.au=%C4%B0%C5%9Fleyen%2C+Sel%C3%A7uk+K%C3%BCr%C5%9Fat&rft.date=2022-06-07&rft.pub=Emerald+Publishing+Limited&rft.issn=0264-4401&rft.eissn=1758-7077&rft.volume=39&rft.issue=6&rft.spage=2424&rft.epage=2448&rft_id=info:doi/10.1108%2FEC-12-2020-0747&rft.externalDocID=10.1108%2FEC-12-2020-0747 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-4401&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-4401&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-4401&client=summon |