Data collection, enhancement, and classification of functional near-infrared spectroscopy motor execution and imagery
Recognition and execution of motor imagery play a key role in brain-computer interface (BCI) and are prerequisites for converting thoughts into executable instructions. However, to date, data acquired through commonly used electroencephalography (EEG) methods are very sensitive to motion interferenc...
Saved in:
Published in | Review of scientific instruments Vol. 96; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2025
|
Subjects | |
Online Access | Get more information |
ISSN | 1089-7623 |
DOI | 10.1063/5.0236392 |
Cover
Loading…
Abstract | Recognition and execution of motor imagery play a key role in brain-computer interface (BCI) and are prerequisites for converting thoughts into executable instructions. However, to date, data acquired through commonly used electroencephalography (EEG) methods are very sensitive to motion interference, which will affect the accuracy of the data classification. The emerging functional near-infrared spectroscopy (fNIRS) technique, while overcoming the drawbacks of EEG's susceptibility to interference and difficulty in detecting motor signals, has less publicly available data. In this paper, we designed a motor execution and imagery experiment based on a wearable fNIRS device to acquire brain signals and proposed a modified Kolmogorov-Arnold network (named SE-KAN) for recognizing fNIRS signals corresponding to the task. Due to the small number of subjects in this experiment, the Wasserstein generative adversarial network was used to enhance the data processing. For the fNIRS data recognition task, the SE-KAN method achieved 96.36 ± 2.43% single-subject accuracy and 84.72 ± 3.27% cross-subject accuracy. It is believed that the dataset and method of this paper will help the development of BCI. |
---|---|
AbstractList | Recognition and execution of motor imagery play a key role in brain-computer interface (BCI) and are prerequisites for converting thoughts into executable instructions. However, to date, data acquired through commonly used electroencephalography (EEG) methods are very sensitive to motion interference, which will affect the accuracy of the data classification. The emerging functional near-infrared spectroscopy (fNIRS) technique, while overcoming the drawbacks of EEG's susceptibility to interference and difficulty in detecting motor signals, has less publicly available data. In this paper, we designed a motor execution and imagery experiment based on a wearable fNIRS device to acquire brain signals and proposed a modified Kolmogorov-Arnold network (named SE-KAN) for recognizing fNIRS signals corresponding to the task. Due to the small number of subjects in this experiment, the Wasserstein generative adversarial network was used to enhance the data processing. For the fNIRS data recognition task, the SE-KAN method achieved 96.36 ± 2.43% single-subject accuracy and 84.72 ± 3.27% cross-subject accuracy. It is believed that the dataset and method of this paper will help the development of BCI. |
Author | Sun, Baiwei Zhang, Xin Zhang, Xiu Wang, Yujie Xu, Bingyue |
Author_xml | – sequence: 1 givenname: Baiwei orcidid: 0000-0003-0866-3354 surname: Sun fullname: Sun, Baiwei organization: Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, Tianjin Normal University, Tianjin 300387, China – sequence: 2 givenname: Xiu orcidid: 0000-0003-3817-0227 surname: Zhang fullname: Zhang, Xiu organization: College of Artificial Intelligence, Tianjin Normal University, Tianjin 300387, China – sequence: 3 givenname: Xin orcidid: 0000-0003-3846-5498 surname: Zhang fullname: Zhang, Xin organization: College of Artificial Intelligence, Tianjin Normal University, Tianjin 300387, China – sequence: 4 givenname: Bingyue surname: Xu fullname: Xu, Bingyue organization: College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China – sequence: 5 givenname: Yujie orcidid: 0009-0002-6925-276X surname: Wang fullname: Wang, Yujie organization: College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40035637$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8lOwzAYhC0EogsceAHkB2iKlyz2EZWySJW4wLn6Y_-GoMSO7ESib09aYC5zmfk0syDnPngk5IazNWelvCvWTMhSanFG5pwpnVWlkDOySOmLTSo4vySznDFZlLKak_EBBqAmtC2aoQl-RdF_gjfYoR9WFLylpoWUGtcYOAZocNSN_hSGlnqEmDXeRYhoaeonSgzJhP5AuzCESPEbzXgqHllNBx8YD1fkwkGb8PrPl-T9cfu2ec52r08vm_tdZoRUQ6YdKJmXoHNeOyO0VlxJJlRltXVO6UooYUFDXWnJ1HRb12istWXBsa4xF0ty-8vtx7pDu-_jNCAe9v__xQ8LsV4E |
ContentType | Journal Article |
Copyright | 2025 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: 2025 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1063/5.0236392 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1089-7623 |
ExternalDocumentID | 40035637 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .DC 123 2-P 29P 4.4 5RE 5VS 85S A9. AAAAW AABDS AAGWI AAPUP AAYIH ABFTF ABJGX ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CGR CS3 CUY CVF DU5 EBS ECM EIF F5P FDOHQ FFFMQ HAM L7B M43 M6X M71 M73 N9A NPM NPSNA O-B P2P RIP RNS RQS TAE TN5 UMC WH7 XSW YNT YZZ ~02 |
ID | FETCH-LOGICAL-c238t-9fa8346a941bfc29981830287d9dff897282da9ab793082369becddd651ebbe42 |
IngestDate | Mon May 12 02:38:51 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2025 Author(s). Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c238t-9fa8346a941bfc29981830287d9dff897282da9ab793082369becddd651ebbe42 |
ORCID | 0000-0003-3817-0227 0009-0002-6925-276X 0000-0003-0866-3354 0000-0003-3846-5498 |
PMID | 40035637 |
ParticipantIDs | pubmed_primary_40035637 |
PublicationCentury | 2000 |
PublicationDate | 2025-Mar-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-Mar-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Review of scientific instruments |
PublicationTitleAlternate | Rev Sci Instrum |
PublicationYear | 2025 |
SSID | ssj0000511 |
Score | 2.4615624 |
Snippet | Recognition and execution of motor imagery play a key role in brain-computer interface (BCI) and are prerequisites for converting thoughts into executable... |
SourceID | pubmed |
SourceType | Index Database |
SubjectTerms | Adult Brain - physiology Brain-Computer Interfaces Electroencephalography Humans Imagination - physiology Male Signal Processing, Computer-Assisted Spectroscopy, Near-Infrared - instrumentation Spectroscopy, Near-Infrared - methods |
Title | Data collection, enhancement, and classification of functional near-infrared spectroscopy motor execution and imagery |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40035637 |
Volume | 96 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbJLpRcyma3r-0DHXrYkjjdWPJDx9IHodAelgRyC5It0RzihNamTa_7xzsjyY43m5buXoyR8AN_n0czo3kQ8lpplXCRmkAqJQMeMzjLmAwSJpk0YapYgvnOX77Gkxn_PI_mnc51K2qpKtUo-30wr-Q-qMIY4IpZsndAtrkpDMA54AtHQBiO_4XxB1nKASJp46ms_NDFN8TR-vx8YGaGCjJGBDXaIS5m3gdYANMDeJfvNhDd5l1ifcv1ZjsAELEc-C-dVWUdtLxcyf0s6qsm-cUlV-KTMMS9xLIMvlCU23ZyneHl8qde3vJXz5fVgbGGufPKXgvr7LbSbU9FGO1CtUbaSdfLVAQgfVlb_LqGtp5m7KBUBzUKoIhGWO2eudZ5LXQ3Kwsvx03R2FWQ-ffsXoHteqpLumBqYO9UdPjUizkopHVBqpi9bd6hRx7U1-0ZJFYxmZ6Qh96ioO8cPfqko4tT0vcy-we98IXF35yRCvlCd3wZ0hZbhhTwpTe5QteG7rhCb3CFtrlCLVdowxV7L8-VR2T26eP0_STwbTeCDPS3MhBGpozHUvCxMhmoK6DTMVBDk1zkxqQiASs9l0IqEO24TxsLkAN5nsfRWCulefiYHBXrQj8l1BitIiHBTE45F7GUIdcmCXmiQ5ZlSj0jT9ynW2xcbZVF_VHP_zrznPR25HpBjg38zPolaIalemWx-wONyWpQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+collection%2C+enhancement%2C+and+classification+of+functional+near-infrared+spectroscopy+motor+execution+and+imagery&rft.jtitle=Review+of+scientific+instruments&rft.au=Sun%2C+Baiwei&rft.au=Zhang%2C+Xiu&rft.au=Zhang%2C+Xin&rft.au=Xu%2C+Bingyue&rft.date=2025-03-01&rft.eissn=1089-7623&rft.volume=96&rft.issue=3&rft_id=info:doi/10.1063%2F5.0236392&rft_id=info%3Apmid%2F40035637&rft_id=info%3Apmid%2F40035637&rft.externalDocID=40035637 |