Data collection, enhancement, and classification of functional near-infrared spectroscopy motor execution and imagery

Recognition and execution of motor imagery play a key role in brain-computer interface (BCI) and are prerequisites for converting thoughts into executable instructions. However, to date, data acquired through commonly used electroencephalography (EEG) methods are very sensitive to motion interferenc...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 96; no. 3
Main Authors Sun, Baiwei, Zhang, Xiu, Zhang, Xin, Xu, Bingyue, Wang, Yujie
Format Journal Article
LanguageEnglish
Published United States 01.03.2025
Subjects
Online AccessGet more information
ISSN1089-7623
DOI10.1063/5.0236392

Cover

Loading…
Abstract Recognition and execution of motor imagery play a key role in brain-computer interface (BCI) and are prerequisites for converting thoughts into executable instructions. However, to date, data acquired through commonly used electroencephalography (EEG) methods are very sensitive to motion interference, which will affect the accuracy of the data classification. The emerging functional near-infrared spectroscopy (fNIRS) technique, while overcoming the drawbacks of EEG's susceptibility to interference and difficulty in detecting motor signals, has less publicly available data. In this paper, we designed a motor execution and imagery experiment based on a wearable fNIRS device to acquire brain signals and proposed a modified Kolmogorov-Arnold network (named SE-KAN) for recognizing fNIRS signals corresponding to the task. Due to the small number of subjects in this experiment, the Wasserstein generative adversarial network was used to enhance the data processing. For the fNIRS data recognition task, the SE-KAN method achieved 96.36 ± 2.43% single-subject accuracy and 84.72 ± 3.27% cross-subject accuracy. It is believed that the dataset and method of this paper will help the development of BCI.
AbstractList Recognition and execution of motor imagery play a key role in brain-computer interface (BCI) and are prerequisites for converting thoughts into executable instructions. However, to date, data acquired through commonly used electroencephalography (EEG) methods are very sensitive to motion interference, which will affect the accuracy of the data classification. The emerging functional near-infrared spectroscopy (fNIRS) technique, while overcoming the drawbacks of EEG's susceptibility to interference and difficulty in detecting motor signals, has less publicly available data. In this paper, we designed a motor execution and imagery experiment based on a wearable fNIRS device to acquire brain signals and proposed a modified Kolmogorov-Arnold network (named SE-KAN) for recognizing fNIRS signals corresponding to the task. Due to the small number of subjects in this experiment, the Wasserstein generative adversarial network was used to enhance the data processing. For the fNIRS data recognition task, the SE-KAN method achieved 96.36 ± 2.43% single-subject accuracy and 84.72 ± 3.27% cross-subject accuracy. It is believed that the dataset and method of this paper will help the development of BCI.
Author Sun, Baiwei
Zhang, Xin
Zhang, Xiu
Wang, Yujie
Xu, Bingyue
Author_xml – sequence: 1
  givenname: Baiwei
  orcidid: 0000-0003-0866-3354
  surname: Sun
  fullname: Sun, Baiwei
  organization: Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, Tianjin Normal University, Tianjin 300387, China
– sequence: 2
  givenname: Xiu
  orcidid: 0000-0003-3817-0227
  surname: Zhang
  fullname: Zhang, Xiu
  organization: College of Artificial Intelligence, Tianjin Normal University, Tianjin 300387, China
– sequence: 3
  givenname: Xin
  orcidid: 0000-0003-3846-5498
  surname: Zhang
  fullname: Zhang, Xin
  organization: College of Artificial Intelligence, Tianjin Normal University, Tianjin 300387, China
– sequence: 4
  givenname: Bingyue
  surname: Xu
  fullname: Xu, Bingyue
  organization: College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
– sequence: 5
  givenname: Yujie
  orcidid: 0009-0002-6925-276X
  surname: Wang
  fullname: Wang, Yujie
  organization: College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin 300387, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40035637$$D View this record in MEDLINE/PubMed
BookMark eNo1j8lOwzAYhC0EogsceAHkB2iKlyz2EZWySJW4wLn6Y_-GoMSO7ESib09aYC5zmfk0syDnPngk5IazNWelvCvWTMhSanFG5pwpnVWlkDOySOmLTSo4vySznDFZlLKak_EBBqAmtC2aoQl-RdF_gjfYoR9WFLylpoWUGtcYOAZocNSN_hSGlnqEmDXeRYhoaeonSgzJhP5AuzCESPEbzXgqHllNBx8YD1fkwkGb8PrPl-T9cfu2ec52r08vm_tdZoRUQ6YdKJmXoHNeOyO0VlxJJlRltXVO6UooYUFDXWnJ1HRb12istWXBsa4xF0ty-8vtx7pDu-_jNCAe9v__xQ8LsV4E
ContentType Journal Article
Copyright 2025 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: 2025 Author(s). Published under an exclusive license by AIP Publishing.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1063/5.0236392
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1089-7623
ExternalDocumentID 40035637
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.DC
123
2-P
29P
4.4
5RE
5VS
85S
A9.
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
ABFTF
ABJGX
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CGR
CS3
CUY
CVF
DU5
EBS
ECM
EIF
F5P
FDOHQ
FFFMQ
HAM
L7B
M43
M6X
M71
M73
N9A
NPM
NPSNA
O-B
P2P
RIP
RNS
RQS
TAE
TN5
UMC
WH7
XSW
YNT
YZZ
~02
ID FETCH-LOGICAL-c238t-9fa8346a941bfc29981830287d9dff897282da9ab793082369becddd651ebbe42
IngestDate Mon May 12 02:38:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2025 Author(s). Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c238t-9fa8346a941bfc29981830287d9dff897282da9ab793082369becddd651ebbe42
ORCID 0000-0003-3817-0227
0009-0002-6925-276X
0000-0003-0866-3354
0000-0003-3846-5498
PMID 40035637
ParticipantIDs pubmed_primary_40035637
PublicationCentury 2000
PublicationDate 2025-Mar-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-Mar-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Review of scientific instruments
PublicationTitleAlternate Rev Sci Instrum
PublicationYear 2025
SSID ssj0000511
Score 2.4615624
Snippet Recognition and execution of motor imagery play a key role in brain-computer interface (BCI) and are prerequisites for converting thoughts into executable...
SourceID pubmed
SourceType Index Database
SubjectTerms Adult
Brain - physiology
Brain-Computer Interfaces
Electroencephalography
Humans
Imagination - physiology
Male
Signal Processing, Computer-Assisted
Spectroscopy, Near-Infrared - instrumentation
Spectroscopy, Near-Infrared - methods
Title Data collection, enhancement, and classification of functional near-infrared spectroscopy motor execution and imagery
URI https://www.ncbi.nlm.nih.gov/pubmed/40035637
Volume 96
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbJLpRcyma3r-0DHXrYkjjdWPJDx9IHodAelgRyC5It0RzihNamTa_7xzsjyY43m5buXoyR8AN_n0czo3kQ8lpplXCRmkAqJQMeMzjLmAwSJpk0YapYgvnOX77Gkxn_PI_mnc51K2qpKtUo-30wr-Q-qMIY4IpZsndAtrkpDMA54AtHQBiO_4XxB1nKASJp46ms_NDFN8TR-vx8YGaGCjJGBDXaIS5m3gdYANMDeJfvNhDd5l1ifcv1ZjsAELEc-C-dVWUdtLxcyf0s6qsm-cUlV-KTMMS9xLIMvlCU23ZyneHl8qde3vJXz5fVgbGGufPKXgvr7LbSbU9FGO1CtUbaSdfLVAQgfVlb_LqGtp5m7KBUBzUKoIhGWO2eudZ5LXQ3Kwsvx03R2FWQ-ffsXoHteqpLumBqYO9UdPjUizkopHVBqpi9bd6hRx7U1-0ZJFYxmZ6Qh96ioO8cPfqko4tT0vcy-we98IXF35yRCvlCd3wZ0hZbhhTwpTe5QteG7rhCb3CFtrlCLVdowxV7L8-VR2T26eP0_STwbTeCDPS3MhBGpozHUvCxMhmoK6DTMVBDk1zkxqQiASs9l0IqEO24TxsLkAN5nsfRWCulefiYHBXrQj8l1BitIiHBTE45F7GUIdcmCXmiQ5ZlSj0jT9ynW2xcbZVF_VHP_zrznPR25HpBjg38zPolaIalemWx-wONyWpQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+collection%2C+enhancement%2C+and+classification+of+functional+near-infrared+spectroscopy+motor+execution+and+imagery&rft.jtitle=Review+of+scientific+instruments&rft.au=Sun%2C+Baiwei&rft.au=Zhang%2C+Xiu&rft.au=Zhang%2C+Xin&rft.au=Xu%2C+Bingyue&rft.date=2025-03-01&rft.eissn=1089-7623&rft.volume=96&rft.issue=3&rft_id=info:doi/10.1063%2F5.0236392&rft_id=info%3Apmid%2F40035637&rft_id=info%3Apmid%2F40035637&rft.externalDocID=40035637