Microwave attenuation of multiwalled carbon nanotube-fused silica composites

Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 87; no. 12
Main Authors Xiang, Changshu, Pan, Yubai, Liu, Xuejian, Sun, Xingwei, Shi, Xiaomei, Guo, Jingkun
Format Journal Article
LanguageEnglish
Published United States 19.09.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5vol% MWCNTs into the composites. The average magnitude of microwave transmission reaches −33dB at 11–12GHz in the 10vol% MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons.
AbstractList Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5 vol % MWCNTs into the composites. The average magnitude of microwave transmission reaches -33 dB at 11-12 GHz in the 10 vol % MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons.
Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5vol% MWCNTs into the composites. The average magnitude of microwave transmission reaches −33dB at 11–12GHz in the 10vol% MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons.
Author Liu, Xuejian
Pan, Yubai
Xiang, Changshu
Sun, Xingwei
Guo, Jingkun
Shi, Xiaomei
Author_xml – sequence: 1
  givenname: Changshu
  surname: Xiang
  fullname: Xiang, Changshu
– sequence: 2
  givenname: Yubai
  surname: Pan
  fullname: Pan, Yubai
– sequence: 3
  givenname: Xuejian
  surname: Liu
  fullname: Liu, Xuejian
– sequence: 4
  givenname: Xingwei
  surname: Sun
  fullname: Sun, Xingwei
– sequence: 5
  givenname: Xiaomei
  surname: Shi
  fullname: Shi, Xiaomei
– sequence: 6
  givenname: Jingkun
  surname: Guo
  fullname: Guo, Jingkun
BackLink https://www.osti.gov/biblio/20709793$$D View this record in Osti.gov
BookMark eNptkM1LAzEQxYNUsK0e_A8WPHnYdiZp9-MoxS-oeNHzMpudYGSblE3W4n9vtJ7E0zCP35vhvZmYOO9YiEuEBUKhlriQsMYKihMxRSjLXCFWEzEFAJUX9RrPxCyE97SupVJTsX2yevAH-uCMYmQ3UrTeZd5ku7GP9kB9z12maWiT6sj5OLacmzEkNdjeasq03-19sJHDuTg11Ae--J1z8Xp3-7J5yLfP94-bm22upapijrTSiFBplp2uO-CyA1xJVauyk6yYWyQwhgtZmaJUhgzhqu2oVSvdyQrUXFwd7_oQbRN0-q3ftHeOdWwklFCXtUrU8kilgCEMbJoE_sSLA9m-QWi-K2uw-a0sOa7_OPaD3dHw-Q_7BbSUbkY
CitedBy_id crossref_primary_10_1039_C4RA14637A
crossref_primary_10_1111_jace_13113
crossref_primary_10_3390_polym12020427
crossref_primary_10_1016_j_matlet_2006_08_067
crossref_primary_10_3390_coatings12101532
crossref_primary_10_1002_pssb_201600326
crossref_primary_10_1016_j_ceramint_2020_06_140
crossref_primary_10_2109_jcersj_114_902
crossref_primary_10_1134_S1995421217030078
crossref_primary_10_1002_smll_200800231
crossref_primary_10_1016_j_compscitech_2013_02_024
crossref_primary_10_1002_adfm_200701406
crossref_primary_10_1063_1_3660378
crossref_primary_10_4028_www_scientific_net_AMR_194_196_520
crossref_primary_10_1016_j_carbon_2007_04_016
crossref_primary_10_3390_polym11091480
crossref_primary_10_1016_j_ssc_2013_03_004
crossref_primary_10_1016_j_jics_2023_101091
crossref_primary_10_1016_j_scriptamat_2011_01_002
crossref_primary_10_1109_TDEI_2022_3225765
crossref_primary_10_1016_j_nima_2011_08_002
crossref_primary_10_1039_C7NR01878A
crossref_primary_10_1002_pssb_200982294
crossref_primary_10_1016_j_polymer_2017_01_078
crossref_primary_10_1179_174367607X178148
crossref_primary_10_1063_1_2803764
crossref_primary_10_1063_1_3042210
crossref_primary_10_4028_www_scientific_net_KEM_351_227
crossref_primary_10_1016_j_ceramint_2017_06_083
crossref_primary_10_1088_0957_4484_19_26_265607
crossref_primary_10_1155_2012_591839
crossref_primary_10_1039_D1MA00989C
crossref_primary_10_1063_1_2193464
crossref_primary_10_1103_PhysRevB_88_045436
crossref_primary_10_1016_j_matchar_2015_03_011
crossref_primary_10_1038_srep03252
crossref_primary_10_1016_j_ceramint_2014_10_062
crossref_primary_10_4028_www_scientific_net_JNanoR_27_121
crossref_primary_10_1016_j_carbon_2006_11_020
crossref_primary_10_1016_j_carbon_2019_03_008
crossref_primary_10_1088_0022_3727_41_23_235005
crossref_primary_10_1080_15421400802458456
crossref_primary_10_4028_www_scientific_net_MSF_945_443
crossref_primary_10_1016_j_surfcoat_2017_02_007
crossref_primary_10_1007_s11814_020_0550_1
crossref_primary_10_4236_msce_2023_1111003
crossref_primary_10_1021_acs_jpcc_7b08406
crossref_primary_10_4028_www_scientific_net_KEM_887_10
crossref_primary_10_1179_1743280414Y_0000000037
crossref_primary_10_1063_1_3599857
crossref_primary_10_1134_S1995078013020080
crossref_primary_10_1088_0256_307X_24_10_078
crossref_primary_10_1016_j_mseb_2009_03_023
crossref_primary_10_1080_14328917_2020_1813452
crossref_primary_10_1016_j_jmmm_2014_12_067
crossref_primary_10_1088_1757_899X_115_1_012027
crossref_primary_10_1063_1_4922599
crossref_primary_10_1134_S0036024416050071
crossref_primary_10_1016_j_carbon_2009_03_033
crossref_primary_10_1021_am401859j
crossref_primary_10_1021_nl0602589
crossref_primary_10_1016_j_carbon_2007_12_010
crossref_primary_10_1080_1536383X_2010_488184
crossref_primary_10_3390_fib9120081
crossref_primary_10_1246_cl_2007_1098
crossref_primary_10_1039_C7NR03674D
crossref_primary_10_1016_j_jallcom_2023_172867
crossref_primary_10_1088_0957_4484_23_45_455704
crossref_primary_10_1109_TBME_2010_2042597
crossref_primary_10_1016_j_pmatsci_2012_06_001
crossref_primary_10_1080_15583724_2018_1546737
crossref_primary_10_1016_j_ceramint_2018_01_186
crossref_primary_10_1007_s10854_019_01705_2
crossref_primary_10_1039_C5TC03098F
crossref_primary_10_1016_j_jeurceramsoc_2014_02_007
crossref_primary_10_1177_1528083715573278
crossref_primary_10_1063_1_2357565
crossref_primary_10_1002_adv_21941
crossref_primary_10_1016_j_matdes_2010_12_043
crossref_primary_10_1016_j_carbon_2019_06_002
crossref_primary_10_1016_j_carbon_2013_07_039
crossref_primary_10_7498_aps_59_1946
crossref_primary_10_1021_jp0731396
crossref_primary_10_1007_s10854_016_5507_0
crossref_primary_10_1016_j_compositesb_2018_12_130
crossref_primary_10_1063_1_4975820
crossref_primary_10_1016_j_jallcom_2015_08_107
crossref_primary_10_1002_app_29202
crossref_primary_10_1007_s10965_013_0169_6
crossref_primary_10_1142_S0219581X08005419
crossref_primary_10_1007_s11434_008_0486_z
crossref_primary_10_1016_j_carbon_2014_07_027
crossref_primary_10_1063_1_3250170
crossref_primary_10_1007_s11356_021_16680_7
crossref_primary_10_1016_j_matdes_2012_04_021
crossref_primary_10_1016_j_compscitech_2021_109000
crossref_primary_10_1016_j_jallcom_2009_02_153
crossref_primary_10_4028_www_scientific_net_AMR_629_261
crossref_primary_10_1016_j_radphyschem_2010_11_007
crossref_primary_10_1016_j_physe_2008_01_006
crossref_primary_10_1016_j_ceramint_2006_05_001
crossref_primary_10_4236_msa_2016_79043
crossref_primary_10_1016_j_carbon_2010_07_014
crossref_primary_10_1088_1361_6528_aab87a
crossref_primary_10_1016_j_compositesa_2022_107196
crossref_primary_10_1021_jp902296z
crossref_primary_10_4028_www_scientific_net_KEM_351_233
crossref_primary_10_1007_s11671_010_9621_2
crossref_primary_10_1016_j_compositesb_2012_05_045
crossref_primary_10_1088_1674_1056_21_7_078102
crossref_primary_10_1007_s10853_024_09846_4
crossref_primary_10_1016_j_physleta_2008_02_015
crossref_primary_10_1134_S1063784210020131
crossref_primary_10_4028_www_scientific_net_MSF_722_47
crossref_primary_10_1209_0295_5075_77_68006
crossref_primary_10_4236_ojcm_2013_32003
crossref_primary_10_1016_j_jmst_2019_07_018
crossref_primary_10_1063_1_2734897
crossref_primary_10_1177_0954008314566433
crossref_primary_10_1016_j_scriptamat_2009_08_015
crossref_primary_10_1002_advs_201801057
crossref_primary_10_1039_c4ra01610f
crossref_primary_10_1002_app_54954
crossref_primary_10_1111_j_1744_7402_2012_02785_x
crossref_primary_10_1016_j_diamond_2014_12_008
crossref_primary_10_1063_1_3247075
crossref_primary_10_1016_j_cej_2021_129282
crossref_primary_10_1016_j_ceramint_2015_04_075
crossref_primary_10_1039_c3ra44267e
crossref_primary_10_1039_C4CP04228J
crossref_primary_10_4236_msa_2016_74019
crossref_primary_10_1557_jmr_2017_150
crossref_primary_10_1016_j_porgcoat_2016_11_021
crossref_primary_10_1155_2017_6745029
Cites_doi 10.1038/354056a0
10.1023/A:1004813905115
10.1002/adfm.200304422
10.1111/j.1151-2916.1994.tb09776.x
10.1016/j.cplett.2003.07.002
10.1063/1.1400100
10.1016/S0955-2219(00)00107-2
10.1103/PhysRevLett.84.5552
10.1063/1.1641167
10.1002/adma.200306460
10.1126/science.287.5453.637
10.1063/1.1762693
10.1023/A:1024745526978
10.1016/S0009-2614(00)00196-2
10.1126/science.283.5407.1513
10.1002/adma.200304485
10.1103/PhysRevLett.68.631
10.1103/PhysRevLett.68.1579
10.1038/nmat793
10.1021/nl035135s
10.1002/adma.200306241
10.1016/S0272-8842(03)00063-4
10.1016/S0921-5093(03)00256-9
10.1063/1.1600511
ContentType Journal Article
DBID AAYXX
CITATION
OTOTI
DOI 10.1063/1.2051806
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 20709793
10_1063_1_2051806
GroupedDBID -DZ
-~X
.DC
186
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
6TJ
A9.
AAAAW
AABDS
AAGWI
AAGZG
AAPUP
AAYIH
AAYJJ
AAYXX
ABFTF
ABJGX
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D0L
EBS
EJD
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NEJ
NPSNA
O-B
P2P
RIP
RNS
ROL
RQS
SJN
TAE
TN5
UPT
UQL
VOH
WH7
XJE
YZZ
~02
0ZJ
6XO
AAEUA
ABPTK
AGIHO
ESX
OTOTI
UCJ
UE8
XFK
ID FETCH-LOGICAL-c238t-1a4c1108ce2dc9d0e7d01423937d2e3eeb1a0ffe628f673fafa14bdab34cd2803
ISSN 0003-6951
IngestDate Fri May 19 01:41:22 EDT 2023
Tue Jul 01 03:45:20 EDT 2025
Thu Apr 24 23:04:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c238t-1a4c1108ce2dc9d0e7d01423937d2e3eeb1a0ffe628f673fafa14bdab34cd2803
ParticipantIDs osti_scitechconnect_20709793
crossref_citationtrail_10_1063_1_2051806
crossref_primary_10_1063_1_2051806
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-09-19
PublicationDateYYYYMMDD 2005-09-19
PublicationDate_xml – month: 09
  year: 2005
  text: 2005-09-19
  day: 19
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied physics letters
PublicationYear 2005
References (2023073109082190200_c11) 2001; 90
(2023073109082190200_c7) 1992; 68
(2023073109082190200_c10) 2000; 319
(2023073109082190200_c6) 2003; 2
(2023073109082190200_c3) 2000; 84
(2023073109082190200_c19) 2003; 22
(2023073109082190200_c15) 2004; 84
(2023073109082190200_c16) 2004; 16
(2023073109082190200_c4) 2000; 287
(2023073109082190200_c13) 2003; 15
(2023073109082190200_c21) 1974; 53
(2023073109082190200_c23) 2000; 20
(2023073109082190200_c5) 2004; 14
(2023073109082190200_c8) 1992; 68
(2023073109082190200_c9) 2004; 4
(2023073109082190200_c24) 2000; 35
(2023073109082190200_c25) 2003; 83
(2023073109082190200_c12) 2003; 378
(2023073109082190200_c22) 1994; 77
(2023073109082190200_c18) 2003; 357
(2023073109082190200_c2) 1999; 283
(2023073109082190200_c14) 2004; 84
(2023073109082190200_c17) 2004; 16
(2023073109082190200_c20) 2004; 30
(2023073109082190200_c1) 1991; 354
References_xml – volume: 354
  start-page: 56
  year: 1991
  ident: 2023073109082190200_c1
  publication-title: Nature (London)
  doi: 10.1038/354056a0
– volume: 35
  start-page: 4895
  year: 2000
  ident: 2023073109082190200_c24
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1004813905115
– volume: 14
  start-page: 55
  year: 2004
  ident: 2023073109082190200_c5
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200304422
– volume: 77
  start-page: 1673
  year: 1994
  ident: 2023073109082190200_c22
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1994.tb09776.x
– volume: 378
  start-page: 609
  year: 2003
  ident: 2023073109082190200_c12
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2003.07.002
– volume: 90
  start-page: 4134
  year: 2001
  ident: 2023073109082190200_c11
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1400100
– volume: 20
  start-page: 1923
  year: 2000
  ident: 2023073109082190200_c23
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/S0955-2219(00)00107-2
– volume: 84
  start-page: 5552
  year: 2000
  ident: 2023073109082190200_c3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.5552
– volume: 84
  start-page: 589
  year: 2004
  ident: 2023073109082190200_c14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1641167
– volume: 53
  start-page: 255
  year: 1974
  ident: 2023073109082190200_c21
  publication-title: Am. Ceram. Soc. Bull.
– volume: 16
  start-page: 401
  year: 2004
  ident: 2023073109082190200_c16
  publication-title: Adv. Mater. (Weinheim, Ger.)
  doi: 10.1002/adma.200306460
– volume: 287
  start-page: 637
  year: 2000
  ident: 2023073109082190200_c4
  publication-title: Science
  doi: 10.1126/science.287.5453.637
– volume: 84
  start-page: 4956
  year: 2004
  ident: 2023073109082190200_c15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1762693
– volume: 22
  start-page: 1019
  year: 2003
  ident: 2023073109082190200_c19
  publication-title: J. Mater. Sci. Lett.
  doi: 10.1023/A:1024745526978
– volume: 319
  start-page: 460
  year: 2000
  ident: 2023073109082190200_c10
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00196-2
– volume: 283
  start-page: 1513
  year: 1999
  ident: 2023073109082190200_c2
  publication-title: Science
  doi: 10.1126/science.283.5407.1513
– volume: 15
  start-page: 600
  year: 2003
  ident: 2023073109082190200_c13
  publication-title: Adv. Mater. (Weinheim, Ger.)
  doi: 10.1002/adma.200304485
– volume: 68
  start-page: 631
  year: 1992
  ident: 2023073109082190200_c7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.631
– volume: 68
  start-page: 1579
  year: 1992
  ident: 2023073109082190200_c8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1579
– volume: 2
  start-page: 38
  year: 2003
  ident: 2023073109082190200_c6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat793
– volume: 4
  start-page: 459
  year: 2004
  ident: 2023073109082190200_c9
  publication-title: Nano Lett.
  doi: 10.1021/nl035135s
– volume: 16
  start-page: 2036
  year: 2004
  ident: 2023073109082190200_c17
  publication-title: Adv. Mater. (Weinheim, Ger.)
  doi: 10.1002/adma.200306241
– volume: 30
  start-page: 63
  year: 2004
  ident: 2023073109082190200_c20
  publication-title: Ceram. Int.
  doi: 10.1016/S0272-8842(03)00063-4
– volume: 357
  start-page: 392
  year: 2003
  ident: 2023073109082190200_c18
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(03)00256-9
– volume: 83
  start-page: 1228
  year: 2003
  ident: 2023073109082190200_c25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1600511
SSID ssj0005233
Score 2.252653
Snippet Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared...
SourceID osti
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
SubjectTerms ABSORPTION
ATTENUATION
CARBON
COMPOSITE MATERIALS
DIELECTRIC MATERIALS
ELECTRIC CONDUCTIVITY
ELECTRONS
GHZ RANGE 01-100
GLASS
HOT PRESSING
MATERIALS SCIENCE
MICROWAVE RADIATION
NANOTUBES
PERMITTIVITY
SILICA
Title Microwave attenuation of multiwalled carbon nanotube-fused silica composites
URI https://www.osti.gov/biblio/20709793
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9NAFB20i6APoqvi6iqD-CCUaDIznTSPix8sshVhdyE-hflcK0sqNkPBX--9ySRNpYj6EtppCGXOcOfMzbnnEvLSZUwXuWeAgHOJsL5IVCEz-Mp8kRvJ8rY34OKTPL0UH8tZuW1Z11aXNPq1-bm3ruR_UIUxwBWrZP8B2eGhMACfAV-4AsJw_SuMF6im22D_IHTJrMNA_1qZ4AbbpFj0ntYwWqt61QTtEh_WMLpeYrauVZSjbCsqCXs72khNu7THenrd1vwM7LuEJXXV1SWsv4btS6h6-iVotRw0PsswLYP7NlqA56GelrBZbtxyJ90wQ21EDGp9COWJLKJLrOuiZppjsjMG0hhW4z4alw_bG66BH2HmAI7ps2ye_maJ3W6yDEJSATHkJjlgcBBgE3Jw8m5xdj6S8XDed0XEv9W7R0n-ZnjuDueYrCB2jjjExT1yN5J_etIheZ_ccPUhuTOyhDwktz53c_6AnA3o0hG6dOXpCF3aoUt30aUdunSL7kNy-eH9xdvTJPa-SAyQqCbJlDBYoWEcs6awqcstHGbRry63zHEHW6xKvXeSzb3MuVdeZUJbpbkwFjuOPSKTelW7x4QKOZfeMcMzkwpnCu1VyufaCq2UlUockVf97FQmGsNjf5LrqhUoSF5lVZzII_JiuPV754ay76ZjnOIKKBz6EBsUbJmm6pF88uefn5Lb22V3TCbNj-CeAe9r9PMI_S-5xF0X
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave+attenuation+of+multiwalled+carbon+nanotube-fused+silica+composites&rft.jtitle=Applied+physics+letters&rft.au=Xiang+Changshu&rft.au=Pan+Yubai&rft.au=Liu+Xuejian&rft.au=Sun+Xingwei&rft.date=2005-09-19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=87&rft.issue=12&rft_id=info:doi/10.1063%2F1.2051806&rft.externalDocID=20709793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon