Microwave attenuation of multiwalled carbon nanotube-fused silica composites
Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The...
Saved in:
Published in | Applied physics letters Vol. 87; no. 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
19.09.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5vol% MWCNTs into the composites. The average magnitude of microwave transmission reaches −33dB at 11–12GHz in the 10vol% MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons. |
---|---|
AbstractList | Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5 vol % MWCNTs into the composites. The average magnitude of microwave transmission reaches -33 dB at 11-12 GHz in the 10 vol % MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons. Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5vol% MWCNTs into the composites. The average magnitude of microwave transmission reaches −33dB at 11–12GHz in the 10vol% MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons. |
Author | Liu, Xuejian Pan, Yubai Xiang, Changshu Sun, Xingwei Guo, Jingkun Shi, Xiaomei |
Author_xml | – sequence: 1 givenname: Changshu surname: Xiang fullname: Xiang, Changshu – sequence: 2 givenname: Yubai surname: Pan fullname: Pan, Yubai – sequence: 3 givenname: Xuejian surname: Liu fullname: Liu, Xuejian – sequence: 4 givenname: Xingwei surname: Sun fullname: Sun, Xingwei – sequence: 5 givenname: Xiaomei surname: Shi fullname: Shi, Xiaomei – sequence: 6 givenname: Jingkun surname: Guo fullname: Guo, Jingkun |
BackLink | https://www.osti.gov/biblio/20709793$$D View this record in Osti.gov |
BookMark | eNptkM1LAzEQxYNUsK0e_A8WPHnYdiZp9-MoxS-oeNHzMpudYGSblE3W4n9vtJ7E0zCP35vhvZmYOO9YiEuEBUKhlriQsMYKihMxRSjLXCFWEzEFAJUX9RrPxCyE97SupVJTsX2yevAH-uCMYmQ3UrTeZd5ku7GP9kB9z12maWiT6sj5OLacmzEkNdjeasq03-19sJHDuTg11Ae--J1z8Xp3-7J5yLfP94-bm22upapijrTSiFBplp2uO-CyA1xJVauyk6yYWyQwhgtZmaJUhgzhqu2oVSvdyQrUXFwd7_oQbRN0-q3ftHeOdWwklFCXtUrU8kilgCEMbJoE_sSLA9m-QWi-K2uw-a0sOa7_OPaD3dHw-Q_7BbSUbkY |
CitedBy_id | crossref_primary_10_1039_C4RA14637A crossref_primary_10_1111_jace_13113 crossref_primary_10_3390_polym12020427 crossref_primary_10_1016_j_matlet_2006_08_067 crossref_primary_10_3390_coatings12101532 crossref_primary_10_1002_pssb_201600326 crossref_primary_10_1016_j_ceramint_2020_06_140 crossref_primary_10_2109_jcersj_114_902 crossref_primary_10_1134_S1995421217030078 crossref_primary_10_1002_smll_200800231 crossref_primary_10_1016_j_compscitech_2013_02_024 crossref_primary_10_1002_adfm_200701406 crossref_primary_10_1063_1_3660378 crossref_primary_10_4028_www_scientific_net_AMR_194_196_520 crossref_primary_10_1016_j_carbon_2007_04_016 crossref_primary_10_3390_polym11091480 crossref_primary_10_1016_j_ssc_2013_03_004 crossref_primary_10_1016_j_jics_2023_101091 crossref_primary_10_1016_j_scriptamat_2011_01_002 crossref_primary_10_1109_TDEI_2022_3225765 crossref_primary_10_1016_j_nima_2011_08_002 crossref_primary_10_1039_C7NR01878A crossref_primary_10_1002_pssb_200982294 crossref_primary_10_1016_j_polymer_2017_01_078 crossref_primary_10_1179_174367607X178148 crossref_primary_10_1063_1_2803764 crossref_primary_10_1063_1_3042210 crossref_primary_10_4028_www_scientific_net_KEM_351_227 crossref_primary_10_1016_j_ceramint_2017_06_083 crossref_primary_10_1088_0957_4484_19_26_265607 crossref_primary_10_1155_2012_591839 crossref_primary_10_1039_D1MA00989C crossref_primary_10_1063_1_2193464 crossref_primary_10_1103_PhysRevB_88_045436 crossref_primary_10_1016_j_matchar_2015_03_011 crossref_primary_10_1038_srep03252 crossref_primary_10_1016_j_ceramint_2014_10_062 crossref_primary_10_4028_www_scientific_net_JNanoR_27_121 crossref_primary_10_1016_j_carbon_2006_11_020 crossref_primary_10_1016_j_carbon_2019_03_008 crossref_primary_10_1088_0022_3727_41_23_235005 crossref_primary_10_1080_15421400802458456 crossref_primary_10_4028_www_scientific_net_MSF_945_443 crossref_primary_10_1016_j_surfcoat_2017_02_007 crossref_primary_10_1007_s11814_020_0550_1 crossref_primary_10_4236_msce_2023_1111003 crossref_primary_10_1021_acs_jpcc_7b08406 crossref_primary_10_4028_www_scientific_net_KEM_887_10 crossref_primary_10_1179_1743280414Y_0000000037 crossref_primary_10_1063_1_3599857 crossref_primary_10_1134_S1995078013020080 crossref_primary_10_1088_0256_307X_24_10_078 crossref_primary_10_1016_j_mseb_2009_03_023 crossref_primary_10_1080_14328917_2020_1813452 crossref_primary_10_1016_j_jmmm_2014_12_067 crossref_primary_10_1088_1757_899X_115_1_012027 crossref_primary_10_1063_1_4922599 crossref_primary_10_1134_S0036024416050071 crossref_primary_10_1016_j_carbon_2009_03_033 crossref_primary_10_1021_am401859j crossref_primary_10_1021_nl0602589 crossref_primary_10_1016_j_carbon_2007_12_010 crossref_primary_10_1080_1536383X_2010_488184 crossref_primary_10_3390_fib9120081 crossref_primary_10_1246_cl_2007_1098 crossref_primary_10_1039_C7NR03674D crossref_primary_10_1016_j_jallcom_2023_172867 crossref_primary_10_1088_0957_4484_23_45_455704 crossref_primary_10_1109_TBME_2010_2042597 crossref_primary_10_1016_j_pmatsci_2012_06_001 crossref_primary_10_1080_15583724_2018_1546737 crossref_primary_10_1016_j_ceramint_2018_01_186 crossref_primary_10_1007_s10854_019_01705_2 crossref_primary_10_1039_C5TC03098F crossref_primary_10_1016_j_jeurceramsoc_2014_02_007 crossref_primary_10_1177_1528083715573278 crossref_primary_10_1063_1_2357565 crossref_primary_10_1002_adv_21941 crossref_primary_10_1016_j_matdes_2010_12_043 crossref_primary_10_1016_j_carbon_2019_06_002 crossref_primary_10_1016_j_carbon_2013_07_039 crossref_primary_10_7498_aps_59_1946 crossref_primary_10_1021_jp0731396 crossref_primary_10_1007_s10854_016_5507_0 crossref_primary_10_1016_j_compositesb_2018_12_130 crossref_primary_10_1063_1_4975820 crossref_primary_10_1016_j_jallcom_2015_08_107 crossref_primary_10_1002_app_29202 crossref_primary_10_1007_s10965_013_0169_6 crossref_primary_10_1142_S0219581X08005419 crossref_primary_10_1007_s11434_008_0486_z crossref_primary_10_1016_j_carbon_2014_07_027 crossref_primary_10_1063_1_3250170 crossref_primary_10_1007_s11356_021_16680_7 crossref_primary_10_1016_j_matdes_2012_04_021 crossref_primary_10_1016_j_compscitech_2021_109000 crossref_primary_10_1016_j_jallcom_2009_02_153 crossref_primary_10_4028_www_scientific_net_AMR_629_261 crossref_primary_10_1016_j_radphyschem_2010_11_007 crossref_primary_10_1016_j_physe_2008_01_006 crossref_primary_10_1016_j_ceramint_2006_05_001 crossref_primary_10_4236_msa_2016_79043 crossref_primary_10_1016_j_carbon_2010_07_014 crossref_primary_10_1088_1361_6528_aab87a crossref_primary_10_1016_j_compositesa_2022_107196 crossref_primary_10_1021_jp902296z crossref_primary_10_4028_www_scientific_net_KEM_351_233 crossref_primary_10_1007_s11671_010_9621_2 crossref_primary_10_1016_j_compositesb_2012_05_045 crossref_primary_10_1088_1674_1056_21_7_078102 crossref_primary_10_1007_s10853_024_09846_4 crossref_primary_10_1016_j_physleta_2008_02_015 crossref_primary_10_1134_S1063784210020131 crossref_primary_10_4028_www_scientific_net_MSF_722_47 crossref_primary_10_1209_0295_5075_77_68006 crossref_primary_10_4236_ojcm_2013_32003 crossref_primary_10_1016_j_jmst_2019_07_018 crossref_primary_10_1063_1_2734897 crossref_primary_10_1177_0954008314566433 crossref_primary_10_1016_j_scriptamat_2009_08_015 crossref_primary_10_1002_advs_201801057 crossref_primary_10_1039_c4ra01610f crossref_primary_10_1002_app_54954 crossref_primary_10_1111_j_1744_7402_2012_02785_x crossref_primary_10_1016_j_diamond_2014_12_008 crossref_primary_10_1063_1_3247075 crossref_primary_10_1016_j_cej_2021_129282 crossref_primary_10_1016_j_ceramint_2015_04_075 crossref_primary_10_1039_c3ra44267e crossref_primary_10_1039_C4CP04228J crossref_primary_10_4236_msa_2016_74019 crossref_primary_10_1557_jmr_2017_150 crossref_primary_10_1016_j_porgcoat_2016_11_021 crossref_primary_10_1155_2017_6745029 |
Cites_doi | 10.1038/354056a0 10.1023/A:1004813905115 10.1002/adfm.200304422 10.1111/j.1151-2916.1994.tb09776.x 10.1016/j.cplett.2003.07.002 10.1063/1.1400100 10.1016/S0955-2219(00)00107-2 10.1103/PhysRevLett.84.5552 10.1063/1.1641167 10.1002/adma.200306460 10.1126/science.287.5453.637 10.1063/1.1762693 10.1023/A:1024745526978 10.1016/S0009-2614(00)00196-2 10.1126/science.283.5407.1513 10.1002/adma.200304485 10.1103/PhysRevLett.68.631 10.1103/PhysRevLett.68.1579 10.1038/nmat793 10.1021/nl035135s 10.1002/adma.200306241 10.1016/S0272-8842(03)00063-4 10.1016/S0921-5093(03)00256-9 10.1063/1.1600511 |
ContentType | Journal Article |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1063/1.2051806 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 20709793 10_1063_1_2051806 |
GroupedDBID | -DZ -~X .DC 186 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 6TJ A9. AAAAW AABDS AAGWI AAGZG AAPUP AAYIH AAYJJ AAYXX ABFTF ABJGX ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM ADMLS AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D0L EBS EJD F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NEJ NPSNA O-B P2P RIP RNS ROL RQS SJN TAE TN5 UPT UQL VOH WH7 XJE YZZ ~02 0ZJ 6XO AAEUA ABPTK AGIHO ESX OTOTI UCJ UE8 XFK |
ID | FETCH-LOGICAL-c238t-1a4c1108ce2dc9d0e7d01423937d2e3eeb1a0ffe628f673fafa14bdab34cd2803 |
ISSN | 0003-6951 |
IngestDate | Fri May 19 01:41:22 EDT 2023 Tue Jul 01 03:45:20 EDT 2025 Thu Apr 24 23:04:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c238t-1a4c1108ce2dc9d0e7d01423937d2e3eeb1a0ffe628f673fafa14bdab34cd2803 |
ParticipantIDs | osti_scitechconnect_20709793 crossref_citationtrail_10_1063_1_2051806 crossref_primary_10_1063_1_2051806 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-09-19 |
PublicationDateYYYYMMDD | 2005-09-19 |
PublicationDate_xml | – month: 09 year: 2005 text: 2005-09-19 day: 19 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Applied physics letters |
PublicationYear | 2005 |
References | (2023073109082190200_c11) 2001; 90 (2023073109082190200_c7) 1992; 68 (2023073109082190200_c10) 2000; 319 (2023073109082190200_c6) 2003; 2 (2023073109082190200_c3) 2000; 84 (2023073109082190200_c19) 2003; 22 (2023073109082190200_c15) 2004; 84 (2023073109082190200_c16) 2004; 16 (2023073109082190200_c4) 2000; 287 (2023073109082190200_c13) 2003; 15 (2023073109082190200_c21) 1974; 53 (2023073109082190200_c23) 2000; 20 (2023073109082190200_c5) 2004; 14 (2023073109082190200_c8) 1992; 68 (2023073109082190200_c9) 2004; 4 (2023073109082190200_c24) 2000; 35 (2023073109082190200_c25) 2003; 83 (2023073109082190200_c12) 2003; 378 (2023073109082190200_c22) 1994; 77 (2023073109082190200_c18) 2003; 357 (2023073109082190200_c2) 1999; 283 (2023073109082190200_c14) 2004; 84 (2023073109082190200_c17) 2004; 16 (2023073109082190200_c20) 2004; 30 (2023073109082190200_c1) 1991; 354 |
References_xml | – volume: 354 start-page: 56 year: 1991 ident: 2023073109082190200_c1 publication-title: Nature (London) doi: 10.1038/354056a0 – volume: 35 start-page: 4895 year: 2000 ident: 2023073109082190200_c24 publication-title: J. Mater. Sci. doi: 10.1023/A:1004813905115 – volume: 14 start-page: 55 year: 2004 ident: 2023073109082190200_c5 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200304422 – volume: 77 start-page: 1673 year: 1994 ident: 2023073109082190200_c22 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1994.tb09776.x – volume: 378 start-page: 609 year: 2003 ident: 2023073109082190200_c12 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2003.07.002 – volume: 90 start-page: 4134 year: 2001 ident: 2023073109082190200_c11 publication-title: J. Appl. Phys. doi: 10.1063/1.1400100 – volume: 20 start-page: 1923 year: 2000 ident: 2023073109082190200_c23 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/S0955-2219(00)00107-2 – volume: 84 start-page: 5552 year: 2000 ident: 2023073109082190200_c3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.5552 – volume: 84 start-page: 589 year: 2004 ident: 2023073109082190200_c14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1641167 – volume: 53 start-page: 255 year: 1974 ident: 2023073109082190200_c21 publication-title: Am. Ceram. Soc. Bull. – volume: 16 start-page: 401 year: 2004 ident: 2023073109082190200_c16 publication-title: Adv. Mater. (Weinheim, Ger.) doi: 10.1002/adma.200306460 – volume: 287 start-page: 637 year: 2000 ident: 2023073109082190200_c4 publication-title: Science doi: 10.1126/science.287.5453.637 – volume: 84 start-page: 4956 year: 2004 ident: 2023073109082190200_c15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1762693 – volume: 22 start-page: 1019 year: 2003 ident: 2023073109082190200_c19 publication-title: J. Mater. Sci. Lett. doi: 10.1023/A:1024745526978 – volume: 319 start-page: 460 year: 2000 ident: 2023073109082190200_c10 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)00196-2 – volume: 283 start-page: 1513 year: 1999 ident: 2023073109082190200_c2 publication-title: Science doi: 10.1126/science.283.5407.1513 – volume: 15 start-page: 600 year: 2003 ident: 2023073109082190200_c13 publication-title: Adv. Mater. (Weinheim, Ger.) doi: 10.1002/adma.200304485 – volume: 68 start-page: 631 year: 1992 ident: 2023073109082190200_c7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.631 – volume: 68 start-page: 1579 year: 1992 ident: 2023073109082190200_c8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.1579 – volume: 2 start-page: 38 year: 2003 ident: 2023073109082190200_c6 publication-title: Nat. Mater. doi: 10.1038/nmat793 – volume: 4 start-page: 459 year: 2004 ident: 2023073109082190200_c9 publication-title: Nano Lett. doi: 10.1021/nl035135s – volume: 16 start-page: 2036 year: 2004 ident: 2023073109082190200_c17 publication-title: Adv. Mater. (Weinheim, Ger.) doi: 10.1002/adma.200306241 – volume: 30 start-page: 63 year: 2004 ident: 2023073109082190200_c20 publication-title: Ceram. Int. doi: 10.1016/S0272-8842(03)00063-4 – volume: 357 start-page: 392 year: 2003 ident: 2023073109082190200_c18 publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(03)00256-9 – volume: 83 start-page: 1228 year: 2003 ident: 2023073109082190200_c25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1600511 |
SSID | ssj0005233 |
Score | 2.252653 |
Snippet | Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared... |
SourceID | osti crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
SubjectTerms | ABSORPTION ATTENUATION CARBON COMPOSITE MATERIALS DIELECTRIC MATERIALS ELECTRIC CONDUCTIVITY ELECTRONS GHZ RANGE 01-100 GLASS HOT PRESSING MATERIALS SCIENCE MICROWAVE RADIATION NANOTUBES PERMITTIVITY SILICA |
Title | Microwave attenuation of multiwalled carbon nanotube-fused silica composites |
URI | https://www.osti.gov/biblio/20709793 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9NAFB20i6APoqvi6iqD-CCUaDIznTSPix8sshVhdyE-hflcK0sqNkPBX--9ySRNpYj6EtppCGXOcOfMzbnnEvLSZUwXuWeAgHOJsL5IVCEz-Mp8kRvJ8rY34OKTPL0UH8tZuW1Z11aXNPq1-bm3ruR_UIUxwBWrZP8B2eGhMACfAV-4AsJw_SuMF6im22D_IHTJrMNA_1qZ4AbbpFj0ntYwWqt61QTtEh_WMLpeYrauVZSjbCsqCXs72khNu7THenrd1vwM7LuEJXXV1SWsv4btS6h6-iVotRw0PsswLYP7NlqA56GelrBZbtxyJ90wQ21EDGp9COWJLKJLrOuiZppjsjMG0hhW4z4alw_bG66BH2HmAI7ps2ye_maJ3W6yDEJSATHkJjlgcBBgE3Jw8m5xdj6S8XDed0XEv9W7R0n-ZnjuDueYrCB2jjjExT1yN5J_etIheZ_ccPUhuTOyhDwktz53c_6AnA3o0hG6dOXpCF3aoUt30aUdunSL7kNy-eH9xdvTJPa-SAyQqCbJlDBYoWEcs6awqcstHGbRry63zHEHW6xKvXeSzb3MuVdeZUJbpbkwFjuOPSKTelW7x4QKOZfeMcMzkwpnCu1VyufaCq2UlUockVf97FQmGsNjf5LrqhUoSF5lVZzII_JiuPV754ay76ZjnOIKKBz6EBsUbJmm6pF88uefn5Lb22V3TCbNj-CeAe9r9PMI_S-5xF0X |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave+attenuation+of+multiwalled+carbon+nanotube-fused+silica+composites&rft.jtitle=Applied+physics+letters&rft.au=Xiang+Changshu&rft.au=Pan+Yubai&rft.au=Liu+Xuejian&rft.au=Sun+Xingwei&rft.date=2005-09-19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=87&rft.issue=12&rft_id=info:doi/10.1063%2F1.2051806&rft.externalDocID=20709793 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |