Nonparametric estimation of the number of classes with different average brightness in thermal images
When there is no information about the number of brightness classes, synthesizing algorithms for automatic image threshold segmentation involves a problem of determining the number of thresholds. The solution to the problem of estimating the number of classes in an image can be based on representing...
Saved in:
Published in | Kompʹûternaâ optika Vol. 47; no. 5; pp. 816 - 823 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Samara National Research University
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0134-2452 2412-6179 |
DOI | 10.18287/2412-6179-CO-1284 |
Cover
Abstract | When there is no information about the number of brightness classes, synthesizing algorithms for automatic image threshold segmentation involves a problem of determining the number of thresholds. The solution to the problem of estimating the number of classes in an image can be based on representing its distribution as a mixture of distributions of brightness classes when priori probabilities are unknown, or estimating the number of histogram modes. At the same time, it is known that the mixture splitting problem has a solution only for certain types of distributions and the histogram modes are not always distinguishable. In the general case, when the distributions of brightness classes are unknown, there are difficulties in applying these methods. The article proposes a non-parametric approach to determining the number of classes that differ in average brightness, based on rank histograms and using the property of local spatial grouping of elements of each brightness class in the image. |
---|---|
AbstractList | When there is no information about the number of brightness classes, synthesizing algorithms for automatic image threshold segmentation involves a problem of determining the number of thresholds. The solution to the problem of estimating the number of classes in an image can be based on representing its distribution as a mixture of distributions of brightness classes when priori probabilities are unknown, or estimating the number of histogram modes. At the same time, it is known that the mixture splitting problem has a solution only for certain types of distributions and the histogram modes are not always distinguishable. In the general case, when the distributions of brightness classes are unknown, there are difficulties in applying these methods. The article proposes a non-parametric approach to determining the number of classes that differ in average brightness, based on rank histograms and using the property of local spatial grouping of elements of each brightness class in the image. |
Author | Galyntich, A.N. Raifeld, M.A. |
Author_xml | – sequence: 1 givenname: A.N. surname: Galyntich fullname: Galyntich, A.N. – sequence: 2 givenname: M.A. surname: Raifeld fullname: Raifeld, M.A. |
BookMark | eNo9kN1KxDAQhYMouP68gFd5gWomaZP0Uhb_QNwbvQ7TZLqbZbddkqj49rYqXg3nwPkGvjN2PIwDMXYF4hqstOZG1iArDaatlqsKpK2P2OK_O2YLAaquZN3IU3aZ81YIMa001LBg9DIOB0y4p5Ki55RL3GOJ48DHnpcN8eF931Gak99hzpT5ZywbHmLfU6KhcPyghGviXYrrTRkoZx6HeZr2uOMTbU35gp30uMt0-XfP2dv93evysXpePTwtb58rL5UtFbQGA3rwukWpGissoRbBCKk63QGBVL6r0SMGC22wvdaqb6EzaLRRBtU5e_rlhhG37pCm7-nLjRjdTzGmtcNUot-RCzU0nWnbpgm6Ft5bUMG0TTC9ld2EnVjyl-XTmHOi_p8Hwv14d7NjNzt2y5WbvatvKEx4tA |
ContentType | Journal Article |
CorporateAuthor | PO UOMZ Ural-SibNIIRS Novosibirsk State Technical University Branch of JSC |
CorporateAuthor_xml | – name: PO UOMZ Ural-SibNIIRS – name: Branch of JSC – name: Novosibirsk State Technical University |
DBID | AAYXX CITATION DOA |
DOI | 10.18287/2412-6179-CO-1284 |
DatabaseName | CrossRef Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2412-6179 |
EndPage | 823 |
ExternalDocumentID | oai_doaj_org_article_d415b79955d640cc813d795d7f82b63f 10_18287_2412_6179_CO_1284 |
GroupedDBID | 642 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c238t-197adac1c69a235808ea60d7023b6b1e123cb4acaad819d8f663f91b7a76737a3 |
IEDL.DBID | DOA |
ISSN | 0134-2452 |
IngestDate | Wed Aug 27 01:26:12 EDT 2025 Tue Jul 01 03:11:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c238t-197adac1c69a235808ea60d7023b6b1e123cb4acaad819d8f663f91b7a76737a3 |
OpenAccessLink | https://doaj.org/article/d415b79955d640cc813d795d7f82b63f |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d415b79955d640cc813d795d7f82b63f crossref_primary_10_18287_2412_6179_CO_1284 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Kompʹûternaâ optika |
PublicationYear | 2023 |
Publisher | Samara National Research University |
Publisher_xml | – name: Samara National Research University |
SSID | ssj0002876141 |
Score | 2.2685056 |
Snippet | When there is no information about the number of brightness classes, synthesizing algorithms for automatic image threshold segmentation involves a problem of... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 816 |
SubjectTerms | eigenvalues gram-schmidt orthogonalization image segmentation nonparametric algorithm principal component method rank histogram |
Title | Nonparametric estimation of the number of classes with different average brightness in thermal images |
URI | https://doaj.org/article/d415b79955d640cc813d795d7f82b63f |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSBzZkNWlcJx6hAlVItAuVulnnFwJBimj4_9zFKSoTC2OixIru7PvuHN_3MXalFJSVlLQFBkHI6EsB2geRB5BQWR1jy67_OFWTuXxYjBYbUl90JizRAyfDDTwijCXWspFXMnOuygtf6pEvYzW0qogUfTOdbRRTr-2WEZbnMokRFlLQ78WuY4YI3gcIW0NqjtNiPBMUoX-h0gZ5f4sy93tsp0sP-U36rH22FeoDttulirxbiKtDFqbLmli730kQy3Giykg9iHwZOeZ0PCl90JWj_DisOO248rUeSsMB5zDGEm7b8pwCHn-p6VWM1G8cR3sOqyM2v797Gk9Ep5ggHEJvI3JdggeXO6WBemCzKoDKfInAbJXNA8KUsxIcgMdMwFcR842oc1tCSXo1UByzXr2swwnjLlN6GHMFI5AI-rIqMsiswuUdSJ_Y99n12mLmIxFjGCooyL6G7GvIvmY8M2TfPrslo_48SaTW7Q10telcbf5y9el_DHLGtkkxPp3HO2e95vMrXGBe0djLdgp9A7jpx9E |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+estimation+of+the+number+of+classes+with+different+average+brightness+in+thermal+images&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=Galyntich%2C+A.N.&rft.au=Raifeld%2C+M.A.&rft.date=2023-10-01&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=47&rft.issue=5&rft.spage=816&rft.epage=823&rft_id=info:doi/10.18287%2F2412-6179-CO-1284&rft.externalDBID=n%2Fa&rft.externalDocID=10_18287_2412_6179_CO_1284 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon |