Nonparametric estimation of the number of classes with different average brightness in thermal images

When there is no information about the number of brightness classes, synthesizing algorithms for automatic image threshold segmentation involves a problem of determining the number of thresholds. The solution to the problem of estimating the number of classes in an image can be based on representing...

Full description

Saved in:
Bibliographic Details
Published inKompʹûternaâ optika Vol. 47; no. 5; pp. 816 - 823
Main Authors Galyntich, A.N., Raifeld, M.A.
Format Journal Article
LanguageEnglish
Published Samara National Research University 01.10.2023
Subjects
Online AccessGet full text
ISSN0134-2452
2412-6179
DOI10.18287/2412-6179-CO-1284

Cover

Abstract When there is no information about the number of brightness classes, synthesizing algorithms for automatic image threshold segmentation involves a problem of determining the number of thresholds. The solution to the problem of estimating the number of classes in an image can be based on representing its distribution as a mixture of distributions of brightness classes when priori probabilities are unknown, or estimating the number of histogram modes. At the same time, it is known that the mixture splitting problem has a solution only for certain types of distributions and the histogram modes are not always distinguishable. In the general case, when the distributions of brightness classes are unknown, there are difficulties in applying these methods. The article proposes a non-parametric approach to determining the number of classes that differ in average brightness, based on rank histograms and using the property of local spatial grouping of elements of each brightness class in the image.
AbstractList When there is no information about the number of brightness classes, synthesizing algorithms for automatic image threshold segmentation involves a problem of determining the number of thresholds. The solution to the problem of estimating the number of classes in an image can be based on representing its distribution as a mixture of distributions of brightness classes when priori probabilities are unknown, or estimating the number of histogram modes. At the same time, it is known that the mixture splitting problem has a solution only for certain types of distributions and the histogram modes are not always distinguishable. In the general case, when the distributions of brightness classes are unknown, there are difficulties in applying these methods. The article proposes a non-parametric approach to determining the number of classes that differ in average brightness, based on rank histograms and using the property of local spatial grouping of elements of each brightness class in the image.
Author Galyntich, A.N.
Raifeld, M.A.
Author_xml – sequence: 1
  givenname: A.N.
  surname: Galyntich
  fullname: Galyntich, A.N.
– sequence: 2
  givenname: M.A.
  surname: Raifeld
  fullname: Raifeld, M.A.
BookMark eNo9kN1KxDAQhYMouP68gFd5gWomaZP0Uhb_QNwbvQ7TZLqbZbddkqj49rYqXg3nwPkGvjN2PIwDMXYF4hqstOZG1iArDaatlqsKpK2P2OK_O2YLAaquZN3IU3aZ81YIMa001LBg9DIOB0y4p5Ki55RL3GOJ48DHnpcN8eF931Gak99hzpT5ZywbHmLfU6KhcPyghGviXYrrTRkoZx6HeZr2uOMTbU35gp30uMt0-XfP2dv93evysXpePTwtb58rL5UtFbQGA3rwukWpGissoRbBCKk63QGBVL6r0SMGC22wvdaqb6EzaLRRBtU5e_rlhhG37pCm7-nLjRjdTzGmtcNUot-RCzU0nWnbpgm6Ft5bUMG0TTC9ld2EnVjyl-XTmHOi_p8Hwv14d7NjNzt2y5WbvatvKEx4tA
ContentType Journal Article
CorporateAuthor PO UOMZ Ural-SibNIIRS
Novosibirsk State Technical University
Branch of JSC
CorporateAuthor_xml – name: PO UOMZ Ural-SibNIIRS
– name: Branch of JSC
– name: Novosibirsk State Technical University
DBID AAYXX
CITATION
DOA
DOI 10.18287/2412-6179-CO-1284
DatabaseName CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2412-6179
EndPage 823
ExternalDocumentID oai_doaj_org_article_d415b79955d640cc813d795d7f82b63f
10_18287_2412_6179_CO_1284
GroupedDBID 642
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c238t-197adac1c69a235808ea60d7023b6b1e123cb4acaad819d8f663f91b7a76737a3
IEDL.DBID DOA
ISSN 0134-2452
IngestDate Wed Aug 27 01:26:12 EDT 2025
Tue Jul 01 03:11:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c238t-197adac1c69a235808ea60d7023b6b1e123cb4acaad819d8f663f91b7a76737a3
OpenAccessLink https://doaj.org/article/d415b79955d640cc813d795d7f82b63f
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_d415b79955d640cc813d795d7f82b63f
crossref_primary_10_18287_2412_6179_CO_1284
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Kompʹûternaâ optika
PublicationYear 2023
Publisher Samara National Research University
Publisher_xml – name: Samara National Research University
SSID ssj0002876141
Score 2.2685056
Snippet When there is no information about the number of brightness classes, synthesizing algorithms for automatic image threshold segmentation involves a problem of...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 816
SubjectTerms eigenvalues
gram-schmidt orthogonalization
image segmentation
nonparametric algorithm
principal component method
rank histogram
Title Nonparametric estimation of the number of classes with different average brightness in thermal images
URI https://doaj.org/article/d415b79955d640cc813d795d7f82b63f
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSBzZkNWlcJx6hAlVItAuVulnnFwJBimj4_9zFKSoTC2OixIru7PvuHN_3MXalFJSVlLQFBkHI6EsB2geRB5BQWR1jy67_OFWTuXxYjBYbUl90JizRAyfDDTwijCXWspFXMnOuygtf6pEvYzW0qogUfTOdbRRTr-2WEZbnMokRFlLQ78WuY4YI3gcIW0NqjtNiPBMUoX-h0gZ5f4sy93tsp0sP-U36rH22FeoDttulirxbiKtDFqbLmli730kQy3Giykg9iHwZOeZ0PCl90JWj_DisOO248rUeSsMB5zDGEm7b8pwCHn-p6VWM1G8cR3sOqyM2v797Gk9Ep5ggHEJvI3JdggeXO6WBemCzKoDKfInAbJXNA8KUsxIcgMdMwFcR842oc1tCSXo1UByzXr2swwnjLlN6GHMFI5AI-rIqMsiswuUdSJ_Y99n12mLmIxFjGCooyL6G7GvIvmY8M2TfPrslo_48SaTW7Q10telcbf5y9el_DHLGtkkxPp3HO2e95vMrXGBe0djLdgp9A7jpx9E
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+estimation+of+the+number+of+classes+with+different+average+brightness+in+thermal+images&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=Galyntich%2C+A.N.&rft.au=Raifeld%2C+M.A.&rft.date=2023-10-01&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=47&rft.issue=5&rft.spage=816&rft.epage=823&rft_id=info:doi/10.18287%2F2412-6179-CO-1284&rft.externalDBID=n%2Fa&rft.externalDocID=10_18287_2412_6179_CO_1284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon