Nonparametric Estimation of f(0) Applying Line Transect Data with and without the Shoulder Condition
The problem of estimating f (0); the probability density function of observed distances at the left boundary x = 0 using line transect data is considered. A general nonparametric histogram estimator (0) for f (0) is proposed and investigated. The proposed estimator is formulated as linear of indicat...
Saved in:
Published in | Journal of information & optimization sciences Vol. 36; no. 4; pp. 301 - 315 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
04.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The problem of estimating f (0); the probability density function of observed distances at the left boundary x = 0 using line transect data is considered. A general nonparametric histogram estimator
(0) for f (0) is proposed and investigated. The proposed estimator is formulated as linear of indicator functions with corresponding weights. These weights can be determined in a variety of different ways to ensure desirable properties for the proposed estimator and to deal with the presence or absence of the shoulder condition assumption. Theoretical motivation is provided for the existence of weights that prove to be effective in reducing the bias without increasing variance. We consider a direct implementation of the proposed estimator in which the weights are optimized subject to some constraints. The optimization problem converts into the problem of solving a system of linear equations. Some comparison performances are obtained, which demonstrate the good results of the proposed estimator at least for adequately large samples. |
---|---|
AbstractList | The problem of estimating f (0); the probability density function of observed distances at the left boundary x = 0 using line transect data is considered. A general nonparametric histogram estimator
(0) for f (0) is proposed and investigated. The proposed estimator is formulated as linear of indicator functions with corresponding weights. These weights can be determined in a variety of different ways to ensure desirable properties for the proposed estimator and to deal with the presence or absence of the shoulder condition assumption. Theoretical motivation is provided for the existence of weights that prove to be effective in reducing the bias without increasing variance. We consider a direct implementation of the proposed estimator in which the weights are optimized subject to some constraints. The optimization problem converts into the problem of solving a system of linear equations. Some comparison performances are obtained, which demonstrate the good results of the proposed estimator at least for adequately large samples. |
Author | Eidous, Omar M. |
Author_xml | – sequence: 1 givenname: Omar M. surname: Eidous fullname: Eidous, Omar M. organization: Department of Statistics Faculty of Science Yarmouk University |
BookMark | eNqFkL1OwzAURi1UJFrgDRg8wpBix4mdsKCqlB-pgoEyW7ZjU6PUjmyjqm9P0sLCAMPVvcN3PumeCRg57zQAFxhNMarQNcrLPKeUTXOEybSijOX0CIxzTOsMYURGYDxEsiFzAiYxfiBU1BSxMWievetEEBudglVwEZPdiGS9g95Ac4mu4Kzr2p1173BpnYarIFzUKsE7kQTc2rSGwjX7w38mmNYavvZX2-gA5941dug6A8dGtFGff-9T8Ha_WM0fs-XLw9N8tsxUTljKpKrrShZMUCWZrDVhTEhaYMkEkVVpUKMqZPpBZSFYqSqmSySJrrFgGleSnILi0KuCjzFow7vQvxN2HCM-mOI_pvhgih9M9djNL0zZtJeQgrDtf_DtAbbO-LARWx_ahiexa30wvSxlIyd_NnwBnk2ERg |
CitedBy_id | crossref_primary_10_18187_pjsor_v16i2_3164 crossref_primary_10_1080_23311916_2024_2303237 |
Cites_doi | 10.2307/2530653 10.2307/3109767 10.1016/S0167-7152(01)00013-X 10.1007/BF03263552 10.1007/978-1-4899-3324-9 10.1111/j.0006-341X.1999.00769.x 10.1016/S0378-3758(97)00187-0 10.2307/2986150 10.1093/oso/9780198506492.001.0001 10.1080/03610920600628528 10.1080/03610929908832422 |
ContentType | Journal Article |
Copyright | Taru Publications 2015 |
Copyright_xml | – notice: Taru Publications 2015 |
DBID | AAYXX CITATION |
DOI | 10.1080/02522667.2013.867726 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2169-0103 |
EndPage | 315 |
ExternalDocumentID | 10_1080_02522667_2013_867726 867726 |
Genre | Article |
GroupedDBID | -~X .DC 0BK 0R~ 29K 30N 4.4 5GY ABCCY ABFIM ABJNI ABPEM ABTAI ABXYU ACGFS ACTIO ADCVX AEYOC AGDLA AIJEM AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG D-I DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ KYCEM M4Z O9- P2P PQQKQ PZZ RIG ROSJB S-T SJN SNACF TDBHL TFT TFW TN5 TTHFI UT5 AAYXX CITATION |
ID | FETCH-LOGICAL-c237t-bc998b47a6cb7b9e377ab641b7a3b85f0dc80fc80054a75c87e50b3e91a7e18b3 |
ISSN | 0252-2667 |
IngestDate | Tue Jul 01 02:01:52 EDT 2025 Thu Apr 24 22:57:08 EDT 2025 Wed Dec 25 09:01:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c237t-bc998b47a6cb7b9e377ab641b7a3b85f0dc80fc80054a75c87e50b3e91a7e18b3 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1080_02522667_2013_867726 informaworld_taylorfrancis_310_1080_02522667_2013_867726 crossref_citationtrail_10_1080_02522667_2013_867726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 7/4/2015 |
PublicationDateYYYYMMDD | 2015-07-04 |
PublicationDate_xml | – month: 07 year: 2015 text: 7/4/2015 day: 04 |
PublicationDecade | 2010 |
PublicationTitle | Journal of information & optimization sciences |
PublicationYear | 2015 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 cit0001 cit0012 cit0010 Eidous O. M. (cit0005) 2005; 34 Eidous O. M. (cit0004) 2005; 14 cit0008 cit0009 cit0006 cit0007 cit0002 cit0013 cit0003 cit0014 |
References_xml | – volume: 14 start-page: 25 year: 2005 ident: cit0004 publication-title: Journal of Applied Statistical Science – ident: cit0012 – ident: cit0001 doi: 10.2307/2530653 – ident: cit0009 doi: 10.2307/3109767 – ident: cit0013 doi: 10.1016/S0167-7152(01)00013-X – ident: cit0007 doi: 10.1007/BF03263552 – ident: cit0011 doi: 10.1007/978-1-4899-3324-9 – ident: cit0008 doi: 10.1111/j.0006-341X.1999.00769.x – ident: cit0014 doi: 10.1016/S0378-3758(97)00187-0 – volume: 34 start-page: 49 year: 2005 ident: cit0005 publication-title: Journal of the Korean Statistical Society – ident: cit0003 doi: 10.2307/2986150 – ident: cit0002 doi: 10.1093/oso/9780198506492.001.0001 – ident: cit0006 doi: 10.1080/03610920600628528 – ident: cit0010 doi: 10.1080/03610929908832422 |
SSID | ssj0049607 |
Score | 1.968886 |
Snippet | The problem of estimating f (0); the probability density function of observed distances at the left boundary x = 0 using line transect data is considered. A... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 301 |
SubjectTerms | Boundary effects Boundary kernel method Histogram density estimation Optimal bandwidth |
Title | Nonparametric Estimation of f(0) Applying Line Transect Data with and without the Shoulder Condition |
URI | https://www.tandfonline.com/doi/abs/10.1080/02522667.2013.867726 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXLgA5UO0FOQDB1CVlT-S2DlWUFQhsRxopd4i23FEJXaDqvTCr--MYydZuiq0h81G1sbZ3XmZebZm3hDyXpfGcCeLjDVcZLlum8ww7TNRuVI6pqwNXRS-LcuTs_zreXE-7SqF6pLeLtyfrXUl97EqjIFdsUr2DpYdJ4UBOAf7whEsDMf_svGyW6N09wq7YrnDY3haVyMDbJE7Mlz0I9GMxUzAKENwQsHiz6Y3U2kbnmCKMvLQHz-x77W_xHLA5mK03E0KG1VXRwh14H9WsbDzMMbWibNfNN1VQM33FYoHLeYbDrwIyan5zC-JQmQQ14c46cOY4CWmXTE5d6yDskkEUD7zkjLuXwwBVw71nDd8eUx-FMgQS4VZeHKB6ntii3T2XyFtTDTkSQE1zlLjLPUwy0PySMA7tr2QbJnCdw5LulBjn35lqrdEQfYt32WDz2yo3c54yukz8iRahx4NaNklD_z6OXmamnfQ6MtfEL8BHjqBh3YtbekH9pEm4FAEDk3AoQgcinihABwagUMBODQBh47AeUnOvhyffjrJYs-NzAmp-sw6WH_bXJnSWWUrL5Uytsy5VUZaXbSscZq18AKqb1ThtPIFs9JX3CjPtZWvyM66W_vXhPq8bMG_NwWKUIq20rrwStrKwCLZKMn3iEz_XO2iID32RflV32a1PZKNV_0eBFn-8Xk9N0rdh42wduhaU8vbLt2_463ekMfT83JAdvrLK_8WKGtv3wWIXQOXR4u9 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8UwEA4uB724i7s5eNBDnm3TLD2KC8_tXVTwVpI0QVBfRfsu_npnuogKKuihUGinTbPMks58HyE7WhoTOy5YVMQJS3UomIm0Z0nmJHeRsrZmUbgcyP5NenYrumzClzatEmPo0ABF1LoaFzduRncpcftgp8FrkAozs3gPEdkSOU4mRSYVkhjwaNAp4xQc9LpiGiQYinTVc9885ZN1-oRd-sHqnMwS27W3STa5740q23OvX6Ac__VBc2Sm9UnpQTOJ5smYHy6Q2Y7vgbbLf5EUg3KIUOGPyMLl6DFoh6bwkZaBht1oj6JPi3VTFEJcT2s7CAqVHpnKUNzxpdDE-qQcVRRcT3p1hxTb8JLDEv-dw7OWyM3J8fVhn7UsDcwlXFXMOojYbKqMdFbZzHOljJVpbJXhVosQFU5HAQ5wDo0STisvIst9FhvlY235MpkYlkO_QqhPZQCNUAiELUxCprXwitvMQFhlFI9XCe9GJ3cthDkyaTzkcYd02nZkjh2ZNx25Sti71FMD4fHL_frjwOdVvXUSGp6TnP8kuvZ30W0y1b--vMgvTgfn62Qarog6KzjdIBPV88hvgu9T2a16dr8B4DD1MA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66gnjxLa7PHDzoIWvbtEl6lNXF5yKo4K0kaYKgbkW6F3-9M33IKqigh0KhnTbNY-abdOYbQvaU0Dq0PGFBHkYsVj5nOlCORakV3AbSmKqKwtVQnN7F5_fJ_UQWP4ZVog_ta6KISlfj4n7JfRsRdwhmGkCDkBiYxXtIyBaJaTIjkDsckziCYauLY8DnVcI0SDAUaZPnvnnKJ-P0ibp0wugMFohum1vHmjz2xqXp2bcvTI7_-Z5FMt8gUnpUT6ElMuVGy2ShrfZAm8W_QvJhMUKi8GeswWXpCeiGOu2RFp76_eCAIqLFrCkKDq6jlRUEdUqPdakp7vdSaGF1UoxLCsCT3jxggW14Sb_AP-fwrFVyNzi57Z-ypkYDsxGXJTMW_DUTSy2skSZ1XEptRBwaqblRiQ9yqwIPB0BDLROrpEsCw10aaulCZfga6YyKkVsn1MXCgz7IEyQtjHyqVOIkN6kGp0pLHnYJbwcnsw2BOdbReMrClue06cgMOzKrO7JL2IfUS03g8cv9anLcs7LaOPF1lZOM_yS68XfRXTJ7fTzILs-GF5tkDi4kVUhwvEU65evYbQPwKc1ONbffAdf889Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+Estimation+of+f+%280%29+Applying+Line+Transect+Data+with+and+without+the+Shoulder+Condition&rft.jtitle=Journal+of+information+%26+optimization+sciences&rft.au=Eidous%2C+Omar+M.&rft.date=2015-07-04&rft.issn=0252-2667&rft.eissn=2169-0103&rft.volume=36&rft.issue=4&rft.spage=301&rft.epage=315&rft_id=info:doi/10.1080%2F02522667.2013.867726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02522667_2013_867726 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0252-2667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0252-2667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0252-2667&client=summon |