Nonparametric Estimation of f(0) Applying Line Transect Data with and without the Shoulder Condition

The problem of estimating f (0); the probability density function of observed distances at the left boundary x = 0 using line transect data is considered. A general nonparametric histogram estimator (0) for f (0) is proposed and investigated. The proposed estimator is formulated as linear of indicat...

Full description

Saved in:
Bibliographic Details
Published inJournal of information & optimization sciences Vol. 36; no. 4; pp. 301 - 315
Main Author Eidous, Omar M.
Format Journal Article
LanguageEnglish
Published Taylor & Francis 04.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The problem of estimating f (0); the probability density function of observed distances at the left boundary x = 0 using line transect data is considered. A general nonparametric histogram estimator (0) for f (0) is proposed and investigated. The proposed estimator is formulated as linear of indicator functions with corresponding weights. These weights can be determined in a variety of different ways to ensure desirable properties for the proposed estimator and to deal with the presence or absence of the shoulder condition assumption. Theoretical motivation is provided for the existence of weights that prove to be effective in reducing the bias without increasing variance. We consider a direct implementation of the proposed estimator in which the weights are optimized subject to some constraints. The optimization problem converts into the problem of solving a system of linear equations. Some comparison performances are obtained, which demonstrate the good results of the proposed estimator at least for adequately large samples.
AbstractList The problem of estimating f (0); the probability density function of observed distances at the left boundary x = 0 using line transect data is considered. A general nonparametric histogram estimator (0) for f (0) is proposed and investigated. The proposed estimator is formulated as linear of indicator functions with corresponding weights. These weights can be determined in a variety of different ways to ensure desirable properties for the proposed estimator and to deal with the presence or absence of the shoulder condition assumption. Theoretical motivation is provided for the existence of weights that prove to be effective in reducing the bias without increasing variance. We consider a direct implementation of the proposed estimator in which the weights are optimized subject to some constraints. The optimization problem converts into the problem of solving a system of linear equations. Some comparison performances are obtained, which demonstrate the good results of the proposed estimator at least for adequately large samples.
Author Eidous, Omar M.
Author_xml – sequence: 1
  givenname: Omar M.
  surname: Eidous
  fullname: Eidous, Omar M.
  organization: Department of Statistics Faculty of Science Yarmouk University
BookMark eNqFkL1OwzAURi1UJFrgDRg8wpBix4mdsKCqlB-pgoEyW7ZjU6PUjmyjqm9P0sLCAMPVvcN3PumeCRg57zQAFxhNMarQNcrLPKeUTXOEybSijOX0CIxzTOsMYURGYDxEsiFzAiYxfiBU1BSxMWievetEEBudglVwEZPdiGS9g95Ac4mu4Kzr2p1173BpnYarIFzUKsE7kQTc2rSGwjX7w38mmNYavvZX2-gA5941dug6A8dGtFGff-9T8Ha_WM0fs-XLw9N8tsxUTljKpKrrShZMUCWZrDVhTEhaYMkEkVVpUKMqZPpBZSFYqSqmSySJrrFgGleSnILi0KuCjzFow7vQvxN2HCM-mOI_pvhgih9M9djNL0zZtJeQgrDtf_DtAbbO-LARWx_ahiexa30wvSxlIyd_NnwBnk2ERg
CitedBy_id crossref_primary_10_18187_pjsor_v16i2_3164
crossref_primary_10_1080_23311916_2024_2303237
Cites_doi 10.2307/2530653
10.2307/3109767
10.1016/S0167-7152(01)00013-X
10.1007/BF03263552
10.1007/978-1-4899-3324-9
10.1111/j.0006-341X.1999.00769.x
10.1016/S0378-3758(97)00187-0
10.2307/2986150
10.1093/oso/9780198506492.001.0001
10.1080/03610920600628528
10.1080/03610929908832422
ContentType Journal Article
Copyright Taru Publications 2015
Copyright_xml – notice: Taru Publications 2015
DBID AAYXX
CITATION
DOI 10.1080/02522667.2013.867726
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2169-0103
EndPage 315
ExternalDocumentID 10_1080_02522667_2013_867726
867726
Genre Article
GroupedDBID -~X
.DC
0BK
0R~
29K
30N
4.4
5GY
ABCCY
ABFIM
ABJNI
ABPEM
ABTAI
ABXYU
ACGFS
ACTIO
ADCVX
AEYOC
AGDLA
AIJEM
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
D-I
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
M4Z
O9-
P2P
PQQKQ
PZZ
RIG
ROSJB
S-T
SJN
SNACF
TDBHL
TFT
TFW
TN5
TTHFI
UT5
AAYXX
CITATION
ID FETCH-LOGICAL-c237t-bc998b47a6cb7b9e377ab641b7a3b85f0dc80fc80054a75c87e50b3e91a7e18b3
ISSN 0252-2667
IngestDate Tue Jul 01 02:01:52 EDT 2025
Thu Apr 24 22:57:08 EDT 2025
Wed Dec 25 09:01:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c237t-bc998b47a6cb7b9e377ab641b7a3b85f0dc80fc80054a75c87e50b3e91a7e18b3
PageCount 15
ParticipantIDs crossref_primary_10_1080_02522667_2013_867726
informaworld_taylorfrancis_310_1080_02522667_2013_867726
crossref_citationtrail_10_1080_02522667_2013_867726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 7/4/2015
PublicationDateYYYYMMDD 2015-07-04
PublicationDate_xml – month: 07
  year: 2015
  text: 7/4/2015
  day: 04
PublicationDecade 2010
PublicationTitle Journal of information & optimization sciences
PublicationYear 2015
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0001
cit0012
cit0010
Eidous O. M. (cit0005) 2005; 34
Eidous O. M. (cit0004) 2005; 14
cit0008
cit0009
cit0006
cit0007
cit0002
cit0013
cit0003
cit0014
References_xml – volume: 14
  start-page: 25
  year: 2005
  ident: cit0004
  publication-title: Journal of Applied Statistical Science
– ident: cit0012
– ident: cit0001
  doi: 10.2307/2530653
– ident: cit0009
  doi: 10.2307/3109767
– ident: cit0013
  doi: 10.1016/S0167-7152(01)00013-X
– ident: cit0007
  doi: 10.1007/BF03263552
– ident: cit0011
  doi: 10.1007/978-1-4899-3324-9
– ident: cit0008
  doi: 10.1111/j.0006-341X.1999.00769.x
– ident: cit0014
  doi: 10.1016/S0378-3758(97)00187-0
– volume: 34
  start-page: 49
  year: 2005
  ident: cit0005
  publication-title: Journal of the Korean Statistical Society
– ident: cit0003
  doi: 10.2307/2986150
– ident: cit0002
  doi: 10.1093/oso/9780198506492.001.0001
– ident: cit0006
  doi: 10.1080/03610920600628528
– ident: cit0010
  doi: 10.1080/03610929908832422
SSID ssj0049607
Score 1.968886
Snippet The problem of estimating f (0); the probability density function of observed distances at the left boundary x = 0 using line transect data is considered. A...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 301
SubjectTerms Boundary effects
Boundary kernel method
Histogram density estimation
Optimal bandwidth
Title Nonparametric Estimation of f(0) Applying Line Transect Data with and without the Shoulder Condition
URI https://www.tandfonline.com/doi/abs/10.1080/02522667.2013.867726
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgXLgA5UO0FOQDB1CVlT-S2DlWUFQhsRxopd4i23FEJXaDqvTCr--MYydZuiq0h81G1sbZ3XmZebZm3hDyXpfGcCeLjDVcZLlum8ww7TNRuVI6pqwNXRS-LcuTs_zreXE-7SqF6pLeLtyfrXUl97EqjIFdsUr2DpYdJ4UBOAf7whEsDMf_svGyW6N09wq7YrnDY3haVyMDbJE7Mlz0I9GMxUzAKENwQsHiz6Y3U2kbnmCKMvLQHz-x77W_xHLA5mK03E0KG1VXRwh14H9WsbDzMMbWibNfNN1VQM33FYoHLeYbDrwIyan5zC-JQmQQ14c46cOY4CWmXTE5d6yDskkEUD7zkjLuXwwBVw71nDd8eUx-FMgQS4VZeHKB6ntii3T2XyFtTDTkSQE1zlLjLPUwy0PySMA7tr2QbJnCdw5LulBjn35lqrdEQfYt32WDz2yo3c54yukz8iRahx4NaNklD_z6OXmamnfQ6MtfEL8BHjqBh3YtbekH9pEm4FAEDk3AoQgcinihABwagUMBODQBh47AeUnOvhyffjrJYs-NzAmp-sw6WH_bXJnSWWUrL5Uytsy5VUZaXbSscZq18AKqb1ThtPIFs9JX3CjPtZWvyM66W_vXhPq8bMG_NwWKUIq20rrwStrKwCLZKMn3iEz_XO2iID32RflV32a1PZKNV_0eBFn-8Xk9N0rdh42wduhaU8vbLt2_463ekMfT83JAdvrLK_8WKGtv3wWIXQOXR4u9
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8UwEA4uB724i7s5eNBDnm3TLD2KC8_tXVTwVpI0QVBfRfsu_npnuogKKuihUGinTbPMks58HyE7WhoTOy5YVMQJS3UomIm0Z0nmJHeRsrZmUbgcyP5NenYrumzClzatEmPo0ABF1LoaFzduRncpcftgp8FrkAozs3gPEdkSOU4mRSYVkhjwaNAp4xQc9LpiGiQYinTVc9885ZN1-oRd-sHqnMwS27W3STa5740q23OvX6Ac__VBc2Sm9UnpQTOJ5smYHy6Q2Y7vgbbLf5EUg3KIUOGPyMLl6DFoh6bwkZaBht1oj6JPi3VTFEJcT2s7CAqVHpnKUNzxpdDE-qQcVRRcT3p1hxTb8JLDEv-dw7OWyM3J8fVhn7UsDcwlXFXMOojYbKqMdFbZzHOljJVpbJXhVosQFU5HAQ5wDo0STisvIst9FhvlY235MpkYlkO_QqhPZQCNUAiELUxCprXwitvMQFhlFI9XCe9GJ3cthDkyaTzkcYd02nZkjh2ZNx25Sti71FMD4fHL_frjwOdVvXUSGp6TnP8kuvZ30W0y1b--vMgvTgfn62Qarog6KzjdIBPV88hvgu9T2a16dr8B4DD1MA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66gnjxLa7PHDzoIWvbtEl6lNXF5yKo4K0kaYKgbkW6F3-9M33IKqigh0KhnTbNY-abdOYbQvaU0Dq0PGFBHkYsVj5nOlCORakV3AbSmKqKwtVQnN7F5_fJ_UQWP4ZVog_ta6KISlfj4n7JfRsRdwhmGkCDkBiYxXtIyBaJaTIjkDsckziCYauLY8DnVcI0SDAUaZPnvnnKJ-P0ibp0wugMFohum1vHmjz2xqXp2bcvTI7_-Z5FMt8gUnpUT6ElMuVGy2ShrfZAm8W_QvJhMUKi8GeswWXpCeiGOu2RFp76_eCAIqLFrCkKDq6jlRUEdUqPdakp7vdSaGF1UoxLCsCT3jxggW14Sb_AP-fwrFVyNzi57Z-ypkYDsxGXJTMW_DUTSy2skSZ1XEptRBwaqblRiQ9yqwIPB0BDLROrpEsCw10aaulCZfga6YyKkVsn1MXCgz7IEyQtjHyqVOIkN6kGp0pLHnYJbwcnsw2BOdbReMrClue06cgMOzKrO7JL2IfUS03g8cv9anLcs7LaOPF1lZOM_yS68XfRXTJ7fTzILs-GF5tkDi4kVUhwvEU65evYbQPwKc1ONbffAdf889Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+Estimation+of+f+%280%29+Applying+Line+Transect+Data+with+and+without+the+Shoulder+Condition&rft.jtitle=Journal+of+information+%26+optimization+sciences&rft.au=Eidous%2C+Omar+M.&rft.date=2015-07-04&rft.issn=0252-2667&rft.eissn=2169-0103&rft.volume=36&rft.issue=4&rft.spage=301&rft.epage=315&rft_id=info:doi/10.1080%2F02522667.2013.867726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02522667_2013_867726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0252-2667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0252-2667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0252-2667&client=summon