Highly strained Ge nanostructures and direct bandgap transition induced by femtosecond laser

Germanium (Ge), characterized by its indirect bandgap energy of 0.66 eV, faces limitations in optoelectronic applications. However, applying strain transforms Ge into a direct bandgap semiconductor, potentially broadening its technological utility. This study investigates the effects of intense femt...

Full description

Saved in:
Bibliographic Details
Published inSemiconductor science and technology Vol. 40; no. 4; pp. 45013 - 45022
Main Author Liu, Xiaolong
Format Journal Article
LanguageEnglish
Published IOP Publishing 30.04.2025
Subjects
Online AccessGet full text
ISSN0268-1242
1361-6641
DOI10.1088/1361-6641/adc596

Cover

Loading…
Abstract Germanium (Ge), characterized by its indirect bandgap energy of 0.66 eV, faces limitations in optoelectronic applications. However, applying strain transforms Ge into a direct bandgap semiconductor, potentially broadening its technological utility. This study investigates the effects of intense femtosecond (fs) laser irradiation on crystalline Ge to induce such strain and examine its consequent structural and electronic alterations. Employing micro-Raman spectroscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD), and spectrophotometric analyses, we aim to elucidate the underlying mechanisms of strain-induced transformations. Our findings reveal a maximum Raman shift of up to 10.5 cm −1 , indicative of significant localized tensile strain. TEM analysis shows polycrystalline structures with rich defects, corroborating Raman data and suggesting strained nanostructures. XRD results point to anisotropic type of strain, which could facilitate the transition towards a direct bandgap semiconductor compared to uniaxial or biaxial strain. Optical measurements further indicate bandgap enlargement to 0.78 eV, close to the direct transition energy at 0.8 eV. These comprehensive analyses demonstrate that fs laser irradiation can effectively induce strains to transform Ge, thereby enhancing its application potential in photonic and optoelectronic devices.
AbstractList Germanium (Ge), characterized by its indirect bandgap energy of 0.66 eV, faces limitations in optoelectronic applications. However, applying strain transforms Ge into a direct bandgap semiconductor, potentially broadening its technological utility. This study investigates the effects of intense femtosecond (fs) laser irradiation on crystalline Ge to induce such strain and examine its consequent structural and electronic alterations. Employing micro-Raman spectroscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD), and spectrophotometric analyses, we aim to elucidate the underlying mechanisms of strain-induced transformations. Our findings reveal a maximum Raman shift of up to 10.5 cm −1 , indicative of significant localized tensile strain. TEM analysis shows polycrystalline structures with rich defects, corroborating Raman data and suggesting strained nanostructures. XRD results point to anisotropic type of strain, which could facilitate the transition towards a direct bandgap semiconductor compared to uniaxial or biaxial strain. Optical measurements further indicate bandgap enlargement to 0.78 eV, close to the direct transition energy at 0.8 eV. These comprehensive analyses demonstrate that fs laser irradiation can effectively induce strains to transform Ge, thereby enhancing its application potential in photonic and optoelectronic devices.
Author Liu, Xiaolong
Author_xml – sequence: 1
  givenname: Xiaolong
  orcidid: 0000-0002-1976-492X
  surname: Liu
  fullname: Liu, Xiaolong
  organization: Aalto University Department of Electronics and Nanoengineering, 02150 Espoo, Finland
BookMark eNp1kL9LAzEcxYNUsK3ujtlcPJtvkt7lRinaCgUX3YSQS3I1pU2O5G7of2-OFiedvj947_H4zNDEB28RugfyBESIBbASirLksFBGL-vyCk1_XxM0JbQUBVBOb9AspT0hAIKRKfrauN334YRTH5Xz1uC1xV75kO9B90O0CStvsHHR6h43ed-pDmexT653wWPnzaCzrznh1h77kKwO2XBQycZbdN2qQ7J3lzlHn68vH6tNsX1fv62et4WmrOqLWmkmrBVNRenYq9S6aYA2S05ZzYmqVdVqqBhwBQxYy42oKyFM21htOC3ZHJFzro4hpWhb2UV3VPEkgciRjhxRyBGFPNPJloezxYVO7sMQfS4oU-olJ5JLwpcEmOxMm5WPfyj_Df4BZCd2iQ
CODEN SSTEET
Cites_doi 10.1021/nn404739b
10.1088/0268-1242/22/7/012
10.3389/fmats.2015.00052
10.1063/1.1993749
10.1109/SUM48717.2021.9505709
10.1063/5.0158262
10.1063/1.3601356
10.1063/1.4953788
10.1109/PVSC.2011.6185890
10.1143/JJAP.44.5278
10.1002/pssr.201307079
10.1021/acs.jpcc.0c07686
10.5281/zenodo.15082448
10.1038/s41578-020-00262-z
10.1103/PhysRevB.89.165201
10.1107/S1600576717006793
10.1364/OME.545692
10.1038/nphoton.2010.157
10.1063/1.4974202
10.3389/fphy.2014.00057
10.1088/1361-648X/aad0c0
10.1143/JJAP.50.04DP08
10.1146/annurev.ms.25.080195.001255
10.1116/1.5129685
10.1364/OME.9.004165
10.1177/0954405413492322
10.1063/1.2753737
10.1016/S0925-3467(98)00052-4
10.1017/S1431927622012272
10.1063/1.2037200
10.1016/j.phpro.2011.03.102
10.1007/BF02711181
10.1002/adpr.202000159
10.1063/1.3633528
10.1016/S0038-1098(00)00259-3
10.1364/OE.432324
10.1002/latj.201500011
10.1109/JSTQE.2009.2027445
10.1021/acsami.1c03700
10.1063/1.349403
10.1007/s00170-016-9749-z
10.1016/j.mssp.2023.107516
10.1021/acs.nanolett.5b03976
10.1038/nphoton.2013.67
10.1038/s41467-024-44916-w
10.1134/S1063782624601535
10.1088/0957-4484/18/19/195302
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOI 10.1088/1361-6641/adc596
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-6641
ExternalDocumentID 10_1088_1361_6641_adc596
sstadc596
GrantInformation_xml – fundername: Research Council of Finland
  grantid: 346529; 354199
  funderid: http://dx.doi.org/10.13039/501100002341
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAHTB
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABPEJ
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
E.-
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
PZZ
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TSCCA
TWZ
W28
XPP
ZMT
AAYXX
CITATION
ID FETCH-LOGICAL-c237t-9ac38ee8b72201186ccbb12b5423940a9a7fc17314a1313f4d89788dfbecd4263
IEDL.DBID O3W
ISSN 0268-1242
IngestDate Tue Jul 01 05:16:37 EDT 2025
Thu Apr 10 06:54:56 EDT 2025
Thu Apr 10 06:54:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c237t-9ac38ee8b72201186ccbb12b5423940a9a7fc17314a1313f4d89788dfbecd4263
Notes SST-110750.R1
ORCID 0000-0002-1976-492X
OpenAccessLink https://iopscience.iop.org/article/10.1088/1361-6641/adc596
PageCount 10
ParticipantIDs crossref_primary_10_1088_1361_6641_adc596
iop_journals_10_1088_1361_6641_adc596
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-30
PublicationDateYYYYMMDD 2025-04-30
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-30
  day: 30
PublicationDecade 2020
PublicationTitle Semiconductor science and technology
PublicationTitleAbbrev SST
PublicationTitleAlternate Semicond. Sci. Technol
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Hoshina (sstadc596bib13) 2011; 50
Klinger (sstadc596bib35) 2017; 50
Le Harzic (sstadc596bib39) 2011; 12
Nayak (sstadc596bib40) 2007; 18
Shu (sstadc596bib5) 2024; 58
Geiger (sstadc596bib16) 2015; 2
Michel (sstadc596bib2) 2010; 4
Gassenq (sstadc596bib46) 2017; 121
Qi (sstadc596bib9) 2018; 30
Liu (sstadc596bib36) 2025
Smith (sstadc596bib29) 2011; 110
Soref (sstadc596bib18) 1991; 70
Saputro (sstadc596bib25) 2023; 162
Salihoglu (sstadc596bib31) 2011; 109
Siegal (sstadc596bib26) 1995; 25
Kumar (sstadc596bib37) 1999; 12
Taylor (sstadc596bib41) 2019; 9
Moontragoon (sstadc596bib19) 2007; 22
Liu (sstadc596bib33) 2025; 15
Sun (sstadc596bib8) 2010; 16
Mellaerts (sstadc596bib17) 2021; 13
Fuse (sstadc596bib47) 2015; 12
Eckhardt (sstadc596bib20) 2014; 89
Liu (sstadc596bib22) 2005; 87
Süess (sstadc596bib3) 2013; 7
Petykiewicz (sstadc596bib4) 2016; 16
Joshi (sstadc596bib38) 2003; 26
Tani (sstadc596bib7) 2021; 29
Newbury (sstadc596bib34) 2022; 28
Yuan (sstadc596bib24) 2024; 15
Zhang (sstadc596bib45) 2000; 115
Liu (sstadc596bib6) 2005; 87
Boztug (sstadc596bib10) 2014; 8
Nakamura (sstadc596bib21) 2007; 91
Vadavalli (sstadc596bib44) 2014; 2
Manickam (sstadc596bib32) 2013; 227
Reza Md (sstadc596bib11) 2021
Stehouwer (sstadc596bib15) 2023; 123
Emminger (sstadc596bib1) 2020; 38
Scappucci (sstadc596bib14) 2020; 6
Xuan (sstadc596bib28) 2020; 124
Li (sstadc596bib42) 2017; 91
Aktas (sstadc596bib27) 2021; 2
Jeoung (sstadc596bib30) 2005; 44
Gassenq (sstadc596bib23) 2016; 108
Williams (sstadc596bib43) 2013; 7
Hoshina (sstadc596bib12) 2011
References_xml – volume: 8
  start-page: 3136
  year: 2014
  ident: sstadc596bib10
  article-title: Strained-germanium nanostructures for infrared photonics
  publication-title: ACS Nano
  doi: 10.1021/nn404739b
– volume: 22
  start-page: 742
  year: 2007
  ident: sstadc596bib19
  article-title: Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/22/7/012
– volume: 2
  start-page: 52
  year: 2015
  ident: sstadc596bib16
  article-title: Group IV direct band gap photonics: methods, challenges, and opportunities
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2015.00052
– volume: 87
  year: 2005
  ident: sstadc596bib6
  article-title: Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1993749
– start-page: 1
  year: 2021
  ident: sstadc596bib11
  article-title: Mid-IR gain of tensile germanium waveguide lasers with SiNx stress liners
  doi: 10.1109/SUM48717.2021.9505709
– volume: 123
  year: 2023
  ident: sstadc596bib15
  article-title: Germanium wafers for strained quantum wells with low disorder
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0158262
– volume: 109
  year: 2011
  ident: sstadc596bib31
  article-title: Femtosecond laser crystallization of amorphous Ge
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3601356
– volume: 108
  year: 2016
  ident: sstadc596bib23
  article-title: Accurate strain measurements in highly strained Ge microbridges
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4953788
– start-page: 000242
  year: 2011
  ident: sstadc596bib12
  article-title: Evaluation of band gap narrowing of a tensile-strained Ge on InxGa1−xAs and its transfer onto glass substrate for solar cell applications
  doi: 10.1109/PVSC.2011.6185890
– volume: 44
  start-page: 5278
  year: 2005
  ident: sstadc596bib30
  article-title: Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.44.5278
– volume: 7
  start-page: 355
  year: 2013
  ident: sstadc596bib43
  article-title: Hexagonal germanium formed via a pressure‐induced phase transformation of amorphous germanium under controlled nanoindentation
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssr.201307079
– volume: 124
  start-page: 27089
  year: 2020
  ident: sstadc596bib28
  article-title: Pressure-induced phase transitions in nanostructured silicon
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c07686
– year: 2025
  ident: sstadc596bib36
  article-title: Dataset for “Highly strained Ge nanostructures and direct bandgap transition induced by femtosecond laser”
  publication-title: Zenodo
  doi: 10.5281/zenodo.15082448
– volume: 6
  start-page: 926
  year: 2020
  ident: sstadc596bib14
  article-title: The germanium quantum information route
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00262-z
– volume: 89
  year: 2014
  ident: sstadc596bib20
  article-title: Indirect-to-direct gap transition in strained and unstrained SnxGe1−x alloys
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.165201
– volume: 50
  start-page: 1226
  year: 2017
  ident: sstadc596bib35
  article-title: More features, more tools, more CrysTBox
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576717006793
– volume: 15
  start-page: 247
  year: 2025
  ident: sstadc596bib33
  article-title: Fs-laser significantly enhances both above- and below-bandgap absorption in germanium
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.545692
– volume: 4
  start-page: 527
  year: 2010
  ident: sstadc596bib2
  article-title: High-performance Ge-on-Si photodetectors
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.157
– volume: 121
  year: 2017
  ident: sstadc596bib46
  article-title: Raman-strain relations in highly strained Ge: Uniaxial 〈100〉, 〈110〉 and biaxial (001) stress
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4974202
– volume: 2
  start-page: 57
  year: 2014
  ident: sstadc596bib44
  article-title: Optical properties of germanium nanoparticles synthesized by pulsed laser ablation in acetone
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2014.00057
– volume: 30
  year: 2018
  ident: sstadc596bib9
  article-title: Strained germanium nanowire optoelectronic devices for photonic-integrated circuits
  publication-title: J. Phys.
  doi: 10.1088/1361-648X/aad0c0
– volume: 50
  start-page: 04DP08
  year: 2011
  ident: sstadc596bib13
  article-title: Numerical analysis of a solar cell with tensile-strained Ge as a novel narrow-band-gap absorber
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.50.04DP08
– volume: 25
  start-page: 223
  year: 1995
  ident: sstadc596bib26
  article-title: Laser-induced phase transitions in semiconductors
  publication-title: Annu. Rev. Mater. Sci.
  doi: 10.1146/annurev.ms.25.080195.001255
– volume: 38
  year: 2020
  ident: sstadc596bib1
  article-title: Temperature dependent dielectric function and direct bandgap of Ge
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.5129685
– volume: 9
  start-page: 4165
  year: 2019
  ident: sstadc596bib41
  article-title: Femtosecond laser polishing of germanium [Invited]
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.9.004165
– volume: 227
  start-page: 1714
  year: 2013
  ident: sstadc596bib32
  article-title: Laser–material interaction and grooving performance in ultrafast laser ablation of crystalline germanium under ambient conditions
  publication-title: Proc. Inst. Mech. Eng. B
  doi: 10.1177/0954405413492322
– volume: 91
  year: 2007
  ident: sstadc596bib21
  article-title: Quantum-confinement effect in individual Ge1−xSnx quantum dots on Si(111) substrates covered with ultrathin SiO2 films using scanning tunneling spectroscopy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2753737
– volume: 12
  start-page: 115
  year: 1999
  ident: sstadc596bib37
  article-title: Band gap determination in thick films from reflectance measurements
  publication-title: Opt. Mater.
  doi: 10.1016/S0925-3467(98)00052-4
– volume: 28
  start-page: 1905
  year: 2022
  ident: sstadc596bib34
  article-title: Energy-dispersive x-ray spectrum simulation with NIST DTSA-II: comparing simulated and measured electron-excited spectra
  publication-title: Microsc. Microanal.
  doi: 10.1017/S1431927622012272
– volume: 87
  year: 2005
  ident: sstadc596bib22
  article-title: High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2037200
– volume: 12
  start-page: 29
  year: 2011
  ident: sstadc596bib39
  article-title: Formation of periodic nanoripples on silicon and germanium induced by femtosecond laser pulses
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2011.03.102
– volume: 26
  start-page: 387
  year: 2003
  ident: sstadc596bib38
  article-title: Band gap determination of Ni-Zn ferrites
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/BF02711181
– volume: 2
  year: 2021
  ident: sstadc596bib27
  article-title: Laser thermal processing of group IV semiconductors for integrated photonic systems
  publication-title: Adv. Photonics Res.
  doi: 10.1002/adpr.202000159
– volume: 110
  year: 2011
  ident: sstadc596bib29
  article-title: Pressure-induced phase transformations during femtosecond-laser doping of silicon
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3633528
– volume: 115
  start-page: 657
  year: 2000
  ident: sstadc596bib45
  article-title: Formation of hexagonal-wurtzite germanium by pulsed laser ablation
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(00)00259-3
– volume: 29
  year: 2021
  ident: sstadc596bib7
  article-title: On-chip optical interconnection using integrated germanium light emitters and photodetectors
  publication-title: Opt. Express
  doi: 10.1364/OE.432324
– volume: 12
  start-page: 19
  year: 2015
  ident: sstadc596bib47
  article-title: Beam shaping for advanced laser materials processing
  publication-title: Laser Tech. J.
  doi: 10.1002/latj.201500011
– volume: 16
  start-page: 124
  year: 2010
  ident: sstadc596bib8
  article-title: Toward a germanium laser for integrated silicon photonics
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2009.2027445
– volume: 13
  start-page: 30941
  year: 2021
  ident: sstadc596bib17
  article-title: Efficient direct band-gap transition in germanium by three-dimensional strain
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c03700
– volume: 70
  start-page: 2470
  year: 1991
  ident: sstadc596bib18
  article-title: Optical band gap of the ternary semiconductor Si1−x−yGexCy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.349403
– volume: 91
  start-page: 213
  year: 2017
  ident: sstadc596bib42
  article-title: Subsurface deformation of germanium in ultra-precision cutting: characterization of micro-Raman spectroscopy
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-9749-z
– volume: 162
  year: 2023
  ident: sstadc596bib25
  article-title: Highly strained and heavily doped germanium thin films by non-equilibrium high-speed CW laser annealing for optoelectronic applications
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2023.107516
– volume: 16
  start-page: 2168
  year: 2016
  ident: sstadc596bib4
  article-title: Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03976
– volume: 7
  start-page: 466
  year: 2013
  ident: sstadc596bib3
  article-title: Analysis of enhanced light emission from highly strained germanium microbridges
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2013.67
– volume: 15
  start-page: 618
  year: 2024
  ident: sstadc596bib24
  article-title: Direct bandgap emission from strain-doped germanium
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-44916-w
– volume: 58
  start-page: 669
  year: 2024
  ident: sstadc596bib5
  article-title: Strained germanium LED with SiN stressor and microbridge based on edge stress concentration
  publication-title: Semiconductors
  doi: 10.1134/S1063782624601535
– volume: 18
  year: 2007
  ident: sstadc596bib40
  article-title: Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/19/195302
SSID ssj0011830
Score 2.4367044
Snippet Germanium (Ge), characterized by its indirect bandgap energy of 0.66 eV, faces limitations in optoelectronic applications. However, applying strain transforms...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 45013
SubjectTerms direct bandgap
femtosecond laser
germanium
Raman spectroscopy
strain engineering
Title Highly strained Ge nanostructures and direct bandgap transition induced by femtosecond laser
URI https://iopscience.iop.org/article/10.1088/1361-6641/adc596
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8QwEB1cRdCD-Inrx5KDHjzU3TRtk-JJxHUVdD0oehBCvupF22LrwX_vpK2Lgoi3HEJbXtK-eZnpG4ADjRSnjaIBC1ODAkXbIA25DhIbens3akfaH-hf3yST--jqMX6cg5PZvzBF2X36j3HYGgW3EHYFcWJIWUKDJInoUFkTp0kPFphIhK_nm7KHWQoB92p3wIIyCYmoy1H-doUfnNTD-36jmPEqrHSxITltn2QN5ly-DsvfHAPXYbGp2DTVBjz5Co2XD1I1TR6cJReO5CovWkPYd1TRROWWtJRFNI6fVUlqT01NlRZBMY7Laon-IJl7rYvKS2NLMJp2b5twPz6_O5sEXauEwISM10GqDBPOCc1Dz-giMUZrGuo4alqfq1TxzFDOaKQooyyLrED5KGyGS2i9Z_sWzOdF7raBRJliWvDMhdSi-FLKjEwccx47re3I8D4cfYEly9YRQzaZbCGkB1Z6YGULbB8OEU3ZvRbVH_PIj3lVVctoJCOJASfGqLK02c4_L7ULS6Fv0dskfPZgHkF3-xg31HoAvcvp7aDZJZ9UnrzQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoEQgGBAVEeXqAgSE0jpPYGRFQyqswUNEByfIrLJBUJAz995yTgKiEEJsHy4k-X_Ld5zvfIXSogOKUlsSjQaJBoCjjJQFTXmwCV96NGF-5A_27YTwYhdfjaNz0Oa3uwuST5td_AsO6UHANYZMQx3uExsSL45D0pNFREvcmJm2h-YgCmYJB39On7zAC2GtzyAJSCcioiVP-tsoML7Xg2T9opr-KVhr_EJ_Wb7OG5mzWQcs_qgZ20EKVtamLdfTssjRep7ioGj1Ygy8tzmSW10VhP0BJY5kZXNMWVjB-kRNcOnqqMrUwCHLYWoPVFKf2rcwLJ48NBo_avm-gUf_i8WzgNe0SPB1QVnqJ1JRbyxULHKvzWGulSKCisGp_LhPJUk0YJaEklNA0NBwkJDcpbKNxdds3UTvLM7uFcJhKqjhLbUAMCDApta-jiLHIKmV8zbro-AssMamrYogqms25cMAKB6yoge2iI0BTNJ9G8cc8PDOvKEoR-iIU4HSCnypgl7f_udQBWnw474vbq-HNDloKXMfeKv6zi9qAv90DN6JU-5WpfAK6OL-_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+strained+Ge+nanostructures+and+direct+bandgap+transition+induced+by+femtosecond+laser&rft.jtitle=Semiconductor+science+and+technology&rft.au=Liu%2C+Xiaolong&rft.date=2025-04-30&rft.issn=0268-1242&rft.eissn=1361-6641&rft.volume=40&rft.issue=4&rft.spage=45013&rft_id=info:doi/10.1088%2F1361-6641%2Fadc596&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6641_adc596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-1242&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-1242&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-1242&client=summon