Highly strained Ge nanostructures and direct bandgap transition induced by femtosecond laser
Germanium (Ge), characterized by its indirect bandgap energy of 0.66 eV, faces limitations in optoelectronic applications. However, applying strain transforms Ge into a direct bandgap semiconductor, potentially broadening its technological utility. This study investigates the effects of intense femt...
Saved in:
Published in | Semiconductor science and technology Vol. 40; no. 4; pp. 45013 - 45022 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
30.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0268-1242 1361-6641 |
DOI | 10.1088/1361-6641/adc596 |
Cover
Loading…
Abstract | Germanium (Ge), characterized by its indirect bandgap energy of 0.66 eV, faces limitations in optoelectronic applications. However, applying strain transforms Ge into a direct bandgap semiconductor, potentially broadening its technological utility. This study investigates the effects of intense femtosecond (fs) laser irradiation on crystalline Ge to induce such strain and examine its consequent structural and electronic alterations. Employing micro-Raman spectroscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD), and spectrophotometric analyses, we aim to elucidate the underlying mechanisms of strain-induced transformations. Our findings reveal a maximum Raman shift of up to 10.5 cm −1 , indicative of significant localized tensile strain. TEM analysis shows polycrystalline structures with rich defects, corroborating Raman data and suggesting strained nanostructures. XRD results point to anisotropic type of strain, which could facilitate the transition towards a direct bandgap semiconductor compared to uniaxial or biaxial strain. Optical measurements further indicate bandgap enlargement to 0.78 eV, close to the direct transition energy at 0.8 eV. These comprehensive analyses demonstrate that fs laser irradiation can effectively induce strains to transform Ge, thereby enhancing its application potential in photonic and optoelectronic devices. |
---|---|
AbstractList | Germanium (Ge), characterized by its indirect bandgap energy of 0.66 eV, faces limitations in optoelectronic applications. However, applying strain transforms Ge into a direct bandgap semiconductor, potentially broadening its technological utility. This study investigates the effects of intense femtosecond (fs) laser irradiation on crystalline Ge to induce such strain and examine its consequent structural and electronic alterations. Employing micro-Raman spectroscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD), and spectrophotometric analyses, we aim to elucidate the underlying mechanisms of strain-induced transformations. Our findings reveal a maximum Raman shift of up to 10.5 cm −1 , indicative of significant localized tensile strain. TEM analysis shows polycrystalline structures with rich defects, corroborating Raman data and suggesting strained nanostructures. XRD results point to anisotropic type of strain, which could facilitate the transition towards a direct bandgap semiconductor compared to uniaxial or biaxial strain. Optical measurements further indicate bandgap enlargement to 0.78 eV, close to the direct transition energy at 0.8 eV. These comprehensive analyses demonstrate that fs laser irradiation can effectively induce strains to transform Ge, thereby enhancing its application potential in photonic and optoelectronic devices. |
Author | Liu, Xiaolong |
Author_xml | – sequence: 1 givenname: Xiaolong orcidid: 0000-0002-1976-492X surname: Liu fullname: Liu, Xiaolong organization: Aalto University Department of Electronics and Nanoengineering, 02150 Espoo, Finland |
BookMark | eNp1kL9LAzEcxYNUsK3ujtlcPJtvkt7lRinaCgUX3YSQS3I1pU2O5G7of2-OFiedvj947_H4zNDEB28RugfyBESIBbASirLksFBGL-vyCk1_XxM0JbQUBVBOb9AspT0hAIKRKfrauN334YRTH5Xz1uC1xV75kO9B90O0CStvsHHR6h43ed-pDmexT653wWPnzaCzrznh1h77kKwO2XBQycZbdN2qQ7J3lzlHn68vH6tNsX1fv62et4WmrOqLWmkmrBVNRenYq9S6aYA2S05ZzYmqVdVqqBhwBQxYy42oKyFM21htOC3ZHJFzro4hpWhb2UV3VPEkgciRjhxRyBGFPNPJloezxYVO7sMQfS4oU-olJ5JLwpcEmOxMm5WPfyj_Df4BZCd2iQ |
CODEN | SSTEET |
Cites_doi | 10.1021/nn404739b 10.1088/0268-1242/22/7/012 10.3389/fmats.2015.00052 10.1063/1.1993749 10.1109/SUM48717.2021.9505709 10.1063/5.0158262 10.1063/1.3601356 10.1063/1.4953788 10.1109/PVSC.2011.6185890 10.1143/JJAP.44.5278 10.1002/pssr.201307079 10.1021/acs.jpcc.0c07686 10.5281/zenodo.15082448 10.1038/s41578-020-00262-z 10.1103/PhysRevB.89.165201 10.1107/S1600576717006793 10.1364/OME.545692 10.1038/nphoton.2010.157 10.1063/1.4974202 10.3389/fphy.2014.00057 10.1088/1361-648X/aad0c0 10.1143/JJAP.50.04DP08 10.1146/annurev.ms.25.080195.001255 10.1116/1.5129685 10.1364/OME.9.004165 10.1177/0954405413492322 10.1063/1.2753737 10.1016/S0925-3467(98)00052-4 10.1017/S1431927622012272 10.1063/1.2037200 10.1016/j.phpro.2011.03.102 10.1007/BF02711181 10.1002/adpr.202000159 10.1063/1.3633528 10.1016/S0038-1098(00)00259-3 10.1364/OE.432324 10.1002/latj.201500011 10.1109/JSTQE.2009.2027445 10.1021/acsami.1c03700 10.1063/1.349403 10.1007/s00170-016-9749-z 10.1016/j.mssp.2023.107516 10.1021/acs.nanolett.5b03976 10.1038/nphoton.2013.67 10.1038/s41467-024-44916-w 10.1134/S1063782624601535 10.1088/0957-4484/18/19/195302 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published by IOP Publishing Ltd |
Copyright_xml | – notice: 2025 The Author(s). Published by IOP Publishing Ltd |
DBID | O3W TSCCA AAYXX CITATION |
DOI | 10.1088/1361-6641/adc596 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-6641 |
ExternalDocumentID | 10_1088_1361_6641_adc596 sstadc596 |
GrantInformation_xml | – fundername: Research Council of Finland grantid: 346529; 354199 funderid: http://dx.doi.org/10.13039/501100002341 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAHTB AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABPEJ ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 E.- EBS EDWGO EMSAF EPQRW EQZZN IHE IJHAN IOP IZVLO KOT LAP N5L N9A O3W P2P PJBAE PZZ R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TSCCA TWZ W28 XPP ZMT AAYXX CITATION |
ID | FETCH-LOGICAL-c237t-9ac38ee8b72201186ccbb12b5423940a9a7fc17314a1313f4d89788dfbecd4263 |
IEDL.DBID | O3W |
ISSN | 0268-1242 |
IngestDate | Tue Jul 01 05:16:37 EDT 2025 Thu Apr 10 06:54:56 EDT 2025 Thu Apr 10 06:54:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c237t-9ac38ee8b72201186ccbb12b5423940a9a7fc17314a1313f4d89788dfbecd4263 |
Notes | SST-110750.R1 |
ORCID | 0000-0002-1976-492X |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-6641/adc596 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1088_1361_6641_adc596 iop_journals_10_1088_1361_6641_adc596 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-30 |
PublicationDateYYYYMMDD | 2025-04-30 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Semiconductor science and technology |
PublicationTitleAbbrev | SST |
PublicationTitleAlternate | Semicond. Sci. Technol |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Hoshina (sstadc596bib13) 2011; 50 Klinger (sstadc596bib35) 2017; 50 Le Harzic (sstadc596bib39) 2011; 12 Nayak (sstadc596bib40) 2007; 18 Shu (sstadc596bib5) 2024; 58 Geiger (sstadc596bib16) 2015; 2 Michel (sstadc596bib2) 2010; 4 Gassenq (sstadc596bib46) 2017; 121 Qi (sstadc596bib9) 2018; 30 Liu (sstadc596bib36) 2025 Smith (sstadc596bib29) 2011; 110 Soref (sstadc596bib18) 1991; 70 Saputro (sstadc596bib25) 2023; 162 Salihoglu (sstadc596bib31) 2011; 109 Siegal (sstadc596bib26) 1995; 25 Kumar (sstadc596bib37) 1999; 12 Taylor (sstadc596bib41) 2019; 9 Moontragoon (sstadc596bib19) 2007; 22 Liu (sstadc596bib33) 2025; 15 Sun (sstadc596bib8) 2010; 16 Mellaerts (sstadc596bib17) 2021; 13 Fuse (sstadc596bib47) 2015; 12 Eckhardt (sstadc596bib20) 2014; 89 Liu (sstadc596bib22) 2005; 87 Süess (sstadc596bib3) 2013; 7 Petykiewicz (sstadc596bib4) 2016; 16 Joshi (sstadc596bib38) 2003; 26 Tani (sstadc596bib7) 2021; 29 Newbury (sstadc596bib34) 2022; 28 Yuan (sstadc596bib24) 2024; 15 Zhang (sstadc596bib45) 2000; 115 Liu (sstadc596bib6) 2005; 87 Boztug (sstadc596bib10) 2014; 8 Nakamura (sstadc596bib21) 2007; 91 Vadavalli (sstadc596bib44) 2014; 2 Manickam (sstadc596bib32) 2013; 227 Reza Md (sstadc596bib11) 2021 Stehouwer (sstadc596bib15) 2023; 123 Emminger (sstadc596bib1) 2020; 38 Scappucci (sstadc596bib14) 2020; 6 Xuan (sstadc596bib28) 2020; 124 Li (sstadc596bib42) 2017; 91 Aktas (sstadc596bib27) 2021; 2 Jeoung (sstadc596bib30) 2005; 44 Gassenq (sstadc596bib23) 2016; 108 Williams (sstadc596bib43) 2013; 7 Hoshina (sstadc596bib12) 2011 |
References_xml | – volume: 8 start-page: 3136 year: 2014 ident: sstadc596bib10 article-title: Strained-germanium nanostructures for infrared photonics publication-title: ACS Nano doi: 10.1021/nn404739b – volume: 22 start-page: 742 year: 2007 ident: sstadc596bib19 article-title: Band structure calculations of Si–Ge–Sn alloys: achieving direct band gap materials publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/22/7/012 – volume: 2 start-page: 52 year: 2015 ident: sstadc596bib16 article-title: Group IV direct band gap photonics: methods, challenges, and opportunities publication-title: Front. Mater. doi: 10.3389/fmats.2015.00052 – volume: 87 year: 2005 ident: sstadc596bib6 article-title: Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications publication-title: Appl. Phys. Lett. doi: 10.1063/1.1993749 – start-page: 1 year: 2021 ident: sstadc596bib11 article-title: Mid-IR gain of tensile germanium waveguide lasers with SiNx stress liners doi: 10.1109/SUM48717.2021.9505709 – volume: 123 year: 2023 ident: sstadc596bib15 article-title: Germanium wafers for strained quantum wells with low disorder publication-title: Appl. Phys. Lett. doi: 10.1063/5.0158262 – volume: 109 year: 2011 ident: sstadc596bib31 article-title: Femtosecond laser crystallization of amorphous Ge publication-title: J. Appl. Phys. doi: 10.1063/1.3601356 – volume: 108 year: 2016 ident: sstadc596bib23 article-title: Accurate strain measurements in highly strained Ge microbridges publication-title: Appl. Phys. Lett. doi: 10.1063/1.4953788 – start-page: 000242 year: 2011 ident: sstadc596bib12 article-title: Evaluation of band gap narrowing of a tensile-strained Ge on InxGa1−xAs and its transfer onto glass substrate for solar cell applications doi: 10.1109/PVSC.2011.6185890 – volume: 44 start-page: 5278 year: 2005 ident: sstadc596bib30 article-title: Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.44.5278 – volume: 7 start-page: 355 year: 2013 ident: sstadc596bib43 article-title: Hexagonal germanium formed via a pressure‐induced phase transformation of amorphous germanium under controlled nanoindentation publication-title: Phys. Status Solidi doi: 10.1002/pssr.201307079 – volume: 124 start-page: 27089 year: 2020 ident: sstadc596bib28 article-title: Pressure-induced phase transitions in nanostructured silicon publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c07686 – year: 2025 ident: sstadc596bib36 article-title: Dataset for “Highly strained Ge nanostructures and direct bandgap transition induced by femtosecond laser” publication-title: Zenodo doi: 10.5281/zenodo.15082448 – volume: 6 start-page: 926 year: 2020 ident: sstadc596bib14 article-title: The germanium quantum information route publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00262-z – volume: 89 year: 2014 ident: sstadc596bib20 article-title: Indirect-to-direct gap transition in strained and unstrained SnxGe1−x alloys publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.165201 – volume: 50 start-page: 1226 year: 2017 ident: sstadc596bib35 article-title: More features, more tools, more CrysTBox publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576717006793 – volume: 15 start-page: 247 year: 2025 ident: sstadc596bib33 article-title: Fs-laser significantly enhances both above- and below-bandgap absorption in germanium publication-title: Opt. Mater. Express doi: 10.1364/OME.545692 – volume: 4 start-page: 527 year: 2010 ident: sstadc596bib2 article-title: High-performance Ge-on-Si photodetectors publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.157 – volume: 121 year: 2017 ident: sstadc596bib46 article-title: Raman-strain relations in highly strained Ge: Uniaxial 〈100〉, 〈110〉 and biaxial (001) stress publication-title: J. Appl. Phys. doi: 10.1063/1.4974202 – volume: 2 start-page: 57 year: 2014 ident: sstadc596bib44 article-title: Optical properties of germanium nanoparticles synthesized by pulsed laser ablation in acetone publication-title: Front. Phys. doi: 10.3389/fphy.2014.00057 – volume: 30 year: 2018 ident: sstadc596bib9 article-title: Strained germanium nanowire optoelectronic devices for photonic-integrated circuits publication-title: J. Phys. doi: 10.1088/1361-648X/aad0c0 – volume: 50 start-page: 04DP08 year: 2011 ident: sstadc596bib13 article-title: Numerical analysis of a solar cell with tensile-strained Ge as a novel narrow-band-gap absorber publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.50.04DP08 – volume: 25 start-page: 223 year: 1995 ident: sstadc596bib26 article-title: Laser-induced phase transitions in semiconductors publication-title: Annu. Rev. Mater. Sci. doi: 10.1146/annurev.ms.25.080195.001255 – volume: 38 year: 2020 ident: sstadc596bib1 article-title: Temperature dependent dielectric function and direct bandgap of Ge publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.5129685 – volume: 9 start-page: 4165 year: 2019 ident: sstadc596bib41 article-title: Femtosecond laser polishing of germanium [Invited] publication-title: Opt. Mater. Express doi: 10.1364/OME.9.004165 – volume: 227 start-page: 1714 year: 2013 ident: sstadc596bib32 article-title: Laser–material interaction and grooving performance in ultrafast laser ablation of crystalline germanium under ambient conditions publication-title: Proc. Inst. Mech. Eng. B doi: 10.1177/0954405413492322 – volume: 91 year: 2007 ident: sstadc596bib21 article-title: Quantum-confinement effect in individual Ge1−xSnx quantum dots on Si(111) substrates covered with ultrathin SiO2 films using scanning tunneling spectroscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.2753737 – volume: 12 start-page: 115 year: 1999 ident: sstadc596bib37 article-title: Band gap determination in thick films from reflectance measurements publication-title: Opt. Mater. doi: 10.1016/S0925-3467(98)00052-4 – volume: 28 start-page: 1905 year: 2022 ident: sstadc596bib34 article-title: Energy-dispersive x-ray spectrum simulation with NIST DTSA-II: comparing simulated and measured electron-excited spectra publication-title: Microsc. Microanal. doi: 10.1017/S1431927622012272 – volume: 87 year: 2005 ident: sstadc596bib22 article-title: High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform publication-title: Appl. Phys. Lett. doi: 10.1063/1.2037200 – volume: 12 start-page: 29 year: 2011 ident: sstadc596bib39 article-title: Formation of periodic nanoripples on silicon and germanium induced by femtosecond laser pulses publication-title: Phys. Proc. doi: 10.1016/j.phpro.2011.03.102 – volume: 26 start-page: 387 year: 2003 ident: sstadc596bib38 article-title: Band gap determination of Ni-Zn ferrites publication-title: Bull. Mater. Sci. doi: 10.1007/BF02711181 – volume: 2 year: 2021 ident: sstadc596bib27 article-title: Laser thermal processing of group IV semiconductors for integrated photonic systems publication-title: Adv. Photonics Res. doi: 10.1002/adpr.202000159 – volume: 110 year: 2011 ident: sstadc596bib29 article-title: Pressure-induced phase transformations during femtosecond-laser doping of silicon publication-title: J. Appl. Phys. doi: 10.1063/1.3633528 – volume: 115 start-page: 657 year: 2000 ident: sstadc596bib45 article-title: Formation of hexagonal-wurtzite germanium by pulsed laser ablation publication-title: Solid State Commun. doi: 10.1016/S0038-1098(00)00259-3 – volume: 29 year: 2021 ident: sstadc596bib7 article-title: On-chip optical interconnection using integrated germanium light emitters and photodetectors publication-title: Opt. Express doi: 10.1364/OE.432324 – volume: 12 start-page: 19 year: 2015 ident: sstadc596bib47 article-title: Beam shaping for advanced laser materials processing publication-title: Laser Tech. J. doi: 10.1002/latj.201500011 – volume: 16 start-page: 124 year: 2010 ident: sstadc596bib8 article-title: Toward a germanium laser for integrated silicon photonics publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2009.2027445 – volume: 13 start-page: 30941 year: 2021 ident: sstadc596bib17 article-title: Efficient direct band-gap transition in germanium by three-dimensional strain publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c03700 – volume: 70 start-page: 2470 year: 1991 ident: sstadc596bib18 article-title: Optical band gap of the ternary semiconductor Si1−x−yGexCy publication-title: J. Appl. Phys. doi: 10.1063/1.349403 – volume: 91 start-page: 213 year: 2017 ident: sstadc596bib42 article-title: Subsurface deformation of germanium in ultra-precision cutting: characterization of micro-Raman spectroscopy publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-9749-z – volume: 162 year: 2023 ident: sstadc596bib25 article-title: Highly strained and heavily doped germanium thin films by non-equilibrium high-speed CW laser annealing for optoelectronic applications publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2023.107516 – volume: 16 start-page: 2168 year: 2016 ident: sstadc596bib4 article-title: Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03976 – volume: 7 start-page: 466 year: 2013 ident: sstadc596bib3 article-title: Analysis of enhanced light emission from highly strained germanium microbridges publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.67 – volume: 15 start-page: 618 year: 2024 ident: sstadc596bib24 article-title: Direct bandgap emission from strain-doped germanium publication-title: Nat. Commun. doi: 10.1038/s41467-024-44916-w – volume: 58 start-page: 669 year: 2024 ident: sstadc596bib5 article-title: Strained germanium LED with SiN stressor and microbridge based on edge stress concentration publication-title: Semiconductors doi: 10.1134/S1063782624601535 – volume: 18 year: 2007 ident: sstadc596bib40 article-title: Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation publication-title: Nanotechnology doi: 10.1088/0957-4484/18/19/195302 |
SSID | ssj0011830 |
Score | 2.4367044 |
Snippet | Germanium (Ge), characterized by its indirect bandgap energy of 0.66 eV, faces limitations in optoelectronic applications. However, applying strain transforms... |
SourceID | crossref iop |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 45013 |
SubjectTerms | direct bandgap femtosecond laser germanium Raman spectroscopy strain engineering |
Title | Highly strained Ge nanostructures and direct bandgap transition induced by femtosecond laser |
URI | https://iopscience.iop.org/article/10.1088/1361-6641/adc596 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8QwEB1cRdCD-Inrx5KDHjzU3TRtk-JJxHUVdD0oehBCvupF22LrwX_vpK2Lgoi3HEJbXtK-eZnpG4ADjRSnjaIBC1ODAkXbIA25DhIbens3akfaH-hf3yST--jqMX6cg5PZvzBF2X36j3HYGgW3EHYFcWJIWUKDJInoUFkTp0kPFphIhK_nm7KHWQoB92p3wIIyCYmoy1H-doUfnNTD-36jmPEqrHSxITltn2QN5ly-DsvfHAPXYbGp2DTVBjz5Co2XD1I1TR6cJReO5CovWkPYd1TRROWWtJRFNI6fVUlqT01NlRZBMY7Laon-IJl7rYvKS2NLMJp2b5twPz6_O5sEXauEwISM10GqDBPOCc1Dz-giMUZrGuo4alqfq1TxzFDOaKQooyyLrED5KGyGS2i9Z_sWzOdF7raBRJliWvDMhdSi-FLKjEwccx47re3I8D4cfYEly9YRQzaZbCGkB1Z6YGULbB8OEU3ZvRbVH_PIj3lVVctoJCOJASfGqLK02c4_L7ULS6Fv0dskfPZgHkF3-xg31HoAvcvp7aDZJZ9UnrzQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoEQgGBAVEeXqAgSE0jpPYGRFQyqswUNEByfIrLJBUJAz995yTgKiEEJsHy4k-X_Ld5zvfIXSogOKUlsSjQaJBoCjjJQFTXmwCV96NGF-5A_27YTwYhdfjaNz0Oa3uwuST5td_AsO6UHANYZMQx3uExsSL45D0pNFREvcmJm2h-YgCmYJB39On7zAC2GtzyAJSCcioiVP-tsoML7Xg2T9opr-KVhr_EJ_Wb7OG5mzWQcs_qgZ20EKVtamLdfTssjRep7ioGj1Ygy8tzmSW10VhP0BJY5kZXNMWVjB-kRNcOnqqMrUwCHLYWoPVFKf2rcwLJ48NBo_avm-gUf_i8WzgNe0SPB1QVnqJ1JRbyxULHKvzWGulSKCisGp_LhPJUk0YJaEklNA0NBwkJDcpbKNxdds3UTvLM7uFcJhKqjhLbUAMCDApta-jiLHIKmV8zbro-AssMamrYogqms25cMAKB6yoge2iI0BTNJ9G8cc8PDOvKEoR-iIU4HSCnypgl7f_udQBWnw474vbq-HNDloKXMfeKv6zi9qAv90DN6JU-5WpfAK6OL-_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+strained+Ge+nanostructures+and+direct+bandgap+transition+induced+by+femtosecond+laser&rft.jtitle=Semiconductor+science+and+technology&rft.au=Liu%2C+Xiaolong&rft.date=2025-04-30&rft.issn=0268-1242&rft.eissn=1361-6641&rft.volume=40&rft.issue=4&rft.spage=45013&rft_id=info:doi/10.1088%2F1361-6641%2Fadc596&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6641_adc596 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-1242&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-1242&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-1242&client=summon |