Advancing Self-Supervised Learning for Building Change Detection and Damage Assessment: Unified Denoising Autoencoder and Contrastive Learning Framework
Building change detection and building damage assessment are two essential tasks in post-disaster analysis. Building change detection focuses on identifying changed building areas between bi-temporal images, while building damage assessment involves segmenting all buildings and classifying their dam...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 17; no. 15; p. 2717 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Building change detection and building damage assessment are two essential tasks in post-disaster analysis. Building change detection focuses on identifying changed building areas between bi-temporal images, while building damage assessment involves segmenting all buildings and classifying their damage severity. These tasks play a critical role in disaster response and urban development monitoring. Although supervised learning has significantly advanced building change detection and damage assessment, its reliance on large labeled datasets remains a major limitation. In contrast, self-supervised learning enables the extraction of meaningful data representations without explicit training labels. To address this challenge, we propose a self-supervised learning approach that unifies denoising autoencoders and contrastive learning, enabling effective data representation for building change detection and damage assessment. The proposed architecture integrates a dual denoising autoencoder with a Vision Transformer backbone and contrastive learning strategy, complemented by a Feature Pyramid Network-ResNet dual decoder and an Edge Guidance Module. This design enhances multi-scale feature extraction and enables edge-aware segmentation for accurate predictions. Extensive experiments were conducted on five public datasets, including xBD, LEVIR, LEVIR+, SYSU, and WHU, to evaluate the performance and generalization capabilities of the model. The results demonstrate that the proposed Denoising AutoEncoder-enhanced Dual-Fusion Network (DAEDFN) approach achieves competitive performance compared with fully supervised methods. On the xBD dataset, the largest dataset for building damage assessment, our proposed method achieves an F1 score of 0.892 for building segmentation, outperforming state-of-the-art methods. For building damage severity classification, the model achieves an F1 score of 0.632. On the building change detection datasets, the proposed method achieves F1 scores of 0.837 (LEVIR), 0.817 (LEVIR+), 0.768 (SYSU), and 0.876 (WHU), demonstrating model generalization across diverse scenarios. Despite these promising results, challenges remain in complex urban environments, small-scale changes, and fine-grained boundary detection. These findings highlight the potential of self-supervised learning in building change detection and damage assessment tasks. |
---|---|
AbstractList | Building change detection and building damage assessment are two essential tasks in post-disaster analysis. Building change detection focuses on identifying changed building areas between bi-temporal images, while building damage assessment involves segmenting all buildings and classifying their damage severity. These tasks play a critical role in disaster response and urban development monitoring. Although supervised learning has significantly advanced building change detection and damage assessment, its reliance on large labeled datasets remains a major limitation. In contrast, self-supervised learning enables the extraction of meaningful data representations without explicit training labels. To address this challenge, we propose a self-supervised learning approach that unifies denoising autoencoders and contrastive learning, enabling effective data representation for building change detection and damage assessment. The proposed architecture integrates a dual denoising autoencoder with a Vision Transformer backbone and contrastive learning strategy, complemented by a Feature Pyramid Network-ResNet dual decoder and an Edge Guidance Module. This design enhances multi-scale feature extraction and enables edge-aware segmentation for accurate predictions. Extensive experiments were conducted on five public datasets, including xBD, LEVIR, LEVIR+, SYSU, and WHU, to evaluate the performance and generalization capabilities of the model. The results demonstrate that the proposed Denoising AutoEncoder-enhanced Dual-Fusion Network (DAEDFN) approach achieves competitive performance compared with fully supervised methods. On the xBD dataset, the largest dataset for building damage assessment, our proposed method achieves an F1 score of 0.892 for building segmentation, outperforming state-of-the-art methods. For building damage severity classification, the model achieves an F1 score of 0.632. On the building change detection datasets, the proposed method achieves F1 scores of 0.837 (LEVIR), 0.817 (LEVIR+), 0.768 (SYSU), and 0.876 (WHU), demonstrating model generalization across diverse scenarios. Despite these promising results, challenges remain in complex urban environments, small-scale changes, and fine-grained boundary detection. These findings highlight the potential of self-supervised learning in building change detection and damage assessment tasks. |
Author | Huang, Qunying Wu, Meiliu Yang, Songxi Sui, Tang Peng, Bo |
Author_xml | – sequence: 1 givenname: Songxi orcidid: 0009-0004-4028-8608 surname: Yang fullname: Yang, Songxi – sequence: 2 givenname: Bo orcidid: 0000-0003-1514-6881 surname: Peng fullname: Peng, Bo – sequence: 3 givenname: Tang orcidid: 0009-0003-6685-2660 surname: Sui fullname: Sui, Tang – sequence: 4 givenname: Meiliu surname: Wu fullname: Wu, Meiliu – sequence: 5 givenname: Qunying orcidid: 0000-0003-3499-7294 surname: Huang fullname: Huang, Qunying |
BookMark | eNpNUU1vEzEQtVArUdpe-gtW4oa04M_Y5hYSCpUicWh7Xs3a4-CQ2MHeTcU_4eeyaRBlLvP15r2R3htylnJCQm4YfS-EpR9KZZoprpl-RS441byV3PKz_-rX5LrWDZ1CCGapvCC_5_4AycW0bu5xG9r7cY_lECv6ZoVQ0nERcmk-jXHrj83iO6Q1Nksc0A0xpwaSb5awg2k4rxVr3WEaPjaPKYY4sSwx5ViPl_NxyJhc9liejxY5DQXqEA_4onVbYIdPufy4IucBthWv_-ZL8nj7-WHxtV19-3K3mK9ax4XWreqV5EZaT2fOu1kIwQdvGBrnLAfsveu9RSoQlDUSvfG9dUoHS8Er0XNxSe5OvD7DptuXuIPyq8sQu-dBLusOyhDdFjvmnFIaFHNGSokBtOSKgQlhpntp7MT19sS1L_nniHXoNnksaXq_E3xyyFA1MxPq3QnlSq61YPinymh3NLJ7MVL8AUrOlPE |
Cites_doi | 10.3390/rs14215405 10.1109/JSTARS.2022.3152775 10.1080/17538947.2024.2302577 10.1109/ICCV.2017.324 10.1109/TGRS.2019.2956756 10.1016/j.isprsjprs.2022.02.021 10.3390/rs13245094 10.1109/JSTARS.2024.3416183 10.1109/ICPR.2010.579 10.1111/j.1467-8306.2004.09402009.x 10.1109/IGARSS46834.2022.9883139 10.1109/IGARSS46834.2022.9883686 10.1109/TGRS.2024.3417253 10.1007/s41095-022-0325-1 10.1126/science.228.4704.1147 10.1109/JSTARS.2022.3231348 10.1109/CVPR52688.2022.01553 10.3390/rs10010016 10.1109/TGRS.2018.2858817 10.1145/1390156.1390294 10.1109/CVPR52688.2022.02048 10.1109/CVPR42600.2020.00975 10.3390/rs14040957 10.1109/TGRS.2025.3579416 10.1016/j.rse.2024.114416 10.1016/j.isprsjprs.2024.07.001 10.1109/CVPR.2017.106 10.1109/CVPR52729.2023.00509 10.1109/IGARSS47720.2021.9554302 10.1109/MGRS.2020.3041450 10.1109/TGRS.2022.3221492 10.1007/978-3-319-67558-9_28 10.1016/j.rse.2021.112636 10.1109/MGRS.2022.3198244 10.1109/ICCV48922.2021.00950 10.1109/CVPRW53098.2021.00121 10.3390/rs15245670 10.1109/CVPR.2016.90 10.1109/TNNLS.2022.3172183 10.1109/JSTARS.2024.3354310 10.3390/rs12101662 10.1109/CVPR.2009.5206848 10.1109/JSTARS.2021.3077545 10.1155/2022/5008854 10.1109/4.996 10.1109/TNNLS.2021.3079627 10.1109/JSTARS.2024.3408604 10.1109/ICCV48922.2021.00951 10.1016/0034-4257(87)90015-0 10.1109/MGRS.2024.3412770 |
ContentType | Journal Article |
Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs17152717 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_1cc557a51c8444efa74251a8ff67b489 10_3390_rs17152717 |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c2377-5b542849d06cdc6fffdfd81e8cc92aebdcbd9e03ea5984ed8db9c57f90ad53b23 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 00:55:57 EDT 2025 Fri Aug 15 05:10:58 EDT 2025 Wed Aug 13 23:57:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2377-5b542849d06cdc6fffdfd81e8cc92aebdcbd9e03ea5984ed8db9c57f90ad53b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3499-7294 0000-0003-1514-6881 0009-0004-4028-8608 0009-0003-6685-2660 |
OpenAccessLink | https://www.proquest.com/docview/3239080568?pq-origsite=%requestingapplication% |
PQID | 3239080568 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1cc557a51c8444efa74251a8ff67b489 proquest_journals_3239080568 crossref_primary_10_3390_rs17152717 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wen (ref_49) 2022; 16 Zhang (ref_48) 2022; 60 Xie (ref_56) 2020; 33 ref_58 ref_57 He (ref_45) 2022; 15 ref_11 ref_55 ref_52 ref_51 ref_19 Shen (ref_25) 2021; 60 ref_18 Mei (ref_8) 2023; 9 ref_17 ref_16 ref_15 Vincent (ref_59) 2010; 11 Li (ref_6) 2024; 62 Yang (ref_43) 2021; 33 Alsabhan (ref_41) 2022; 2022 ref_61 Wu (ref_2) 2024; 12 Ji (ref_54) 2018; 57 ref_60 Wang (ref_12) 2022; 10 ref_69 Zheng (ref_5) 2021; 265 ref_23 ref_67 Liu (ref_47) 2024; 62 ref_21 Chen (ref_7) 2021; 60 ref_64 ref_62 ref_29 Kanopoulos (ref_63) 1988; 23 Cui (ref_28) 2024; 17 Grill (ref_14) 2020; 33 ref_27 Goetz (ref_65) 1985; 228 Chen (ref_46) 2022; 187 Chen (ref_70) 2019; 58 Luppino (ref_73) 2022; 35 Bai (ref_26) 2021; 60 ref_72 Han (ref_22) 2021; 9 ref_71 Chen (ref_1) 2024; 17 Woodcock (ref_66) 1987; 21 Shi (ref_53) 2021; 60 Zheng (ref_31) 2024; 215 ref_35 ref_34 Wang (ref_30) 2023; 61 ref_33 ref_75 ref_74 Liu (ref_13) 2021; 35 ref_39 ref_37 Tobler (ref_36) 2004; 94 Zhao (ref_32) 2024; 17 Lu (ref_10) 2024; 17 Song (ref_24) 2021; 14 ref_44 ref_42 Zheng (ref_76) 2024; 315 ref_40 Dharampal (ref_50) 2015; 4 ref_3 Zhang (ref_20) 2023; 61 ref_9 Li (ref_68) 2022; 60 ref_4 Wan (ref_38) 2025; 63 |
References_xml | – ident: ref_40 doi: 10.3390/rs14215405 – volume: 15 start-page: 2142 year: 2022 ident: ref_45 article-title: ForkNet: Strong semantic feature representation and subregion supervision for accurate remote sensing change detection publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3152775 – ident: ref_9 – volume: 62 start-page: 4403613 year: 2024 ident: ref_47 article-title: MutSimNet: Mutually reinforcing similarity learning for RS image change detection publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_55 – volume: 17 start-page: 2302577 year: 2024 ident: ref_32 article-title: Deep object segmentation and classification networks for building damage detection using the xBD dataset publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2024.2302577 – ident: ref_61 doi: 10.1109/ICCV.2017.324 – volume: 58 start-page: 2848 year: 2019 ident: ref_70 article-title: Change detection in multisource VHR images via deep siamese convolutional multiple-layers recurrent neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2956756 – volume: 187 start-page: 101 year: 2022 ident: ref_46 article-title: FCCDN: Feature constraint network for VHR image change detection publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.02.021 – ident: ref_52 doi: 10.3390/rs13245094 – volume: 17 start-page: 11563 year: 2024 ident: ref_1 article-title: Change Detection with Cross-Domain Remote Sensing Images: A Systematic Review publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2024.3416183 – ident: ref_58 doi: 10.1109/ICPR.2010.579 – volume: 94 start-page: 304 year: 2004 ident: ref_36 article-title: On the first law of geography: A reply publication-title: Ann. Assoc. Am. Geogr. doi: 10.1111/j.1467-8306.2004.09402009.x – ident: ref_27 doi: 10.1109/IGARSS46834.2022.9883139 – ident: ref_67 doi: 10.1109/IGARSS46834.2022.9883686 – ident: ref_11 doi: 10.1109/TGRS.2024.3417253 – volume: 9 start-page: 563 year: 2023 ident: ref_8 article-title: D2ANet: Difference-aware attention network for multi-level change detection from satellite imagery publication-title: Comput. Vis. Media doi: 10.1007/s41095-022-0325-1 – ident: ref_23 – volume: 228 start-page: 1147 year: 1985 ident: ref_65 article-title: Imaging spectrometry for earth remote sensing publication-title: Science doi: 10.1126/science.228.4704.1147 – volume: 60 start-page: 5610613 year: 2021 ident: ref_26 article-title: Edge-guided recurrent convolutional neural network for multitemporal remote sensing image building change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 60 start-page: 5604816 year: 2021 ident: ref_53 article-title: A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 33 start-page: 21271 year: 2020 ident: ref_14 article-title: Bootstrap your own latent-a new approach to self-supervised learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 16 start-page: 750 year: 2022 ident: ref_49 article-title: A Building Shape Vectorization Hierarchy From VHR Remote Sensing Imagery Combined DCNNs-Based Edge Detection and PCA-Based Corner Extraction publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2022.3231348 – ident: ref_19 doi: 10.1109/CVPR52688.2022.01553 – ident: ref_69 – ident: ref_71 doi: 10.3390/rs10010016 – volume: 57 start-page: 574 year: 2018 ident: ref_54 article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2858817 – ident: ref_35 doi: 10.1145/1390156.1390294 – ident: ref_4 doi: 10.1109/CVPR52688.2022.02048 – ident: ref_16 doi: 10.1109/CVPR42600.2020.00975 – ident: ref_44 doi: 10.3390/rs14040957 – volume: 63 start-page: 5630116 year: 2025 ident: ref_38 article-title: A Self-Supervised Learning Pretraining Framework for Remote Sensing Image Change Detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2025.3579416 – volume: 60 start-page: 5607514 year: 2021 ident: ref_7 article-title: Remote sensing image change detection with transformers publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 61 start-page: 5607114 year: 2023 ident: ref_30 article-title: A hierarchical decoder architecture for multilevel fine-grained disaster detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 315 start-page: 114416 year: 2024 ident: ref_76 article-title: Towards transferable building damage assessment via unsupervised single-temporal change adaptation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114416 – volume: 215 start-page: 239 year: 2024 ident: ref_31 article-title: Unifying remote sensing change detection via deep probabilistic change models: From principles, models to applications publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2024.07.001 – ident: ref_42 doi: 10.1109/CVPR.2017.106 – ident: ref_72 doi: 10.1109/CVPR52729.2023.00509 – ident: ref_3 doi: 10.1109/IGARSS47720.2021.9554302 – volume: 9 start-page: 8 year: 2021 ident: ref_22 article-title: Methods for small, weak object detection in optical high-resolution remote sensing images: A survey of advances and challenges publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2020.3041450 – ident: ref_34 – volume: 60 start-page: 5224713 year: 2022 ident: ref_48 article-title: SwinSUNet: Pure transformer network for remote sensing image change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3221492 – volume: 35 start-page: 857 year: 2021 ident: ref_13 article-title: Self-supervised learning: Generative or contrastive publication-title: IEEE Trans. Knowl. Data Eng. – ident: ref_62 doi: 10.1007/978-3-319-67558-9_28 – volume: 265 start-page: 112636 year: 2021 ident: ref_5 article-title: Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112636 – volume: 10 start-page: 213 year: 2022 ident: ref_12 article-title: Self-supervised learning in remote sensing: A review publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2022.3198244 – ident: ref_17 doi: 10.1109/ICCV48922.2021.00950 – ident: ref_74 doi: 10.1109/CVPRW53098.2021.00121 – ident: ref_37 doi: 10.3390/rs15245670 – ident: ref_39 doi: 10.1109/CVPR.2016.90 – volume: 33 start-page: 20320 year: 2020 ident: ref_56 article-title: Noise2same: Optimizing a self-supervised bound for image denoising publication-title: Adv. Neural Inf. Process. Syst. – volume: 35 start-page: 60 year: 2022 ident: ref_73 article-title: Code-aligned autoencoders for unsupervised change detection in multimodal remote sensing images publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3172183 – volume: 17 start-page: 4917 year: 2024 ident: ref_10 article-title: Bi-temporal attention transformer for building change detection and building damage assessment publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2024.3354310 – volume: 60 start-page: 5402114 year: 2021 ident: ref_25 article-title: Bdanet: Multiscale convolutional neural network with cross-directional attention for building damage assessment from satellite images publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_51 doi: 10.3390/rs12101662 – ident: ref_21 doi: 10.1109/CVPR.2009.5206848 – volume: 14 start-page: 4816 year: 2021 ident: ref_24 article-title: AGCDetNet: An attention-guided network for building change detection in high-resolution remote sensing images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3077545 – volume: 62 start-page: 5628213 year: 2024 ident: ref_6 article-title: IDA-SiamNet: Interactive-and Dynamic-Aware Siamese Network for Building Change Detection publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_75 – ident: ref_29 – ident: ref_33 – volume: 4 start-page: 2332-0796 year: 2015 ident: ref_50 article-title: Methods of image edge detection: A review publication-title: J. Electr. Electron. Syst – volume: 2022 start-page: 5008854 year: 2022 ident: ref_41 article-title: Automatic building extraction on satellite images using Unet and ResNet50 publication-title: Comput. Intell. Neurosci. doi: 10.1155/2022/5008854 – volume: 60 start-page: 5622519 year: 2022 ident: ref_68 article-title: TransUNetCD: A hybrid transformer network for change detection in optical remote-sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 23 start-page: 358 year: 1988 ident: ref_63 article-title: Design of an image edge detection filter using the Sobel operator publication-title: IEEE J. Solid-State Circuits doi: 10.1109/4.996 – volume: 33 start-page: 6402 year: 2021 ident: ref_43 article-title: DPFL-Nets: Deep pyramid feature learning networks for multiscale change detection publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3079627 – ident: ref_15 – ident: ref_64 – volume: 11 start-page: 3371 year: 2010 ident: ref_59 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: ref_60 – volume: 17 start-page: 11402 year: 2024 ident: ref_28 article-title: U-Shaped CNN-ViT Siamese Network With Learnable Mask Guidance for Remote Sensing Building Change Detection publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2024.3408604 – ident: ref_18 doi: 10.1109/ICCV48922.2021.00951 – ident: ref_57 – volume: 61 start-page: 5402711 year: 2023 ident: ref_20 article-title: Self-supervised pretraining via multimodality images with transformer for change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 21 start-page: 311 year: 1987 ident: ref_66 article-title: The factor of scale in remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(87)90015-0 – volume: 12 start-page: 305 year: 2024 ident: ref_2 article-title: UNet-Like Remote Sensing Change Detection: A review of current models and research directions publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2024.3412770 |
SSID | ssj0000331904 |
Score | 2.4036155 |
Snippet | Building change detection and building damage assessment are two essential tasks in post-disaster analysis. Building change detection focuses on identifying... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 2717 |
SubjectTerms | Accuracy Change detection Classification contrastive learning Damage assessment Damage detection Datasets Deep learning Disaster management Disasters Feature extraction Learning Machine learning Noise reduction Performance evaluation Remote sensing Representations Segmentation Self-supervised learning Semantics Urban development Urban environments vision transformer |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF1gQT1FesgRr1Di2a4etPCrEwAJI3SL7bAMSpFUfA_-En8vZSSkSAwtr5NiR73z3XXT-PkLOc-CFZQoyB6XIBJQm08BDxoKyhmlAUJq6fO_7t0_ibiRHP6S-Yk9YQw_cbFyPAUipjGSghRA-GKzlJDM6hL6yQqere5jzfhRTKQZzdK1cNHykHOv63nTGVJRwTcpkqwyUiPp_xeGUXIZbZLNFhXTQfM02WfP1DllvBcpfPnbJZ1I_Bswz9MG_hexhMYmHfOYdbRlSnynCT3rZqlzT5tYAvfbz1GtVU1M7em3eMXzQwTcb5wVFzBkQheLAevwa_xvQwWI-juyWzk_TS5G_ampmMSyu1houe7r2yNPw5vHqNmtFFTIouFKZtBIrDlG6vA8O-iEEF5xmXgOUhfHWgXWlz7k3stTCO-1sCVKFMjdOclvwfdKpx7U_IJQpHK48KKx6cEKmMVwIqyG2ijEJskvOlhtdTRrujAprjmiOamWOLrmMNvgeEfmu0wP0gqr1guovL-iS46UFq_YQzipe4EoaEZ4-_I81jshGEcV_U_ffMenMpwt_gohkbk-T830Bav7h8Q priority: 102 providerName: Directory of Open Access Journals |
Title | Advancing Self-Supervised Learning for Building Change Detection and Damage Assessment: Unified Denoising Autoencoder and Contrastive Learning Framework |
URI | https://www.proquest.com/docview/3239080568 https://doaj.org/article/1cc557a51c8444efa74251a8ff67b489 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZYe4DLxE_RsVWW4BotTuza4YLadWVCMCHKpN0i-9keSFtSkvbAf8Kfy7PrtgckronjSHn293745fsIeZdDWRgmIbNQ8YxDpTMFpc-Yl0YzBRiUxi7f68nVDf90K25Twa1PbZU7TIxAbVsINfLzssDsXKG7Vh9Wv7KgGhVOV5OExhEZIgQrNSDD2eX112_7Kkte4hLL-ZaXtMQZzrueySDlGhXKDp4oEvb_g8fRySyekuMUHdLp1pzPyCPXPCePk1D5j98vyJ-oggzob-jS3ftsuVmFzd47SxNT6h3FMJTOkto13f49QOduHXuuGqobS-f6AWGETvesnO8pxp4eo1Ec2LQ_Q_2ATjfrNrBcWtfFhwKPVaf7AI-Hdy12vV0vyc3i8vvFVZbEFTIoSikzYQRmHryy-QQsTLz31lvFnAKoCu2MBWMrl5dOi0pxZ5U1FQjpq1xbUZqifEUGTdu414QyicOlA4nZD07IFMIGNwpCyxgTIEbk7e5D16sth0aNuUcwR30wx4jMgg32IwLvdbzQdnd12kY1AxBCasFAcc6d15jZC6aV9xNpuKpG5HRnwTptxr4-LJ2T_99-Q54UQd439vedksG627gzjDnWZkyO1OLjmAyn8y-fl-O0zMYxg_8L6HPeeg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWq9lAuiE-xUMAScIwaJ_baQULVlmXZ0tJLW6m3YI_tggTJkuyq6j_pr-A3MnaS3QMSt15jJ5Ey4zczzvg9Qt6mkGeGSUgsFDzhUOhEQe4T5qXRTAEmpbHL93Q8v-BfLsXlFvkznIUJbZUDJkagtjWEPfL9PMPqXGG4VgeL30lQjQp_VwcJjc4tjt3NNZZs7YejKdr3XZbNPp1_nCe9qkACWS5lIozAlJsXNh2DhbH33nqrmFMARaadsWBs4dLcaVEo7qyypgAhfZFqK3ITiA4Q8nd4jpE8nEyffV7v6aQ5OnTKOxZUHE_3m5bJIBwb9dA2cS_KA_yD_jGkzR6Q-30uSied8zwkW656RHZ7WfTvN4_JbdRcBoxu9Mz99MnZahGgpXWW9rysVxSTXnrYa2vT7qwCnbpl7PCqqK4snepfCFp0suYAfU8x0_WY--LEqv4RdivoZLWsA6emdU28KbBmNboNYLx512zoJHtCLu7koz8l21VduWeEMonTpQOJtRY-kCkEKW4UhAY1JkCMyJvhQ5eLjrGjxEonmKPcmGNEDoMN1jMCy3a8UDdXZb9oSwYghNSCgeKcO68lIhzTyvuxNFwVI7I3WLDsl35bbhz1-f-HX5Pd-fnXk_Lk6PT4BbmXBWHh2Fm4R7aXzcq9xGxnaV5FF6Pk21379F-3fBl2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWmTgJeEJ-iMMAS8Bg1TuzaQUKopas2hqqJMWlvwb62NyRIStMK7Z_wW_h1XDtJ-4DE214T50O-N-fe61yfQ8jrFPLMMAmJhYInHAqdKMh9wrw0minApDR2-S7GR-f844W42CN_-r0woa2yx8QI1LaGsEY-yjOszhWGazXyXVvE6Wz-fvkzCQpS4U9rL6fRusiJu_6F5Vvz7niGtn6TZfPDLx-Okk5hIIEslzIRRmD6zQubjsHC2HtvvVXMKYAi085YMLZwae60KBR3VllTgJC-SLUVuQmkBwj_-zJURQOyPz1cnH7ervCkObp3yltO1BzffrRqmAwyslEdbRcFo1jAP7EgBrj5PXK3y0zppHWl-2TPVQ_I7U4k_er6IfkdFZgBYx09c999crZZBqBpnKUdS-slxRSYTjulbdruXKAzt479XhXVlaUz_QMhjE62jKBvKea9HjNhHFjV38LaBZ1s1nVg2LRuFS8KHFor3QRo3j1r3veVPSLnNzLtj8mgqiv3hFAmcbh0ILHywhsyhZDFjYLQrsYEiCF51U90uWz5O0qse4I5yp05hmQabLAdETi344F6dVl2n3DJAISQWjBQnHPntUS8Y1p5P5aGq2JIDnoLlh0QNOXObZ_-__RLcgv9ufx0vDh5Ru5kQWU4thkekMF6tXHPMfVZmxedj1Hy9abd-i_y2h8I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+Self-Supervised+Learning+for+Building+Change+Detection+and+Damage+Assessment%3A+Unified+Denoising+Autoencoder+and+Contrastive+Learning+Framework&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yang+Songxi&rft.au=Peng%2C+Bo&rft.au=Tang%2C+Sui&rft.au=Wu+Meiliu&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=15&rft.spage=2717&rft_id=info:doi/10.3390%2Frs17152717&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |