Advancing Self-Supervised Learning for Building Change Detection and Damage Assessment: Unified Denoising Autoencoder and Contrastive Learning Framework

Building change detection and building damage assessment are two essential tasks in post-disaster analysis. Building change detection focuses on identifying changed building areas between bi-temporal images, while building damage assessment involves segmenting all buildings and classifying their dam...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 17; no. 15; p. 2717
Main Authors Yang, Songxi, Peng, Bo, Sui, Tang, Wu, Meiliu, Huang, Qunying
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Building change detection and building damage assessment are two essential tasks in post-disaster analysis. Building change detection focuses on identifying changed building areas between bi-temporal images, while building damage assessment involves segmenting all buildings and classifying their damage severity. These tasks play a critical role in disaster response and urban development monitoring. Although supervised learning has significantly advanced building change detection and damage assessment, its reliance on large labeled datasets remains a major limitation. In contrast, self-supervised learning enables the extraction of meaningful data representations without explicit training labels. To address this challenge, we propose a self-supervised learning approach that unifies denoising autoencoders and contrastive learning, enabling effective data representation for building change detection and damage assessment. The proposed architecture integrates a dual denoising autoencoder with a Vision Transformer backbone and contrastive learning strategy, complemented by a Feature Pyramid Network-ResNet dual decoder and an Edge Guidance Module. This design enhances multi-scale feature extraction and enables edge-aware segmentation for accurate predictions. Extensive experiments were conducted on five public datasets, including xBD, LEVIR, LEVIR+, SYSU, and WHU, to evaluate the performance and generalization capabilities of the model. The results demonstrate that the proposed Denoising AutoEncoder-enhanced Dual-Fusion Network (DAEDFN) approach achieves competitive performance compared with fully supervised methods. On the xBD dataset, the largest dataset for building damage assessment, our proposed method achieves an F1 score of 0.892 for building segmentation, outperforming state-of-the-art methods. For building damage severity classification, the model achieves an F1 score of 0.632. On the building change detection datasets, the proposed method achieves F1 scores of 0.837 (LEVIR), 0.817 (LEVIR+), 0.768 (SYSU), and 0.876 (WHU), demonstrating model generalization across diverse scenarios. Despite these promising results, challenges remain in complex urban environments, small-scale changes, and fine-grained boundary detection. These findings highlight the potential of self-supervised learning in building change detection and damage assessment tasks.
AbstractList Building change detection and building damage assessment are two essential tasks in post-disaster analysis. Building change detection focuses on identifying changed building areas between bi-temporal images, while building damage assessment involves segmenting all buildings and classifying their damage severity. These tasks play a critical role in disaster response and urban development monitoring. Although supervised learning has significantly advanced building change detection and damage assessment, its reliance on large labeled datasets remains a major limitation. In contrast, self-supervised learning enables the extraction of meaningful data representations without explicit training labels. To address this challenge, we propose a self-supervised learning approach that unifies denoising autoencoders and contrastive learning, enabling effective data representation for building change detection and damage assessment. The proposed architecture integrates a dual denoising autoencoder with a Vision Transformer backbone and contrastive learning strategy, complemented by a Feature Pyramid Network-ResNet dual decoder and an Edge Guidance Module. This design enhances multi-scale feature extraction and enables edge-aware segmentation for accurate predictions. Extensive experiments were conducted on five public datasets, including xBD, LEVIR, LEVIR+, SYSU, and WHU, to evaluate the performance and generalization capabilities of the model. The results demonstrate that the proposed Denoising AutoEncoder-enhanced Dual-Fusion Network (DAEDFN) approach achieves competitive performance compared with fully supervised methods. On the xBD dataset, the largest dataset for building damage assessment, our proposed method achieves an F1 score of 0.892 for building segmentation, outperforming state-of-the-art methods. For building damage severity classification, the model achieves an F1 score of 0.632. On the building change detection datasets, the proposed method achieves F1 scores of 0.837 (LEVIR), 0.817 (LEVIR+), 0.768 (SYSU), and 0.876 (WHU), demonstrating model generalization across diverse scenarios. Despite these promising results, challenges remain in complex urban environments, small-scale changes, and fine-grained boundary detection. These findings highlight the potential of self-supervised learning in building change detection and damage assessment tasks.
Author Huang, Qunying
Wu, Meiliu
Yang, Songxi
Sui, Tang
Peng, Bo
Author_xml – sequence: 1
  givenname: Songxi
  orcidid: 0009-0004-4028-8608
  surname: Yang
  fullname: Yang, Songxi
– sequence: 2
  givenname: Bo
  orcidid: 0000-0003-1514-6881
  surname: Peng
  fullname: Peng, Bo
– sequence: 3
  givenname: Tang
  orcidid: 0009-0003-6685-2660
  surname: Sui
  fullname: Sui, Tang
– sequence: 4
  givenname: Meiliu
  surname: Wu
  fullname: Wu, Meiliu
– sequence: 5
  givenname: Qunying
  orcidid: 0000-0003-3499-7294
  surname: Huang
  fullname: Huang, Qunying
BookMark eNpNUU1vEzEQtVArUdpe-gtW4oa04M_Y5hYSCpUicWh7Xs3a4-CQ2MHeTcU_4eeyaRBlLvP15r2R3htylnJCQm4YfS-EpR9KZZoprpl-RS441byV3PKz_-rX5LrWDZ1CCGapvCC_5_4AycW0bu5xG9r7cY_lECv6ZoVQ0nERcmk-jXHrj83iO6Q1Nksc0A0xpwaSb5awg2k4rxVr3WEaPjaPKYY4sSwx5ViPl_NxyJhc9liejxY5DQXqEA_4onVbYIdPufy4IucBthWv_-ZL8nj7-WHxtV19-3K3mK9ax4XWreqV5EZaT2fOu1kIwQdvGBrnLAfsveu9RSoQlDUSvfG9dUoHS8Er0XNxSe5OvD7DptuXuIPyq8sQu-dBLusOyhDdFjvmnFIaFHNGSokBtOSKgQlhpntp7MT19sS1L_nniHXoNnksaXq_E3xyyFA1MxPq3QnlSq61YPinymh3NLJ7MVL8AUrOlPE
Cites_doi 10.3390/rs14215405
10.1109/JSTARS.2022.3152775
10.1080/17538947.2024.2302577
10.1109/ICCV.2017.324
10.1109/TGRS.2019.2956756
10.1016/j.isprsjprs.2022.02.021
10.3390/rs13245094
10.1109/JSTARS.2024.3416183
10.1109/ICPR.2010.579
10.1111/j.1467-8306.2004.09402009.x
10.1109/IGARSS46834.2022.9883139
10.1109/IGARSS46834.2022.9883686
10.1109/TGRS.2024.3417253
10.1007/s41095-022-0325-1
10.1126/science.228.4704.1147
10.1109/JSTARS.2022.3231348
10.1109/CVPR52688.2022.01553
10.3390/rs10010016
10.1109/TGRS.2018.2858817
10.1145/1390156.1390294
10.1109/CVPR52688.2022.02048
10.1109/CVPR42600.2020.00975
10.3390/rs14040957
10.1109/TGRS.2025.3579416
10.1016/j.rse.2024.114416
10.1016/j.isprsjprs.2024.07.001
10.1109/CVPR.2017.106
10.1109/CVPR52729.2023.00509
10.1109/IGARSS47720.2021.9554302
10.1109/MGRS.2020.3041450
10.1109/TGRS.2022.3221492
10.1007/978-3-319-67558-9_28
10.1016/j.rse.2021.112636
10.1109/MGRS.2022.3198244
10.1109/ICCV48922.2021.00950
10.1109/CVPRW53098.2021.00121
10.3390/rs15245670
10.1109/CVPR.2016.90
10.1109/TNNLS.2022.3172183
10.1109/JSTARS.2024.3354310
10.3390/rs12101662
10.1109/CVPR.2009.5206848
10.1109/JSTARS.2021.3077545
10.1155/2022/5008854
10.1109/4.996
10.1109/TNNLS.2021.3079627
10.1109/JSTARS.2024.3408604
10.1109/ICCV48922.2021.00951
10.1016/0034-4257(87)90015-0
10.1109/MGRS.2024.3412770
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs17152717
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_1cc557a51c8444efa74251a8ff67b489
10_3390_rs17152717
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c2377-5b542849d06cdc6fffdfd81e8cc92aebdcbd9e03ea5984ed8db9c57f90ad53b23
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 00:55:57 EDT 2025
Fri Aug 15 05:10:58 EDT 2025
Wed Aug 13 23:57:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2377-5b542849d06cdc6fffdfd81e8cc92aebdcbd9e03ea5984ed8db9c57f90ad53b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3499-7294
0000-0003-1514-6881
0009-0004-4028-8608
0009-0003-6685-2660
OpenAccessLink https://www.proquest.com/docview/3239080568?pq-origsite=%requestingapplication%
PQID 3239080568
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_1cc557a51c8444efa74251a8ff67b489
proquest_journals_3239080568
crossref_primary_10_3390_rs17152717
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wen (ref_49) 2022; 16
Zhang (ref_48) 2022; 60
Xie (ref_56) 2020; 33
ref_58
ref_57
He (ref_45) 2022; 15
ref_11
ref_55
ref_52
ref_51
ref_19
Shen (ref_25) 2021; 60
ref_18
Mei (ref_8) 2023; 9
ref_17
ref_16
ref_15
Vincent (ref_59) 2010; 11
Li (ref_6) 2024; 62
Yang (ref_43) 2021; 33
Alsabhan (ref_41) 2022; 2022
ref_61
Wu (ref_2) 2024; 12
Ji (ref_54) 2018; 57
ref_60
Wang (ref_12) 2022; 10
ref_69
Zheng (ref_5) 2021; 265
ref_23
ref_67
Liu (ref_47) 2024; 62
ref_21
Chen (ref_7) 2021; 60
ref_64
ref_62
ref_29
Kanopoulos (ref_63) 1988; 23
Cui (ref_28) 2024; 17
Grill (ref_14) 2020; 33
ref_27
Goetz (ref_65) 1985; 228
Chen (ref_46) 2022; 187
Chen (ref_70) 2019; 58
Luppino (ref_73) 2022; 35
Bai (ref_26) 2021; 60
ref_72
Han (ref_22) 2021; 9
ref_71
Chen (ref_1) 2024; 17
Woodcock (ref_66) 1987; 21
Shi (ref_53) 2021; 60
Zheng (ref_31) 2024; 215
ref_35
ref_34
Wang (ref_30) 2023; 61
ref_33
ref_75
ref_74
Liu (ref_13) 2021; 35
ref_39
ref_37
Tobler (ref_36) 2004; 94
Zhao (ref_32) 2024; 17
Lu (ref_10) 2024; 17
Song (ref_24) 2021; 14
ref_44
ref_42
Zheng (ref_76) 2024; 315
ref_40
Dharampal (ref_50) 2015; 4
ref_3
Zhang (ref_20) 2023; 61
ref_9
Li (ref_68) 2022; 60
ref_4
Wan (ref_38) 2025; 63
References_xml – ident: ref_40
  doi: 10.3390/rs14215405
– volume: 15
  start-page: 2142
  year: 2022
  ident: ref_45
  article-title: ForkNet: Strong semantic feature representation and subregion supervision for accurate remote sensing change detection
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3152775
– ident: ref_9
– volume: 62
  start-page: 4403613
  year: 2024
  ident: ref_47
  article-title: MutSimNet: Mutually reinforcing similarity learning for RS image change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_55
– volume: 17
  start-page: 2302577
  year: 2024
  ident: ref_32
  article-title: Deep object segmentation and classification networks for building damage detection using the xBD dataset
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2024.2302577
– ident: ref_61
  doi: 10.1109/ICCV.2017.324
– volume: 58
  start-page: 2848
  year: 2019
  ident: ref_70
  article-title: Change detection in multisource VHR images via deep siamese convolutional multiple-layers recurrent neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2956756
– volume: 187
  start-page: 101
  year: 2022
  ident: ref_46
  article-title: FCCDN: Feature constraint network for VHR image change detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.02.021
– ident: ref_52
  doi: 10.3390/rs13245094
– volume: 17
  start-page: 11563
  year: 2024
  ident: ref_1
  article-title: Change Detection with Cross-Domain Remote Sensing Images: A Systematic Review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3416183
– ident: ref_58
  doi: 10.1109/ICPR.2010.579
– volume: 94
  start-page: 304
  year: 2004
  ident: ref_36
  article-title: On the first law of geography: A reply
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1111/j.1467-8306.2004.09402009.x
– ident: ref_27
  doi: 10.1109/IGARSS46834.2022.9883139
– ident: ref_67
  doi: 10.1109/IGARSS46834.2022.9883686
– ident: ref_11
  doi: 10.1109/TGRS.2024.3417253
– volume: 9
  start-page: 563
  year: 2023
  ident: ref_8
  article-title: D2ANet: Difference-aware attention network for multi-level change detection from satellite imagery
  publication-title: Comput. Vis. Media
  doi: 10.1007/s41095-022-0325-1
– ident: ref_23
– volume: 228
  start-page: 1147
  year: 1985
  ident: ref_65
  article-title: Imaging spectrometry for earth remote sensing
  publication-title: Science
  doi: 10.1126/science.228.4704.1147
– volume: 60
  start-page: 5610613
  year: 2021
  ident: ref_26
  article-title: Edge-guided recurrent convolutional neural network for multitemporal remote sensing image building change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 5604816
  year: 2021
  ident: ref_53
  article-title: A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 33
  start-page: 21271
  year: 2020
  ident: ref_14
  article-title: Bootstrap your own latent-a new approach to self-supervised learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 16
  start-page: 750
  year: 2022
  ident: ref_49
  article-title: A Building Shape Vectorization Hierarchy From VHR Remote Sensing Imagery Combined DCNNs-Based Edge Detection and PCA-Based Corner Extraction
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3231348
– ident: ref_19
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref_69
– ident: ref_71
  doi: 10.3390/rs10010016
– volume: 57
  start-page: 574
  year: 2018
  ident: ref_54
  article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2858817
– ident: ref_35
  doi: 10.1145/1390156.1390294
– ident: ref_4
  doi: 10.1109/CVPR52688.2022.02048
– ident: ref_16
  doi: 10.1109/CVPR42600.2020.00975
– ident: ref_44
  doi: 10.3390/rs14040957
– volume: 63
  start-page: 5630116
  year: 2025
  ident: ref_38
  article-title: A Self-Supervised Learning Pretraining Framework for Remote Sensing Image Change Detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2025.3579416
– volume: 60
  start-page: 5607514
  year: 2021
  ident: ref_7
  article-title: Remote sensing image change detection with transformers
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 61
  start-page: 5607114
  year: 2023
  ident: ref_30
  article-title: A hierarchical decoder architecture for multilevel fine-grained disaster detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 315
  start-page: 114416
  year: 2024
  ident: ref_76
  article-title: Towards transferable building damage assessment via unsupervised single-temporal change adaptation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114416
– volume: 215
  start-page: 239
  year: 2024
  ident: ref_31
  article-title: Unifying remote sensing change detection via deep probabilistic change models: From principles, models to applications
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2024.07.001
– ident: ref_42
  doi: 10.1109/CVPR.2017.106
– ident: ref_72
  doi: 10.1109/CVPR52729.2023.00509
– ident: ref_3
  doi: 10.1109/IGARSS47720.2021.9554302
– volume: 9
  start-page: 8
  year: 2021
  ident: ref_22
  article-title: Methods for small, weak object detection in optical high-resolution remote sensing images: A survey of advances and challenges
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2020.3041450
– ident: ref_34
– volume: 60
  start-page: 5224713
  year: 2022
  ident: ref_48
  article-title: SwinSUNet: Pure transformer network for remote sensing image change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3221492
– volume: 35
  start-page: 857
  year: 2021
  ident: ref_13
  article-title: Self-supervised learning: Generative or contrastive
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: ref_62
  doi: 10.1007/978-3-319-67558-9_28
– volume: 265
  start-page: 112636
  year: 2021
  ident: ref_5
  article-title: Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112636
– volume: 10
  start-page: 213
  year: 2022
  ident: ref_12
  article-title: Self-supervised learning in remote sensing: A review
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2022.3198244
– ident: ref_17
  doi: 10.1109/ICCV48922.2021.00950
– ident: ref_74
  doi: 10.1109/CVPRW53098.2021.00121
– ident: ref_37
  doi: 10.3390/rs15245670
– ident: ref_39
  doi: 10.1109/CVPR.2016.90
– volume: 33
  start-page: 20320
  year: 2020
  ident: ref_56
  article-title: Noise2same: Optimizing a self-supervised bound for image denoising
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 60
  year: 2022
  ident: ref_73
  article-title: Code-aligned autoencoders for unsupervised change detection in multimodal remote sensing images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3172183
– volume: 17
  start-page: 4917
  year: 2024
  ident: ref_10
  article-title: Bi-temporal attention transformer for building change detection and building damage assessment
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3354310
– volume: 60
  start-page: 5402114
  year: 2021
  ident: ref_25
  article-title: Bdanet: Multiscale convolutional neural network with cross-directional attention for building damage assessment from satellite images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_51
  doi: 10.3390/rs12101662
– ident: ref_21
  doi: 10.1109/CVPR.2009.5206848
– volume: 14
  start-page: 4816
  year: 2021
  ident: ref_24
  article-title: AGCDetNet: An attention-guided network for building change detection in high-resolution remote sensing images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3077545
– volume: 62
  start-page: 5628213
  year: 2024
  ident: ref_6
  article-title: IDA-SiamNet: Interactive-and Dynamic-Aware Siamese Network for Building Change Detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_75
– ident: ref_29
– ident: ref_33
– volume: 4
  start-page: 2332-0796
  year: 2015
  ident: ref_50
  article-title: Methods of image edge detection: A review
  publication-title: J. Electr. Electron. Syst
– volume: 2022
  start-page: 5008854
  year: 2022
  ident: ref_41
  article-title: Automatic building extraction on satellite images using Unet and ResNet50
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2022/5008854
– volume: 60
  start-page: 5622519
  year: 2022
  ident: ref_68
  article-title: TransUNetCD: A hybrid transformer network for change detection in optical remote-sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 23
  start-page: 358
  year: 1988
  ident: ref_63
  article-title: Design of an image edge detection filter using the Sobel operator
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/4.996
– volume: 33
  start-page: 6402
  year: 2021
  ident: ref_43
  article-title: DPFL-Nets: Deep pyramid feature learning networks for multiscale change detection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3079627
– ident: ref_15
– ident: ref_64
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref_59
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref_60
– volume: 17
  start-page: 11402
  year: 2024
  ident: ref_28
  article-title: U-Shaped CNN-ViT Siamese Network With Learnable Mask Guidance for Remote Sensing Building Change Detection
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3408604
– ident: ref_18
  doi: 10.1109/ICCV48922.2021.00951
– ident: ref_57
– volume: 61
  start-page: 5402711
  year: 2023
  ident: ref_20
  article-title: Self-supervised pretraining via multimodality images with transformer for change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 21
  start-page: 311
  year: 1987
  ident: ref_66
  article-title: The factor of scale in remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(87)90015-0
– volume: 12
  start-page: 305
  year: 2024
  ident: ref_2
  article-title: UNet-Like Remote Sensing Change Detection: A review of current models and research directions
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2024.3412770
SSID ssj0000331904
Score 2.4036155
Snippet Building change detection and building damage assessment are two essential tasks in post-disaster analysis. Building change detection focuses on identifying...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2717
SubjectTerms Accuracy
Change detection
Classification
contrastive learning
Damage assessment
Damage detection
Datasets
Deep learning
Disaster management
Disasters
Feature extraction
Learning
Machine learning
Noise reduction
Performance evaluation
Remote sensing
Representations
Segmentation
Self-supervised learning
Semantics
Urban development
Urban environments
vision transformer
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF1gQT1FesgRr1Di2a4etPCrEwAJI3SL7bAMSpFUfA_-En8vZSSkSAwtr5NiR73z3XXT-PkLOc-CFZQoyB6XIBJQm08BDxoKyhmlAUJq6fO_7t0_ibiRHP6S-Yk9YQw_cbFyPAUipjGSghRA-GKzlJDM6hL6yQqere5jzfhRTKQZzdK1cNHykHOv63nTGVJRwTcpkqwyUiPp_xeGUXIZbZLNFhXTQfM02WfP1DllvBcpfPnbJZ1I_Bswz9MG_hexhMYmHfOYdbRlSnynCT3rZqlzT5tYAvfbz1GtVU1M7em3eMXzQwTcb5wVFzBkQheLAevwa_xvQwWI-juyWzk_TS5G_ampmMSyu1houe7r2yNPw5vHqNmtFFTIouFKZtBIrDlG6vA8O-iEEF5xmXgOUhfHWgXWlz7k3stTCO-1sCVKFMjdOclvwfdKpx7U_IJQpHK48KKx6cEKmMVwIqyG2ijEJskvOlhtdTRrujAprjmiOamWOLrmMNvgeEfmu0wP0gqr1guovL-iS46UFq_YQzipe4EoaEZ4-_I81jshGEcV_U_ffMenMpwt_gohkbk-T830Bav7h8Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Advancing Self-Supervised Learning for Building Change Detection and Damage Assessment: Unified Denoising Autoencoder and Contrastive Learning Framework
URI https://www.proquest.com/docview/3239080568
https://doaj.org/article/1cc557a51c8444efa74251a8ff67b489
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZYe4DLxE_RsVWW4BotTuza4YLadWVCMCHKpN0i-9keSFtSkvbAf8Kfy7PrtgckronjSHn293745fsIeZdDWRgmIbNQ8YxDpTMFpc-Yl0YzBRiUxi7f68nVDf90K25Twa1PbZU7TIxAbVsINfLzssDsXKG7Vh9Wv7KgGhVOV5OExhEZIgQrNSDD2eX112_7Kkte4hLL-ZaXtMQZzrueySDlGhXKDp4oEvb_g8fRySyekuMUHdLp1pzPyCPXPCePk1D5j98vyJ-oggzob-jS3ftsuVmFzd47SxNT6h3FMJTOkto13f49QOduHXuuGqobS-f6AWGETvesnO8pxp4eo1Ec2LQ_Q_2ATjfrNrBcWtfFhwKPVaf7AI-Hdy12vV0vyc3i8vvFVZbEFTIoSikzYQRmHryy-QQsTLz31lvFnAKoCu2MBWMrl5dOi0pxZ5U1FQjpq1xbUZqifEUGTdu414QyicOlA4nZD07IFMIGNwpCyxgTIEbk7e5D16sth0aNuUcwR30wx4jMgg32IwLvdbzQdnd12kY1AxBCasFAcc6d15jZC6aV9xNpuKpG5HRnwTptxr4-LJ2T_99-Q54UQd439vedksG627gzjDnWZkyO1OLjmAyn8y-fl-O0zMYxg_8L6HPeeg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWq9lAuiE-xUMAScIwaJ_baQULVlmXZ0tJLW6m3YI_tggTJkuyq6j_pr-A3MnaS3QMSt15jJ5Ey4zczzvg9Qt6mkGeGSUgsFDzhUOhEQe4T5qXRTAEmpbHL93Q8v-BfLsXlFvkznIUJbZUDJkagtjWEPfL9PMPqXGG4VgeL30lQjQp_VwcJjc4tjt3NNZZs7YejKdr3XZbNPp1_nCe9qkACWS5lIozAlJsXNh2DhbH33nqrmFMARaadsWBs4dLcaVEo7qyypgAhfZFqK3ITiA4Q8nd4jpE8nEyffV7v6aQ5OnTKOxZUHE_3m5bJIBwb9dA2cS_KA_yD_jGkzR6Q-30uSied8zwkW656RHZ7WfTvN4_JbdRcBoxu9Mz99MnZahGgpXWW9rysVxSTXnrYa2vT7qwCnbpl7PCqqK4snepfCFp0suYAfU8x0_WY--LEqv4RdivoZLWsA6emdU28KbBmNboNYLx512zoJHtCLu7koz8l21VduWeEMonTpQOJtRY-kCkEKW4UhAY1JkCMyJvhQ5eLjrGjxEonmKPcmGNEDoMN1jMCy3a8UDdXZb9oSwYghNSCgeKcO68lIhzTyvuxNFwVI7I3WLDsl35bbhz1-f-HX5Pd-fnXk_Lk6PT4BbmXBWHh2Fm4R7aXzcq9xGxnaV5FF6Pk21379F-3fBl2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWmTgJeEJ-iMMAS8Bg1TuzaQUKopas2hqqJMWlvwb62NyRIStMK7Z_wW_h1XDtJ-4DE214T50O-N-fe61yfQ8jrFPLMMAmJhYInHAqdKMh9wrw0minApDR2-S7GR-f844W42CN_-r0woa2yx8QI1LaGsEY-yjOszhWGazXyXVvE6Wz-fvkzCQpS4U9rL6fRusiJu_6F5Vvz7niGtn6TZfPDLx-Okk5hIIEslzIRRmD6zQubjsHC2HtvvVXMKYAi085YMLZwae60KBR3VllTgJC-SLUVuQmkBwj_-zJURQOyPz1cnH7ervCkObp3yltO1BzffrRqmAwyslEdbRcFo1jAP7EgBrj5PXK3y0zppHWl-2TPVQ_I7U4k_er6IfkdFZgBYx09c999crZZBqBpnKUdS-slxRSYTjulbdruXKAzt479XhXVlaUz_QMhjE62jKBvKea9HjNhHFjV38LaBZ1s1nVg2LRuFS8KHFor3QRo3j1r3veVPSLnNzLtj8mgqiv3hFAmcbh0ILHywhsyhZDFjYLQrsYEiCF51U90uWz5O0qse4I5yp05hmQabLAdETi344F6dVl2n3DJAISQWjBQnHPntUS8Y1p5P5aGq2JIDnoLlh0QNOXObZ_-__RLcgv9ufx0vDh5Ru5kQWU4thkekMF6tXHPMfVZmxedj1Hy9abd-i_y2h8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancing+Self-Supervised+Learning+for+Building+Change+Detection+and+Damage+Assessment%3A+Unified+Denoising+Autoencoder+and+Contrastive+Learning+Framework&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Yang+Songxi&rft.au=Peng%2C+Bo&rft.au=Tang%2C+Sui&rft.au=Wu+Meiliu&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=15&rft.spage=2717&rft_id=info:doi/10.3390%2Frs17152717&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon