Load Allocation in Academic Environment: A Multi Objective PSO Approach

In an Organization, mapping the competency of personnel with different level of expertise, skill set, and experience in professional fields is a tough, complex but essential task. In this work, we have considered an Engineering College with moderate number of faculties with different level of experi...

Full description

Saved in:
Bibliographic Details
Published inGSTF International journal on computing Vol. 3; no. 4; p. 9
Main Authors Rout, Sushri Samita, Misra, Bijan Bihari, Samanta, Sasmita
Format Journal Article
LanguageEnglish
Published Singapore Global Science and Technology Forum 31.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In an Organization, mapping the competency of personnel with different level of expertise, skill set, and experience in professional fields is a tough, complex but essential task. In this work, we have considered an Engineering College with moderate number of faculties with different level of experience, expertise and research exposure. Here we have considered the load assignment to the faculties at the beginning of a semester as the competency mapping task. Each faculty having capabilities of teaching different subjects out of the total set of papers needs to take about two theory papers with or without laboratory component. The decisive factors for subject assignment may be depth of knowledge, sincerity, class management, contribution towards research, text book publication. Further preference of the faculty member should be considered with top priority unless there are some valid constraints. Again the teaching personnel in a department hold different designations and different administrative responsibility, therefore each of them cannot be assigned equal hours of teaching load. The All India Council for Technical Education (AICTE) guidelines is considered as a baseline for assignment of teaching load. The decisive factors are considered as objectives to be optimized and multi-objective particle Swarm optimization (MOPSO) is employed to perform the competency mapping task. The simulation results show the effectiveness of this approach.
AbstractList In an Organization, mapping the competency of personnel with different level of expertise, skill set, and experience in professional fields is a tough, complex but essential task. In this work, we have considered an Engineering College with moderate number of faculties with different level of experience, expertise and research exposure. Here we have considered the load assignment to the faculties at the beginning of a semester as the competency mapping task. Each faculty having capabilities of teaching different subjects out of the total set of papers needs to take about two theory papers with or without laboratory component. The decisive factors for subject assignment may be depth of knowledge, sincerity, class management, contribution towards research, text book publication. Further preference of the faculty member should be considered with top priority unless there are some valid constraints. Again the teaching personnel in a department hold different designations and different administrative responsibility, therefore each of them cannot be assigned equal hours of teaching load. The All India Council for Technical Education (AICTE) guidelines is considered as a baseline for assignment of teaching load. The decisive factors are considered as objectives to be optimized and multi-objective particle Swarm optimization (MOPSO) is employed to perform the competency mapping task. The simulation results show the effectiveness of this approach.
In an Organization, mapping the competency of personnel with different level of expertise, skill set, and experience in professional fields is a tough, complex but essential task. In this paper, the authors have considered an Engineering College with moderate number of faculties with different level of experience, expertise and research exposure. They have considered the load assignment to the faculties at the beginning of a semester as the competency mapping task. Each faculty having capabilities of teaching different subjects out of the total set of papers needs to take about two theory papers with or without laboratory component. The All India Council for Technical Education guidelines is considered as a baseline for assignment of teaching load. The decisive factors are considered as objectives to be optimized and multi-objective particle Swarm optimization is employed to perform the competency mapping task. The simulation results show the effectiveness of this approach.
ArticleNumber 36
Author Rout, Sushri Samita
Misra, Bijan Bihari
Samanta, Sasmita
Author_xml – sequence: 1
  givenname: Sushri Samita
  surname: Rout
  fullname: Rout, Sushri Samita
  email: sushri@silicon.ac.in
  organization: Department of Information Technology, Silicon Institute of Technology
– sequence: 2
  givenname: Bijan Bihari
  surname: Misra
  fullname: Misra, Bijan Bihari
  organization: Department of Information Technology, Silicon Institute of Technology
– sequence: 3
  givenname: Sasmita
  surname: Samanta
  fullname: Samanta, Sasmita
  organization: KIIT University
BookMark eNp9kE1LAzEQQIMoqNUf4C3gxcvqJGk2ibdF_IJKBfUcstlUU7ZJTbYF_72p9SCCniaH9zLDO0S7IQaH0AmBc1EDu8hjqIFUQFgFwOpK7KADCgQqSiXb_fHeR8c5z6FAjIJk8gDdTqLpcNP30ZrBx4B9wI01nVt4i6_D2qcYFi4Ml7jBD6t-8Hjazp0d_Nrhx6cpbpbLFI19O0J7M9Nnd_w9R-jl5vr56q6aTG_vr5pJZSkToiJty7iSUggFagaWG1obUxtlAMaydcpapexMcSvHHeGFaqVjwGUnOiooZyN0tv23rH1fuTzohc_W9b0JLq6yJpwTGPOakYKe_kLncZVCua5QjCjFyigU2VI2xZyTm-ll8guTPjQBvamrt3V1qas3dbUojvjlWD985RuS8f2_Jt2auWwJry79uOlP6RPPXoyN
CitedBy_id crossref_primary_10_1016_j_infsof_2018_03_005
Cites_doi 10.1109/ICEICE.2011.5778029
10.1109/ICMSS.2011.5998043
10.1109/TEVC.2007.892759
10.5121/ijsc.2012.3108
10.1109/MCI.2006.1597059
10.1162/106365600568167
10.1109/CSSE.2008.1506
10.1109/WICT.2012.6409137
10.1007/978-3-540-70928-2_14
10.1002/int.20358
10.1109/SSME.2009.113
10.1109/COGSIMA.2011.5753426
10.1016/j.scient.2011.03.026
10.1007/978-3-540-30217-9_84
10.1109/AICCSA.2010.5587045
10.1287/mnsc.19.4.357
10.1016/j.asoc.2010.02.016
10.1162/evco.1994.2.3.221
10.1109/4235.996017
ContentType Journal Article
Copyright Global Science and Technology Forum 2013
Copyright Global Science and Technology Forum Apr 2014
Copyright_xml – notice: Global Science and Technology Forum 2013
– notice: Copyright Global Science and Technology Forum Apr 2014
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.7603/s40601-013-0036-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Education
EISSN 2010-2283
2251-3043
EndPage 9
ExternalDocumentID 3323939841
10_7603_s40601_013_0036_7
GroupedDBID .4S
4.4
AAKKN
AAYZJ
ABEEZ
ACACY
ACULB
AFGXO
AFKAO
ALMA_UNASSIGNED_HOLDINGS
ARCSS
C24
C6C
EBS
EOJEC
OBODZ
TUS
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2377-1bb3598877909f0c5a26aa6a9a0048be9cc99cf95c84d15790b8e3058d7d27253
IEDL.DBID C24
ISSN 2010-2283
IngestDate Fri Jul 11 07:06:53 EDT 2025
Fri Jul 25 08:36:16 EDT 2025
Tue Aug 05 12:05:52 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Fri Feb 21 02:32:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Competency mapping
Multi Objective Optimization
Particle Swarm Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2377-1bb3598877909f0c5a26aa6a9a0048be9cc99cf95c84d15790b8e3058d7d27253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://link.springer.com/10.7603/s40601-013-0036-7
PQID 1531993153
PQPubID 1036337
PageCount 1
ParticipantIDs proquest_miscellaneous_1551045631
proquest_journals_1531993153
crossref_primary_10_7603_s40601_013_0036_7
crossref_citationtrail_10_7603_s40601_013_0036_7
springer_journals_10_7603_s40601_013_0036_7
PublicationCentury 2000
PublicationDate 20140531
PublicationDateYYYYMMDD 2014-05-31
PublicationDate_xml – month: 5
  year: 2014
  text: 20140531
  day: 31
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle GSTF International journal on computing
PublicationTitleAbbrev GSTF J Comput
PublicationYear 2014
Publisher Global Science and Technology Forum
Publisher_xml – name: Global Science and Technology Forum
References S. Ghoneim, D. L. Essam, and H. A. Abbass, “Competency Awareness in Strategic Decision Making,” IEEE International multi-disciplinary conference on cognitive methods in situation awareness and decision support, pp. 106–109, 2011
Fonseca and P. Fleming, “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization,” in Proceedings of the Fifth International Conference on Genetic Algorithms, S. Forrest, Ed., University of Illinois at Urbana-Champaign. San Mateo, California: Morgan Kauffman Publishers, 1993, pp. 416–423.
A. Jaimes, C.A. Coello Coello, A Ponsich, "A Survey on Multi-Objective Evolutionary Algorithms for the solution of the Portfolio Optimization problem and other Finance and Economics applications," Evolutionary Computation, IEEE Transactions on, vol.PP, no.99, pp. 1, 0,2012
Z Jia and L Gong, “Multi-criteria Human Resource Allocation for Optimization Problems Using Multi-objective Particle Swarm Optimization Algorithm “, International conference on Computer Science and Software Engineering, 2008, pp. 1187–1190
TungYangJ Chou.” Multiobjective optimization formanpower assignment in consulting engineering firms”Applied Soft Computing2011111183–1190
K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
H Eskandari, C Geiger, G Lamont, “ FastPGA: A Dynamic Population Sizing Approach for Solving Expensive Multiobjective Optimization Problems” in Proceedings of 4th International Conference, EMO 2007, Matsushima, Japan, March 5-8, 2007, pp. 141–155.
EckartZitzler“Evolutionary Algorithm for Multi-objective Optimizatiom: Methods and Applications”, Doctoral Thesis, Swiss Federal Institute of Technology, Zurich, 1999. [33]. K Deb, "Multi-Objective Optimization using Evolutionary Algorithms,"2001ChichesterJohn Wiley & Sons
N. Srinivas and K. Deb, “Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms,” Evolutionary Computation, vol. 2, no. 3, pp. 221–248, Fall 1994.
D Parchment, S Sankarnarayanan,” Intelligent Agent Based Student Staff Scheduling System” International Journal of Computer Information Systems and Industrial Management Applications, (IJCISIM), 2013,pp. 383–404
J. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,” in Proceedings of the 1st International Conference on Genetic Algorithms. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1985, pp. 93–100
SteuerR EMultiple Criteria Optimization: Theory, Computations, and Application1986New YorkJohn Wiley & Sons, Inc88846–X
J. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,” in Proceedings of the 1st International Conference on Genetic Algorithms. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1985, pp. 93–100.
C.A. Coello Coello, “Evolutionary Multi-objective Optimization: A Historical View of the Field”, IEEE Computational Intelligence Magazine, Feb 2006, pp. 28–36.
Nebro, J., Durillo, F. Luna, B. Dorronsoro, and E. Alba, “Mocell: A cellular genetic algorithm for multiobjective optimization,” International Journal of Intelligent Systems, vol. 24, no. 7, pp. 726–746, 2009.
ZadehL AOptimality and Nonscalar-Valued Performance Criteria," IEEE Trans. Automat. Contr., Vol. AC-8, p. 1, 1963. [14]. Y Censor, "Pareto Optimality in Multiobjective Problems," Appl. Math. Optimiz., Vol. 4, pp 41–59, 1977. [15]. N Da Cunha and E. Polak, "Constrained Minimization Under Vector-Valued Criteria in Finite Dimensional SpacesJ. Math. Anal. Appl196719103–124
Q Zhang and H. Li, “MOEA/D: A Multiobjective EvolutionaryAlgorithm based on Decomposition,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007.
SawaragiYNakayamaHTaninoTTheory of Multiobjective Optimization (vol. 176 of Mathematics in Science and Engineering)1985Orlando, FLAcademic Press Inc620370–9
W Elloumi and A M Alimi, “A More Efficient MOPSO for Optimization”, ACS/IEEE International Conference on Computer Systems and Applications –AICCSA 2010, pp. 1–7, 2010.
I Arbnor, B Bjerke, “Methodology for creating business knowledge”, SAGE Publication, 2nd Edition, pp. 21–72.
G Meenakshi, ”Multi source feedback based performance appraisal system using Fuzzy logic decision support system,” International Journal on Soft Computing (IJSC ), vol. l.3, no.1, pp. 91–106, February 2012
J. Nebro, F. Luna, E. Alba 1, A. Beham, B. Dorronsoro, ” AbYSS : Adapting Scatter Search for Multiobjective Optimization”, TECH-REPORT: ITI-2006–2
J. Knowles and D. Corne, “Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy,” Evolutionary Computation, vol. 8, no. 2, pp. 149–172, 2000.
V. Shahhosseini, M.H. Sebt,”Competency-based selection and assignment of human resources to construction projects,” Scientia Iranica A, vol. 18, issue 2, pp. 163–180, 2011
S Wang, L Gong, S Yan.” The Allocation Optimization of Project Human Resource Based on Particle Swarm Optimization Algorithm”. IITA International Conference on Services Science, Management and Engineering, pp. 169–172, 2009.
E. Zitzler and S. K¨unzli, “Indicator-based selection in multiobjective search,” in Parallel Problem Solving from Nature (PPSN VIII), X. Yao et al., Eds. Berlin, Germany: Springer-Verlag, 2004, pp. 832–842.
S Rout, B Misra, S Samanta, “Competency Mapping in Academic Environment: A Multi Objective Approach” Information and Communication Technologies (WICT), 2012 World Congress on, vol., no., pp.543,548, Oct. 30 2012-Nov.2012.
M Song and Guo-Chang GU, “Research On Particle Swarm Optimization : A Review”, in Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, 26-29 August 2004, pp. 2236–2241.
TungYangChouJ“Multiobjective optimization formanpower assignment in consulting engineering firms”Applied Soft Computing2011111183119010.1016/j.asoc.2010.02.016
M.Geoffrion, J. S. Dyer, A. Feinberg (December 1972). "An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department". Management Science. Application Series (INFORMS) 19 (4Part1):357–368.
E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” in EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, and T. Fogarty, Eds., Athens, Greece, 2002, pp. 95–100.
W Qing, Z Han-chao,” Optimization of Task AllocationAnd Knowledge Workers Scheduling Based-on Particle Swarm Optimization” International Conference on Electric Information and Control Engineering (ICEICE), 2011, pp. 574 – 578, 2011.
P. Liu and X. Li, “The Application of Expertise Knowledge Map in Human Resource Management,” International Conference on Management and Service Science (MASS), pp. 1 – 4, 2011.
John McCullock, “Particle Swarm Optimization”. Internet: http://mnemstudio.org/particle-swarm-introduction.htm
Zitzler Eckart (36_CR63) 2001
36_CR28
Y Sawaragi (36_CR11) 1985
36_CR27
36_CR29
36_CR24
36_CR23
36_CR26
R E Steuer (36_CR10) 1986
36_CR25
36_CR20
36_CR64
36_CR22
36_CR66
36_CR21
36_CR65
36_CR60
R E Steuer (36_CR43) 1986
36_CR62
36_CR61
Zitzler Eckart (36_CR30) 2001
36_CR39
36_CR38
36_CR34
36_CR37
36_CR36
36_CR31
36_CR33
36_CR32
L A Zadeh (36_CR13) 1967; 19
Yang Tung (36_CR35) 2011; 11
Yang Tung (36_CR2) 2011; 11
36_CR49
36_CR45
36_CR48
36_CR47
36_CR42
36_CR41
36_CR40
36_CR7
36_CR8
36_CR9
36_CR3
L A Zadeh (36_CR46) 1967; 19
36_CR4
36_CR5
36_CR6
36_CR1
36_CR17
36_CR16
36_CR19
36_CR18
36_CR57
36_CR12
36_CR56
36_CR15
36_CR59
36_CR14
36_CR58
36_CR53
36_CR52
36_CR55
Y Sawaragi (36_CR44) 1985
36_CR54
36_CR51
36_CR50
References_xml – reference: D Parchment, S Sankarnarayanan,” Intelligent Agent Based Student Staff Scheduling System” International Journal of Computer Information Systems and Industrial Management Applications, (IJCISIM), 2013,pp. 383–404
– reference: EckartZitzler“Evolutionary Algorithm for Multi-objective Optimizatiom: Methods and Applications”, Doctoral Thesis, Swiss Federal Institute of Technology, Zurich, 1999. [33]. K Deb, "Multi-Objective Optimization using Evolutionary Algorithms,"2001ChichesterJohn Wiley & Sons
– reference: TungYangJ Chou.” Multiobjective optimization formanpower assignment in consulting engineering firms”Applied Soft Computing2011111183–1190
– reference: ZadehL AOptimality and Nonscalar-Valued Performance Criteria," IEEE Trans. Automat. Contr., Vol. AC-8, p. 1, 1963. [14]. Y Censor, "Pareto Optimality in Multiobjective Problems," Appl. Math. Optimiz., Vol. 4, pp 41–59, 1977. [15]. N Da Cunha and E. Polak, "Constrained Minimization Under Vector-Valued Criteria in Finite Dimensional SpacesJ. Math. Anal. Appl196719103–124
– reference: Q Zhang and H. Li, “MOEA/D: A Multiobjective EvolutionaryAlgorithm based on Decomposition,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007.
– reference: A. Jaimes, C.A. Coello Coello, A Ponsich, "A Survey on Multi-Objective Evolutionary Algorithms for the solution of the Portfolio Optimization problem and other Finance and Economics applications," Evolutionary Computation, IEEE Transactions on, vol.PP, no.99, pp. 1, 0,2012
– reference: M Song and Guo-Chang GU, “Research On Particle Swarm Optimization : A Review”, in Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, 26-29 August 2004, pp. 2236–2241.
– reference: J. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,” in Proceedings of the 1st International Conference on Genetic Algorithms. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1985, pp. 93–100
– reference: I Arbnor, B Bjerke, “Methodology for creating business knowledge”, SAGE Publication, 2nd Edition, pp. 21–72.
– reference: W Qing, Z Han-chao,” Optimization of Task AllocationAnd Knowledge Workers Scheduling Based-on Particle Swarm Optimization” International Conference on Electric Information and Control Engineering (ICEICE), 2011, pp. 574 – 578, 2011.
– reference: S. Ghoneim, D. L. Essam, and H. A. Abbass, “Competency Awareness in Strategic Decision Making,” IEEE International multi-disciplinary conference on cognitive methods in situation awareness and decision support, pp. 106–109, 2011
– reference: J. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,” in Proceedings of the 1st International Conference on Genetic Algorithms. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1985, pp. 93–100.
– reference: S Wang, L Gong, S Yan.” The Allocation Optimization of Project Human Resource Based on Particle Swarm Optimization Algorithm”. IITA International Conference on Services Science, Management and Engineering, pp. 169–172, 2009.
– reference: P. Liu and X. Li, “The Application of Expertise Knowledge Map in Human Resource Management,” International Conference on Management and Service Science (MASS), pp. 1 – 4, 2011.
– reference: SawaragiYNakayamaHTaninoTTheory of Multiobjective Optimization (vol. 176 of Mathematics in Science and Engineering)1985Orlando, FLAcademic Press Inc620370–9
– reference: W Elloumi and A M Alimi, “A More Efficient MOPSO for Optimization”, ACS/IEEE International Conference on Computer Systems and Applications –AICCSA 2010, pp. 1–7, 2010.
– reference: N. Srinivas and K. Deb, “Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms,” Evolutionary Computation, vol. 2, no. 3, pp. 221–248, Fall 1994.
– reference: S Rout, B Misra, S Samanta, “Competency Mapping in Academic Environment: A Multi Objective Approach” Information and Communication Technologies (WICT), 2012 World Congress on, vol., no., pp.543,548, Oct. 30 2012-Nov.2012.
– reference: Fonseca and P. Fleming, “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization,” in Proceedings of the Fifth International Conference on Genetic Algorithms, S. Forrest, Ed., University of Illinois at Urbana-Champaign. San Mateo, California: Morgan Kauffman Publishers, 1993, pp. 416–423.
– reference: M.Geoffrion, J. S. Dyer, A. Feinberg (December 1972). "An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department". Management Science. Application Series (INFORMS) 19 (4Part1):357–368.
– reference: H Eskandari, C Geiger, G Lamont, “ FastPGA: A Dynamic Population Sizing Approach for Solving Expensive Multiobjective Optimization Problems” in Proceedings of 4th International Conference, EMO 2007, Matsushima, Japan, March 5-8, 2007, pp. 141–155.
– reference: Nebro, J., Durillo, F. Luna, B. Dorronsoro, and E. Alba, “Mocell: A cellular genetic algorithm for multiobjective optimization,” International Journal of Intelligent Systems, vol. 24, no. 7, pp. 726–746, 2009.
– reference: V. Shahhosseini, M.H. Sebt,”Competency-based selection and assignment of human resources to construction projects,” Scientia Iranica A, vol. 18, issue 2, pp. 163–180, 2011
– reference: SteuerR EMultiple Criteria Optimization: Theory, Computations, and Application1986New YorkJohn Wiley & Sons, Inc88846–X
– reference: J. Knowles and D. Corne, “Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy,” Evolutionary Computation, vol. 8, no. 2, pp. 149–172, 2000.
– reference: E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” in EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, and T. Fogarty, Eds., Athens, Greece, 2002, pp. 95–100.
– reference: J. Nebro, F. Luna, E. Alba 1, A. Beham, B. Dorronsoro, ” AbYSS : Adapting Scatter Search for Multiobjective Optimization”, TECH-REPORT: ITI-2006–2
– reference: C.A. Coello Coello, “Evolutionary Multi-objective Optimization: A Historical View of the Field”, IEEE Computational Intelligence Magazine, Feb 2006, pp. 28–36.
– reference: G Meenakshi, ”Multi source feedback based performance appraisal system using Fuzzy logic decision support system,” International Journal on Soft Computing (IJSC ), vol. l.3, no.1, pp. 91–106, February 2012
– reference: E. Zitzler and S. K¨unzli, “Indicator-based selection in multiobjective search,” in Parallel Problem Solving from Nature (PPSN VIII), X. Yao et al., Eds. Berlin, Germany: Springer-Verlag, 2004, pp. 832–842.
– reference: TungYangChouJ“Multiobjective optimization formanpower assignment in consulting engineering firms”Applied Soft Computing2011111183119010.1016/j.asoc.2010.02.016
– reference: K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
– reference: John McCullock, “Particle Swarm Optimization”. Internet: http://mnemstudio.org/particle-swarm-introduction.htm
– reference: Z Jia and L Gong, “Multi-criteria Human Resource Allocation for Optimization Problems Using Multi-objective Particle Swarm Optimization Algorithm “, International conference on Computer Science and Software Engineering, 2008, pp. 1187–1190
– ident: 36_CR34
  doi: 10.1109/ICEICE.2011.5778029
– ident: 36_CR9
  doi: 10.1109/ICMSS.2011.5998043
– ident: 36_CR20
  doi: 10.1109/TEVC.2007.892759
– ident: 36_CR28
– ident: 36_CR47
– volume-title: “Evolutionary Algorithm for Multi-objective Optimizatiom: Methods and Applications”, Doctoral Thesis, Swiss Federal Institute of Technology, Zurich, 1999. [33]. K Deb, "Multi-Objective Optimization using Evolutionary Algorithms,"
  year: 2001
  ident: 36_CR30
– ident: 36_CR40
  doi: 10.5121/ijsc.2012.3108
– start-page: 620370–9
  volume-title: Theory of Multiobjective Optimization (vol. 176 of Mathematics in Science and Engineering)
  year: 1985
  ident: 36_CR44
– ident: 36_CR53
  doi: 10.1109/TEVC.2007.892759
– ident: 36_CR31
  doi: 10.1109/MCI.2006.1597059
– ident: 36_CR5
– volume: 19
  start-page: 103–124
  year: 1967
  ident: 36_CR13
  publication-title: J. Math. Anal. Appl
– ident: 36_CR38
– ident: 36_CR57
  doi: 10.1162/106365600568167
– ident: 36_CR41
  doi: 10.1109/CSSE.2008.1506
– ident: 36_CR66
  doi: 10.1109/WICT.2012.6409137
– ident: 36_CR50
  doi: 10.1007/978-3-540-70928-2_14
– ident: 36_CR52
  doi: 10.1002/int.20358
– ident: 36_CR27
– ident: 36_CR61
– ident: 36_CR48
– ident: 36_CR65
– ident: 36_CR4
  doi: 10.1109/SSME.2009.113
– ident: 36_CR39
  doi: 10.1109/COGSIMA.2011.5753426
– ident: 36_CR54
– ident: 36_CR3
  doi: 10.1016/j.scient.2011.03.026
– volume: 19
  start-page: 103–124
  year: 1967
  ident: 36_CR46
  publication-title: J. Math. Anal. Appl
– ident: 36_CR51
  doi: 10.1007/978-3-540-30217-9_84
– ident: 36_CR58
– ident: 36_CR64
  doi: 10.1109/MCI.2006.1597059
– ident: 36_CR29
  doi: 10.1109/AICCSA.2010.5587045
– ident: 36_CR16
– ident: 36_CR45
  doi: 10.1287/mnsc.19.4.357
– volume-title: “Evolutionary Algorithm for Multi-objective Optimizatiom: Methods and Applications”, Doctoral Thesis, Swiss Federal Institute of Technology, Zurich, 1999. [33]. K Deb, "Multi-Objective Optimization using Evolutionary Algorithms,"
  year: 2001
  ident: 36_CR63
– volume: 11
  start-page: 1183
  year: 2011
  ident: 36_CR2
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.02.016
– ident: 36_CR26
– volume: 11
  start-page: 1183–1190
  year: 2011
  ident: 36_CR35
  publication-title: Applied Soft Computing
– ident: 36_CR49
– ident: 36_CR6
  doi: 10.1109/COGSIMA.2011.5753426
– ident: 36_CR55
  doi: 10.1162/evco.1994.2.3.221
– ident: 36_CR18
  doi: 10.1007/978-3-540-30217-9_84
– ident: 36_CR32
– ident: 36_CR22
  doi: 10.1162/evco.1994.2.3.221
– ident: 36_CR60
– start-page: 620370–9
  volume-title: Theory of Multiobjective Optimization (vol. 176 of Mathematics in Science and Engineering)
  year: 1985
  ident: 36_CR11
– ident: 36_CR19
  doi: 10.1002/int.20358
– ident: 36_CR1
  doi: 10.1109/ICEICE.2011.5778029
– ident: 36_CR23
  doi: 10.1109/4235.996017
– ident: 36_CR59
– start-page: 88846–X
  volume-title: Multiple Criteria Optimization: Theory, Computations, and Application
  year: 1986
  ident: 36_CR43
– ident: 36_CR17
  doi: 10.1007/978-3-540-70928-2_14
– ident: 36_CR24
  doi: 10.1162/106365600568167
– ident: 36_CR15
– ident: 36_CR21
– ident: 36_CR25
– ident: 36_CR37
  doi: 10.1109/SSME.2009.113
– start-page: 88846–X
  volume-title: Multiple Criteria Optimization: Theory, Computations, and Application
  year: 1986
  ident: 36_CR10
– ident: 36_CR36
  doi: 10.1016/j.scient.2011.03.026
– ident: 36_CR7
  doi: 10.5121/ijsc.2012.3108
– ident: 36_CR8
  doi: 10.1109/CSSE.2008.1506
– ident: 36_CR33
  doi: 10.1109/WICT.2012.6409137
– ident: 36_CR62
  doi: 10.1109/AICCSA.2010.5587045
– ident: 36_CR14
– ident: 36_CR42
  doi: 10.1109/ICMSS.2011.5998043
– ident: 36_CR56
  doi: 10.1109/4235.996017
– ident: 36_CR12
  doi: 10.1287/mnsc.19.4.357
SSID ssj0003320838
Score 1.8759258
Snippet In an Organization, mapping the competency of personnel with different level of expertise, skill set, and experience in professional fields is a tough, complex...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9
SubjectTerms Allocations
Computer Science
Education
Guidelines
Mapping
Swarm intelligence
Tasks
Teaching
Title Load Allocation in Academic Environment: A Multi Objective PSO Approach
URI https://link.springer.com/article/10.7603/s40601-013-0036-7
https://www.proquest.com/docview/1531993153
https://www.proquest.com/docview/1551045631
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86X3zxW6xOieCTEljbNGl8K2NziDpBB3sr-SoooxO3_f_m2nRTUcGX9qGXFn65u1x6ud8hdEG1i8LjUBKrmSU0LQoiEhkRoZWOKoKnKhVz_8AGI3o7Tsa-jnvWnHZvUpKVp3ZmzRn8baNAHUKqbgTAosvX0Ubitu6g1l1f4gDuN44jF1akdQbz55Ff16BVYPktF1otMf0dtOVjQ5zVk7mL1my5h7abvgvYm-E-urmbSoOzCaxDgCt-KXFzzh33VpVr1zjDVYEtHqrX2rHhx6chzjyP-AEa9XvP3QHxDRGIjmLOSagUEO6lwBEoio52oDIpmRQSDFFZobUQuhCJTqkJEyelUusMOjXcRDxK4kPUKqelPUKYd4wpqDC2YIqGWqTQBd1ya2zodq1GBajTQJRrzxYOTSsmuds1AKp5jWruUAV-UZbzAF0uh7zVVBl_Cbcb3HNvNbM8BIcgYncL0PnysdN3SGLI0k4XIOO8iIv64jBAV818fXrFbx88_pf0Cdp0SkrrYwJt1Jq_L-ypiz7m6qzSNriy7gcG5c_C
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HvTiW4xWXcGTEmiSTTbrLZTWqn0IttBbyD4CSklF2__vTh5tFRU85ZDZBL7deezO7DcAV1SaKNxzElvLQNs0TFOb-4lrcymkmxM85amYXj_ojOjD2B-XZNF4F2Ylf88CPGOjSBhi5z0IkDuXrcMGNRtlrN5rBs3FcYrnuSaYCIu85c8jv3qeZTj5LQOaO5b2LmyXESGJiincgzWd7cNO1W2BlMp3AHfdaaJINEHvg2iSl4xU1e2ktbyvdksikl-rJQPxWpgz8vQ8IFHJHn4Io3Zr2OzYZRsEW7oeY7YjBNLshcgMyNOGNFAGSRIkPEH1E5pLyblMuS9DqhzfSIlQGzUOFVMuc33vCGrZNNPHQFhDqZRypdNAUEfyEHufa6aVdsxeVQkLGhVEsSw5wrFVxSQ2ewVENS5QjQ2qyCoaxMyC68WQt4Ig4y_heoV7XOrKR-ygGeCeeVhwuXhtVjmmLpJMT-coY2yHifU8x4Kbar5WPvHbD0_-JX0Bm51hrxt37_uPp7BlliktCgXqUJu9z_WZiT9m4jxfeZ_eYs32
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gnjxLUarruBJCTbPzXortbVqbQta6C3sK6CUtNj2_7uTR6uigqccMpvAtzuP3Zn9BuDClyYK9xxuaxlq24-SxGYBd20mhXQzgqcsFfPUDdsD_2EYDIs-p9Oy2r1MSeZ3GpClKZ1dT1SCKk5DPHnzkUbEzjoTIKMuXYU1s1HJ8rSNsLE4ZPE814QYUZ7N_HnkV3-0DDK_5UUzd9Pahs0iTiT1fGJ3YEWnu7BV9mAghUruwV1nzBWpj9AnIcbkNSVlzTtpLm-x3ZA6yS7bkp54y40c6T_3SL3gFN-HQav50mjbRXMEW7oepbYjBJLvRcgXyJKaNACHnIeccVRKoZmUjMmEBTLylRMYKRFpo9yRosqlbuAdQCUdp_oQCK0plfhM6SQUviNZhB3RNdVKO2YHq4QFtRKiWBbM4djAYhSbHQSiGueoxgZV5BoNY2rB5WLIJKfN-Eu4WuIeFxo0jR00DswzDwvOF6_N2seEBk_1eI4yxqKYCNBzLLgq5-vTJ3774dG_pM9gvX_bijv33cdj2DBr18-rB6pQmb3P9YkJSmbiNFt4H7Jc1j0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Load+Allocation+in+Academic+Environment%3A+A+Multi+Objective+PSO+Approach&rft.jtitle=GSTF+International+journal+on+computing&rft.au=Rout%2C+Sushri+Samita&rft.au=Misra%2C+Bijan+Bihari&rft.au=Samanta%2C+Sasmita&rft.date=2014-05-31&rft.issn=2010-2283&rft.eissn=2010-2283&rft.volume=3&rft.issue=4&rft_id=info:doi/10.7603%2Fs40601-013-0036-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_7603_s40601_013_0036_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2010-2283&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2010-2283&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2010-2283&client=summon