The Weighted Mean Curvature Derivative of a Space-Filling Diagram

Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the l...

Full description

Saved in:
Bibliographic Details
Published inComputational and Mathematical Biophysics Vol. 8; no. 1; pp. 51 - 67
Main Authors Akopyan, Arsenyi, Edelsbrunner, Herbert
Format Journal Article
LanguageEnglish
Published De Gruyter 27.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy.
AbstractList Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy.
Author Edelsbrunner, Herbert
Akopyan, Arsenyi
Author_xml – sequence: 1
  givenname: Arsenyi
  surname: Akopyan
  fullname: Akopyan, Arsenyi
  email: akopjan@gmail.com
  organization: IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
– sequence: 2
  givenname: Herbert
  surname: Edelsbrunner
  fullname: Edelsbrunner, Herbert
  email: edels@ist.ac.at
  organization: IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
BookMark eNp1kFtLxDAQhYMoeNtH3_sHqpPbpnmU9QorPqj4GMZ0UrN0W0m7iv_erKsgok9zGOacmfn22XbXd8TYEYdjrrk-8cunUoCAEjjAFtsTWqnSCGu2f-hdNhmGBQAIweXUmD12ev9MxSPF5nmkurgh7IrZKr3iuEpUnFGKWcZXKvpQYHH3gp7Ki9i2sWuKs4hNwuUh2wnYDjT5qgfs4eL8fnZVzm8vr2en89ILaXipRAVe8JoqkqFGsMaqIBUGrbUgBZoqVFMRpEEii5XVVkgvjVGoJacgD9j1JrfuceFeUlxienc9RvfZ6FPjMI3Rt-Q8EDxNYUqagzJBVqLSylrkMi8VSDlLbrJ86ochUXA-jvnRvhsTxtZxcGuoLkN1a6huDTW7yl-u7yv-m7eb-TdsR0o1NWn1noVb9KvUZVZ_-6rckh9tv4rO
CitedBy_id crossref_primary_10_1021_acs_jcim_2c01346
crossref_primary_10_1088_1572_9494_ac01e0
crossref_primary_10_1093_pnasnexus_pgaf065
crossref_primary_10_1073_pnas_2314959121
crossref_primary_10_1515_cmb_2020_0101
crossref_primary_10_3390_v15061366
Cites_doi 10.1103/PhysRevLett.97.078101
10.1103/PhysRevLett.93.160601
10.1073/pnas.0537830100
10.1090/tran/6991
10.1103/PhysRevLett.99.128101
10.1088/0953-8984/8/47/080
10.1088/0034-4885/66/5/202
10.1007/BF02574053
10.1145/174462.156635
10.1098/rstl.1868.0008
10.1007/BF02950740
10.1515/cmb-2020-0101
10.1007/s00454-004-1099-1
10.1038/319199a0
10.1021/jp984327m
10.1017/CBO9780511530067
10.1016/0022-2836(71)90324-X
10.1021/j100068a033
10.1002/jcc.23348
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/cmb-2020-0100
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2544-7297
EndPage 67
ExternalDocumentID oai_doaj_org_article_c0e0b606e51047f38285499a137942ae
10_1515_cmb_2020_0100
10_1515_cmb_2020_01008151
GroupedDBID AAFWJ
ABFKT
AFBDD
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
QD8
AAYXX
CITATION
ID FETCH-LOGICAL-c2371-4280c21de8e3fda09794f34af5552e405e8a462f37aee9a895923c3774a531ef3
IEDL.DBID DOA
ISSN 2544-7297
IngestDate Wed Aug 27 01:27:32 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Tue Jul 01 02:16:10 EDT 2025
Thu Jul 10 10:35:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2371-4280c21de8e3fda09794f34af5552e405e8a462f37aee9a895923c3774a531ef3
OpenAccessLink https://doaj.org/article/c0e0b606e51047f38285499a137942ae
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_c0e0b606e51047f38285499a137942ae
crossref_citationtrail_10_1515_cmb_2020_0100
crossref_primary_10_1515_cmb_2020_0100
walterdegruyter_journals_10_1515_cmb_2020_01008151
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-27
PublicationDateYYYYMMDD 2020-07-27
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-27
  day: 27
PublicationDecade 2020
PublicationTitle Computational and Mathematical Biophysics
PublicationYear 2020
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2021102520180098919_j_cmb-2020-0100_ref_009
2021102520180098919_j_cmb-2020-0100_ref_008
2021102520180098919_j_cmb-2020-0100_ref_019
2021102520180098919_j_cmb-2020-0100_ref_005
2021102520180098919_j_cmb-2020-0100_ref_016
2021102520180098919_j_cmb-2020-0100_ref_004
2021102520180098919_j_cmb-2020-0100_ref_015
2021102520180098919_j_cmb-2020-0100_ref_007
2021102520180098919_j_cmb-2020-0100_ref_018
2021102520180098919_j_cmb-2020-0100_ref_006
2021102520180098919_j_cmb-2020-0100_ref_017
2021102520180098919_j_cmb-2020-0100_ref_001
2021102520180098919_j_cmb-2020-0100_ref_012
2021102520180098919_j_cmb-2020-0100_ref_011
2021102520180098919_j_cmb-2020-0100_ref_003
2021102520180098919_j_cmb-2020-0100_ref_014
2021102520180098919_j_cmb-2020-0100_ref_002
2021102520180098919_j_cmb-2020-0100_ref_013
2021102520180098919_j_cmb-2020-0100_ref_010
2021102520180098919_j_cmb-2020-0100_ref_020
References_xml – ident: 2021102520180098919_j_cmb-2020-0100_ref_017
  doi: 10.1103/PhysRevLett.97.078101
– ident: 2021102520180098919_j_cmb-2020-0100_ref_013
  doi: 10.1103/PhysRevLett.93.160601
– ident: 2021102520180098919_j_cmb-2020-0100_ref_007
  doi: 10.1073/pnas.0537830100
– ident: 2021102520180098919_j_cmb-2020-0100_ref_020
– ident: 2021102520180098919_j_cmb-2020-0100_ref_002
  doi: 10.1090/tran/6991
– ident: 2021102520180098919_j_cmb-2020-0100_ref_011
  doi: 10.1103/PhysRevLett.99.128101
– ident: 2021102520180098919_j_cmb-2020-0100_ref_016
  doi: 10.1088/0953-8984/8/47/080
– ident: 2021102520180098919_j_cmb-2020-0100_ref_018
  doi: 10.1088/0034-4885/66/5/202
– ident: 2021102520180098919_j_cmb-2020-0100_ref_005
  doi: 10.1007/BF02574053
– ident: 2021102520180098919_j_cmb-2020-0100_ref_008
  doi: 10.1145/174462.156635
– ident: 2021102520180098919_j_cmb-2020-0100_ref_004
  doi: 10.1098/rstl.1868.0008
– ident: 2021102520180098919_j_cmb-2020-0100_ref_010
  doi: 10.1007/BF02950740
– ident: 2021102520180098919_j_cmb-2020-0100_ref_001
  doi: 10.1515/cmb-2020-0101
– ident: 2021102520180098919_j_cmb-2020-0100_ref_003
  doi: 10.1007/s00454-004-1099-1
– ident: 2021102520180098919_j_cmb-2020-0100_ref_009
  doi: 10.1038/319199a0
– ident: 2021102520180098919_j_cmb-2020-0100_ref_015
  doi: 10.1021/jp984327m
– ident: 2021102520180098919_j_cmb-2020-0100_ref_006
  doi: 10.1017/CBO9780511530067
– ident: 2021102520180098919_j_cmb-2020-0100_ref_014
  doi: 10.1016/0022-2836(71)90324-X
– ident: 2021102520180098919_j_cmb-2020-0100_ref_019
  doi: 10.1021/j100068a033
– ident: 2021102520180098919_j_cmb-2020-0100_ref_012
  doi: 10.1002/jcc.23348
SSID ssj0002213677
Score 2.114358
Snippet Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms 52A38
92E10
alpha shapes
computer implementation
derivatives
discontinuities
inclusion-exclusion
intrinsic volume
Molecular dynamics
proteins
space-filling diagrams
Title The Weighted Mean Curvature Derivative of a Space-Filling Diagram
URI https://www.degruyter.com/doi/10.1515/cmb-2020-0100
https://doaj.org/article/c0e0b606e51047f38285499a137942ae
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIOih-MT6Yg_iydBk8z7W1lKEetFib2GyOysVTaU2Sv-9s5u0FFG8eF02bPLNbOabfXzD2EXkgQQiqg4IJZxAytTJEwgdHShXaRBSSXPfeXgXDUbB7Tgcr5X6MmfCKnngCri2dNHNiWVjaEQFtG8U14ilg-eTJwlA8_elmLeWTD1bURcjRRbXopoUs9vyNSePEOYUlrnNthaErFb_Nmt-2v1phU-zcjFf7ofaMNPfYc2aH_JO9V67bAOLPbZZVYxc7LMOmZU_2uVMVHyIUPBuaZZVyxnyHnnThxXy5lPNgd9TPoxOf2Jlt3lvAuYk1gEb9W8eugOnroLgSOHHlOCJxJXCU5igrxW4KX239gPQYRgKJL6FCQSR0H4MiCkkaUicTfpE64DmF2r_kDWKaYFHjHsRYhjFMk_dIEDtgaInU-0JFLmOXdliV0tYMllLhJtKFS-ZSRUIxYxQzAyKmUGxxS5X3d8qbYzfOl4bjFedjKS1bSBDZ7Whs78M3WLim4Wyerq9_zxqQk3H_zHyCduqPCd2RHzKGvNZiWdEReb5ufW6L9pr2KA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BKkR7iIBSkfLaQ9UTVtbr9zG0hABNe2greluNd2dDpTap0hiUf8-s7VrldeG6mpXteWi-Gc9-C7CXhmiQgWqAyqogNqYIyhyTwMVWWofKWOPPO0-P08l5_PkiuZsmvG3HKi3NltV61TCkDu3CVL5R1nENcAYemuuS7av8TJWUw2-r66uHsJEy-M97sDGafDw96RotSnlWsqzl1_xj8y_5qKbt34L-j_pXdfce9zLO-An0W6goRo1tn8IDmj-DR83lkettGLGFxde6s0lWTAnn4qDyHdZqSeKQHet7zektFk6gOOXSmILxZc3ALQ4v0Q9lPYfz8Yezg0nQXogQGBVlXOupXBoVWsopchZlwcHkohhdkiSKGHpRjnGqXJQhUYF5kTB8MxEjPORQIxftQG--mNMLEGFKlKSZKQsZx-RCtLyzcKEiVbpMmgG8u1OLNi1buL-04kr7qoG1qFmL2mtRey0OYL8Tv2loMv4l-N7ruBPy7Nb1wmI5022waCNJllxZUeKJJFzkWfa4MsMw4g9WSANQv1lIt5F3-_en5ry0-z-b3sLjydn0SB99Ov7yEjYbr8kClb2C3mpZ0WtGJKvyTetzPwE7yNwR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK7gEo0eiPiIK6B9MJ6cbE_3PI8Ly7oqoAkSuXVquqsJie6SdUfDv6d6Zpgg6oVrpyozU4_UY6q_AniTxWiRE9UIlVNRYm0ZVQWmkU-cdB6VdTbcdz48ymYnycfT9PTGLf4wVunobFlfrlqE1JFb2Do0ynqsAY7AI_ujYv2qMFMl5ejC-XuwnmWlTgawPp69P_7c91mUCqBkeQev-RfvH-GoQe1_BBu_mz_V_WvcCDjTx7DRZYpi3Kp2E9Zo_gTut7sjL5_CmBUsvjWNTXLikHAu9urQYK2XJCZsV78aSG-x8ALFMVfGFE3PGwBuMTnHMJP1DE6m-1_3ZlG3DyGySudc6qlCWhU7Kkh7h7JkX_I6QZ-mqSLOvKjAJFNe50hUYlGmnL1ZzQkesqeR189hMF_M6QWIOCNKs9xWpUwS8jE65ix9rEhVPpd2CO-uxWJsBxYedlZ8N6FoYCkalqIJUjRBikN425NftCgZ_yPcDTLuiQK4dXOwWJ6ZzleMlSQrLqwoDTgSXgeQPS7MMNb8wQppCOqWhkzneD___dSCj17ehek1PPgymZqDD0eftuBhazR5pPJtGKyWNe1wPrKqXnUmdwX6HNs3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Weighted+Mean+Curvature+Derivative+of+a+Space-Filling+Diagram&rft.jtitle=Computational+and+Mathematical+Biophysics&rft.au=Akopyan%2C+Arsenyi&rft.au=Edelsbrunner%2C+Herbert&rft.date=2020-07-27&rft.pub=De+Gruyter&rft.eissn=2544-7297&rft.volume=8&rft.issue=1&rft.spage=51&rft.epage=67&rft_id=info:doi/10.1515%2Fcmb-2020-0100&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_cmb_2020_01008151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2544-7297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2544-7297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2544-7297&client=summon