Study on electronic and optical properties of the twisted and strained MoS2/PtS2 heterogeneous interface

[Display omitted] •2D MoS2/PtS2 heterogeneous interface has been simulated using DFT.•Twisting and strain effects are considered in the simulation.•Optical absorption spectrum has been found to be widened by twisting and strain.•Optical absorption peak has been significantly increased for certain tw...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 476; pp. 308 - 316
Main Authors Deng, Shuo, Zhang, Yan, Li, Lijie
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2019
Subjects
Online AccessGet full text
ISSN0169-4332
1873-5584
DOI10.1016/j.apsusc.2019.01.097

Cover

Loading…
Abstract [Display omitted] •2D MoS2/PtS2 heterogeneous interface has been simulated using DFT.•Twisting and strain effects are considered in the simulation.•Optical absorption spectrum has been found to be widened by twisting and strain.•Optical absorption peak has been significantly increased for certain twisting angles. We report electronic and optical properties of the MoS2/PtS2 heterogeneous interfaces subject to various twisting angles based on the first principles simulation. In order to sustain the structural stability and avoid to have a large size cell, the optimized rotation angles of the MoS2/PtS2 heterogeneous interfaces are 19.1°, 30.0° and 40.9°. It is found from the first principle simulation that the absolute passband amplitude of the refractive index, extinction coefficient, reflectivity and absorption coefficient curves under 30.0° rotation angle are 6–12 times higher than 19.1° and 40.9° rotation angles of the MoS2/PtS2 heterogeneous interfaces. Moreover, under the 30.0° twisting angle, the absorption coefficient in the absorption spectrum can reach to or above 105/cm. The absorption spectrum has a red-shift and a broadening effect with the tensile strain, from roughly 700 nm (0% externally strain) to 1050 nm (5% externally strain). The prominent optical properties of MoS2/PtS2 heterogeneous interface under 30° rotation angle still exist after taking into consideration the spin-orbit coupling (SOC) effect. These results suggest that the MoS2/PtS2 heterogeneous interfaces will have great potential applications in tunable optoelectronic devices.
AbstractList [Display omitted] •2D MoS2/PtS2 heterogeneous interface has been simulated using DFT.•Twisting and strain effects are considered in the simulation.•Optical absorption spectrum has been found to be widened by twisting and strain.•Optical absorption peak has been significantly increased for certain twisting angles. We report electronic and optical properties of the MoS2/PtS2 heterogeneous interfaces subject to various twisting angles based on the first principles simulation. In order to sustain the structural stability and avoid to have a large size cell, the optimized rotation angles of the MoS2/PtS2 heterogeneous interfaces are 19.1°, 30.0° and 40.9°. It is found from the first principle simulation that the absolute passband amplitude of the refractive index, extinction coefficient, reflectivity and absorption coefficient curves under 30.0° rotation angle are 6–12 times higher than 19.1° and 40.9° rotation angles of the MoS2/PtS2 heterogeneous interfaces. Moreover, under the 30.0° twisting angle, the absorption coefficient in the absorption spectrum can reach to or above 105/cm. The absorption spectrum has a red-shift and a broadening effect with the tensile strain, from roughly 700 nm (0% externally strain) to 1050 nm (5% externally strain). The prominent optical properties of MoS2/PtS2 heterogeneous interface under 30° rotation angle still exist after taking into consideration the spin-orbit coupling (SOC) effect. These results suggest that the MoS2/PtS2 heterogeneous interfaces will have great potential applications in tunable optoelectronic devices.
Author Li, Lijie
Deng, Shuo
Zhang, Yan
Author_xml – sequence: 1
  givenname: Shuo
  orcidid: 0000-0002-6787-0399
  surname: Deng
  fullname: Deng, Shuo
  organization: School of Logistic Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 2
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  email: zhangyan@uestc.edu.cn
  organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 3
  givenname: Lijie
  surname: Li
  fullname: Li, Lijie
  email: L.Li@swansea.ac.uk
  organization: College of Engineering, Swansea University, Swansea SA1 8EN, UK
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wEzzM9PMuBCk-AeKQnUd0uSOTRmTIUmVvr2pdeVCV5fDPefA-SZo5LwDhM4pKSmh89mmVEPcRl0yQtuS0JK04giNaSN4UddNNULjbGuLinN2giYxbgihLH_HaL1MW7PD3mHoQafgndVYOYP9kKxWPR6CHyAkCxH7Dqc14PRpYwLz7YopKOuyePRLNntOS4bXkCD4N3DgtxFbl1WnNJyi4071Ec5-7hS93ly_LO6Kh6fb-8XVQ6EZn6cC2mrFWtCCUMF5IxplaLei1ZzRFeOioTWvSGcaQqAWDcyN4XVrtOgMZ5wow6eoOvTq4GMM0Mkh2HcVdpISuaclN_JAS-5pSUJlppVjF79i2iaVrHf7hf1_4ctDGPKwDwtBRm3BaTA2ZKjSePt3wRcH-Iwe
CitedBy_id crossref_primary_10_1016_j_carbon_2023_118437
crossref_primary_10_1016_j_apsusc_2019_144530
crossref_primary_10_1515_nanoph_2019_0515
crossref_primary_10_1016_j_chemphys_2020_110679
crossref_primary_10_1063_5_0048975
crossref_primary_10_1088_1361_6463_ad8930
crossref_primary_10_1016_j_solidstatesciences_2021_106736
crossref_primary_10_1007_s10825_020_01512_7
crossref_primary_10_7498_aps_73_20241138
crossref_primary_10_1039_C9CP03639C
crossref_primary_10_1016_j_apsusc_2020_148030
crossref_primary_10_1002_pssr_202200235
crossref_primary_10_1016_j_jpcs_2024_112024
crossref_primary_10_1063_5_0110530
crossref_primary_10_1103_PhysRevB_108_075416
crossref_primary_10_1021_acsanm_9b00871
crossref_primary_10_1039_C9NR03611C
crossref_primary_10_1016_j_physe_2019_113866
crossref_primary_10_1016_j_apsusc_2020_145901
crossref_primary_10_1515_nanoph_2019_0562
crossref_primary_10_1016_j_cartre_2022_100153
crossref_primary_10_1016_j_spmi_2020_106514
crossref_primary_10_1021_acs_chemmater_1c03166
crossref_primary_10_1016_j_physb_2023_414975
crossref_primary_10_1007_s13204_021_01834_3
crossref_primary_10_1039_D3RA05079C
Cites_doi 10.1126/science.aar8412
10.1039/C7NR07746G
10.1088/2053-1583/aacfc1
10.1021/acs.nanolett.6b00932
10.1007/s12274-011-0183-0
10.1021/jacs.7b04865
10.1021/acsanm.8b00363
10.1039/C7TC04697A
10.1021/acsnano.6b01486
10.1038/nnano.2012.193
10.1109/TNANO.2018.2805770
10.1103/PhysRevB.96.085306
10.1021/nl501077m
10.1039/C7CP07303H
10.1021/acs.jpclett.7b01374
10.1073/pnas.1720865115
10.1007/s12274-017-1457-y
10.1038/nature26160
10.1007/s40843-016-5122-3
10.1016/j.carbon.2017.12.076
10.1039/C7TA02109G
10.1016/j.physe.2018.03.016
10.1103/PhysRevB.90.075204
10.1002/anie.201309280
10.1021/jp507751p
10.1039/C7TC03350H
10.1126/science.aac9439
10.1103/PhysRevB.96.060509
10.1103/PhysRevB.87.075451
10.1103/PhysRevLett.105.136805
10.1002/jcc.20495
10.1039/C6TC03074B
10.1039/C7RA09945B
10.1039/C8CP00994E
10.1038/nature26154
10.1039/C8CP02997K
10.1039/C3NR06072A
10.1126/sciadv.1601459
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apsusc.2019.01.097
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5584
EndPage 316
ExternalDocumentID 10_1016_j_apsusc_2019_01_097
S0169433219301126
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
SSH
WUQ
ID FETCH-LOGICAL-c236t-e94b29ec701733878ad1fb14621b237815340fd800e578e6dd359dc7fd3230ad3
IEDL.DBID .~1
ISSN 0169-4332
IngestDate Tue Jul 01 02:09:24 EDT 2025
Thu Apr 24 23:10:40 EDT 2025
Fri Feb 23 02:25:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MoS2/PtS2 heterogeneous structure
Optical performance
Twisting angle
Strain engineering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-e94b29ec701733878ad1fb14621b237815340fd800e578e6dd359dc7fd3230ad3
ORCID 0000-0002-6787-0399
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_apsusc_2019_01_097
crossref_citationtrail_10_1016_j_apsusc_2019_01_097
elsevier_sciencedirect_doi_10_1016_j_apsusc_2019_01_097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied surface science
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lu, Guo, Li, Dai, Wang, Mei, Wu, Zeng (b0160) 2014; 6
Guo (b0040) 2016; 4
Fu, Li, Lin, Gong, Huang, Huang, Han, Zhou, Cui (b0020) 2017; 8
Zhao, Qiao, Yu, Yu, Xu, Lau, Zhou, Liu, Wang, Ji, Chai (b0045) 2017; 29
Mak, Lee, Hone, Shan, Heinz (b0150) 2010; 105
Jelver, Larsen, Stradi, Stokbro, Jacobsen (b0125) 2017; 96
Hou, Han, Wu, Quhe, Lu (b0095) 2017; 7
Wang, Quhe, Cui, Zhi, Huang, An, Dai, Tang, Chen, Wu, Tang (b0115) 2018; 129
Cao, Fatemi, Fang, Watanabe, Taniguchi, Kaxiras, Jarillo-Herrero (b0025) 2018; 556
Oyedele, Yang, Liang, Puretzky, Wang, Zheng, Yu, Pudasaini, Ghosh, Liu, Rouleau, Sumpter, Chisholm, Zhou, Rack, Geohegan, Xiao (b0050) 2017; 139
van der Zande, Kunstrnann, Chernikov, Chenet, You, Zhang, Huang, Berkelbach, Wang, Zhang, Hybertsen, Muller, Reichman, Heinz, Hone (b0210) 2014; 14
Deng, Zhang, Li (b0035) 2018; 17
Ning, Wang, Feng, Tang, Zhang, Chen (b0110) 2017; 5
Kosmider, Fernandez-Rossier (b0155) 2013; 87
Hua, Ma, Hu, He, Xu, Huang, Chen (b0180) 2018; 20
Novoselov, Mishchenko, Carvalho, Neto (b0005) 2016; 353
Grimme (b0135) 2006; 27
Deng, Li, Li (b0030) 2018; 101
Cao, Fatemi, Demir, Fang, Tomarken, Luo, Sanchez-Yamagishi, Watanabe, Taniguchi, Kaxiras, Ashoori, Jarillo-Herrero (b0070) 2018; 556
Zhang, Chuu, Ren, Li, Li, Jin, Chou, Shih (b0105) 2017; 3
Haastrup, Strange, Pandey, Deilmann, Schmidt, Hinsche, Gjerding, Torelli, Larsen, Riis-Jensen, Gath, Jacobsen, Mortensen, Olsen, Thygesen (b0145) 2018; 5
Wang, Chen, Wang (b0090) 2015; 119
Lu, Guo, Zhuo, Wang, Wu, Zeng (b0085) 2017; 9
Miro, Ghorbani-Asl, Heine (b0060) 2014; 53
Wooten (b0175) 1972
Yao, Wang, Bao, Zhang, Zhang, Bao, Chan, Chen, Avila, Asensio, Zhu, Zhou (b0075) 2018; 115
Luftner, Refaely-Abramson, Pachler, Resel, Ramsey, Kronik, Puschnig (b0140) 2014; 90
.
Scalise, Houssa, Pourtois, Afanas'ev, Stesmans (b0170) 2012; 5
Li, Zhang (b0010) 2017; 10
Deng, Li, Zhang (b0065) 2018; 1
Matsushita, Nishi, Iwata, Kosugi, Oshiyama (b0165) 2018; 2
Wang, Huang, Tian, Ceballos, Lin, Mahjouri-Samani, Boulesbaa, Puretzky, Rouleau, Yoon, Zhao, Xiao, Duscher, Geohegan (b0100) 2016; 10
Mogulkoc, Modarresi, Mogulkoc, Alkan (b0195) 2018; 20
Hu, Yang (b0200) 2017; 5
He, Yang, Zhang, Gong, Zhou, Hu, Ye, Zhaug, Bianco, Lei, Jin, Zou, Yang, Zhang, Xie, Lou, Yakobson, Vajtai, Li, Ajayan (b0205) 2016; 16
Atomistix ToolKit (ATK)
ElGhazali, Naumov, Mirhosseini, Suss, Muchler, Schnelle, Felser, Medvedev (b0055) 2017; 96
Wang, Kalantar-Zadeh, Kis, Coleman, Strano (b0015) 2012; 7
Xia, Du, Xiong, Jia, Wei, Li (b0120) 2017; 5
Ahn, Moon, Kim, Kim, Shin, Kim, Cha, Kahng, Kim, Koshino, Son, Yang, Ahn (b0080) 2018
Zhang, Lang, Zhu, Jiang (b0185) 2018; 20
Meng, Jiang, Liang, Yang, Tan, Sun, Chen (b0190) 2016; 59
Wang (10.1016/j.apsusc.2019.01.097_b0100) 2016; 10
Ahn (10.1016/j.apsusc.2019.01.097_b0080) 2018
Zhang (10.1016/j.apsusc.2019.01.097_b0185) 2018; 20
Guo (10.1016/j.apsusc.2019.01.097_b0040) 2016; 4
Kosmider (10.1016/j.apsusc.2019.01.097_b0155) 2013; 87
Lu (10.1016/j.apsusc.2019.01.097_b0160) 2014; 6
Cao (10.1016/j.apsusc.2019.01.097_b0025) 2018; 556
Novoselov (10.1016/j.apsusc.2019.01.097_b0005) 2016; 353
Mak (10.1016/j.apsusc.2019.01.097_b0150) 2010; 105
Hu (10.1016/j.apsusc.2019.01.097_b0200) 2017; 5
van der Zande (10.1016/j.apsusc.2019.01.097_b0210) 2014; 14
Wooten (10.1016/j.apsusc.2019.01.097_b0175) 1972
Zhao (10.1016/j.apsusc.2019.01.097_b0045) 2017; 29
Deng (10.1016/j.apsusc.2019.01.097_b0030) 2018; 101
Hou (10.1016/j.apsusc.2019.01.097_b0095) 2017; 7
Ning (10.1016/j.apsusc.2019.01.097_b0110) 2017; 5
10.1016/j.apsusc.2019.01.097_b0130
Mogulkoc (10.1016/j.apsusc.2019.01.097_b0195) 2018; 20
Grimme (10.1016/j.apsusc.2019.01.097_b0135) 2006; 27
Deng (10.1016/j.apsusc.2019.01.097_b0065) 2018; 1
Wang (10.1016/j.apsusc.2019.01.097_b0090) 2015; 119
Hua (10.1016/j.apsusc.2019.01.097_b0180) 2018; 20
Meng (10.1016/j.apsusc.2019.01.097_b0190) 2016; 59
Fu (10.1016/j.apsusc.2019.01.097_b0020) 2017; 8
Lu (10.1016/j.apsusc.2019.01.097_b0085) 2017; 9
Scalise (10.1016/j.apsusc.2019.01.097_b0170) 2012; 5
Matsushita (10.1016/j.apsusc.2019.01.097_b0165) 2018; 2
ElGhazali (10.1016/j.apsusc.2019.01.097_b0055) 2017; 96
Cao (10.1016/j.apsusc.2019.01.097_b0070) 2018; 556
Wang (10.1016/j.apsusc.2019.01.097_b0115) 2018; 129
Xia (10.1016/j.apsusc.2019.01.097_b0120) 2017; 5
Miro (10.1016/j.apsusc.2019.01.097_b0060) 2014; 53
Li (10.1016/j.apsusc.2019.01.097_b0010) 2017; 10
Deng (10.1016/j.apsusc.2019.01.097_b0035) 2018; 17
Zhang (10.1016/j.apsusc.2019.01.097_b0105) 2017; 3
Yao (10.1016/j.apsusc.2019.01.097_b0075) 2018; 115
Wang (10.1016/j.apsusc.2019.01.097_b0015) 2012; 7
Jelver (10.1016/j.apsusc.2019.01.097_b0125) 2017; 96
Luftner (10.1016/j.apsusc.2019.01.097_b0140) 2014; 90
He (10.1016/j.apsusc.2019.01.097_b0205) 2016; 16
Oyedele (10.1016/j.apsusc.2019.01.097_b0050) 2017; 139
Haastrup (10.1016/j.apsusc.2019.01.097_b0145) 2018; 5
References_xml – volume: 87
  year: 2013
  ident: b0155
  article-title: Electronic properties of the MoS2-WS2 heterojunction
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 3869
  year: 2014
  end-page: 3875
  ident: b0210
  article-title: Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist
  publication-title: Nano Lett.
– volume: 59
  start-page: 1027
  year: 2016
  end-page: 1036
  ident: b0190
  article-title: Design of graphene-like gallium nitride and WS2/WSe2 nanocomposites for photocatalyst applications
  publication-title: Sci. China Mater.
– volume: 353
  year: 2016
  ident: b0005
  article-title: 2D materials and van der Waals heterostructures
  publication-title: Science
– volume: 10
  start-page: 2527
  year: 2017
  end-page: 2534
  ident: b0010
  article-title: Controlling the luminescence of monolayer MoS2 based on the piezoelectric effect
  publication-title: Nano Res.
– volume: 556
  start-page: 80-+
  year: 2018
  ident: b0070
  article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
  publication-title: Nature
– volume: 29
  year: 2017
  ident: b0045
  article-title: High-electron- mobility and air-stable 2D layered PtSe2 FETs
  publication-title: Adv. Mater.
– reference: Atomistix ToolKit (ATK),
– volume: 1
  start-page: 1932
  year: 2018
  end-page: 1939
  ident: b0065
  article-title: Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices
  publication-title: ACS Appl. Nano Mater.
– volume: 115
  start-page: 6928
  year: 2018
  end-page: 6933
  ident: b0075
  article-title: Quasicrystalline 30 degrees twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 6612
  year: 2016
  end-page: 6622
  ident: b0100
  article-title: Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy
  publication-title: ACS Nano
– volume: 119
  start-page: 4752
  year: 2015
  end-page: 4758
  ident: b0090
  article-title: Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 13400
  year: 2017
  end-page: 13410
  ident: b0120
  article-title: A type-II GeSe/SnS heterobilayer with a suitable direct gap, superior optical absorption and broad spectrum for photovoltaic applications
  publication-title: J. Mater. Chem. A
– reference: . .
– volume: 9
  start-page: 19131
  year: 2017
  end-page: 19138
  ident: b0085
  article-title: Twisted MX2/MoS2 heterobilayers: effect of van der Waals interaction on the electronic structure
  publication-title: Nanoscale
– volume: 7
  start-page: 699
  year: 2012
  end-page: 712
  ident: b0015
  article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
– volume: 16
  start-page: 3314
  year: 2016
  end-page: 3320
  ident: b0205
  article-title: Strain-induced electronic structure changes in stacked van der Waals heterostructures
  publication-title: Nano Lett.
– volume: 20
  start-page: 1974
  year: 2018
  end-page: 1983
  ident: b0180
  article-title: Controlling electronic properties of MoS2/graphene oxide heterojunctions for enhancing photocatalytic performance: the role of oxygen
  publication-title: Phys. Chem. Chem. Phys.
– volume: 101
  start-page: 44
  year: 2018
  end-page: 49
  ident: b0030
  article-title: Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2
  publication-title: Phys. E-Low-Dimensional Syst. Nanostruct.
– volume: 53
  start-page: 3015
  year: 2014
  end-page: 3018
  ident: b0060
  article-title: Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides
  publication-title: Angew. Chem. Int. Edit.
– volume: 5
  start-page: 43
  year: 2012
  end-page: 48
  ident: b0170
  article-title: Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2
  publication-title: Nano Res.
– volume: 20
  start-page: 12053
  year: 2018
  end-page: 12060
  ident: b0195
  article-title: Electronic and optical properties of boron phosphide/blue phosphorus heterostructures
  publication-title: Phys. Chem. Chem. Phys.
– volume: 90
  year: 2014
  ident: b0140
  article-title: Experimental and theoretical electronic structure of quinacridone
  publication-title: Phys. Rev. B
– year: 2018
  ident: b0080
  article-title: Dirac electrons in a dodecagonal graphene quasicrystal
  publication-title: Science
– volume: 7
  start-page: 45896
  year: 2017
  end-page: 45901
  ident: b0095
  article-title: Robust quasi-ohmic contact against angle rotation in noble transition-metal-dichalcogenide/graphene heterobilayers
  publication-title: RSC Adv.
– volume: 3
  year: 2017
  ident: b0105
  article-title: Interlayer couplings, Moire patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers
  publication-title: Sci. Adv.
– year: 1972
  ident: b0175
  article-title: Optical Properties of Solids
– volume: 96
  year: 2017
  ident: b0055
  article-title: Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 17574
  year: 2018
  end-page: 17582
  ident: b0185
  article-title: Strain tuned InSe/MoS2 bilayer van der Waals heterostructures for photovoltaics or photocatalysis
  publication-title: Phys. Chem. Chem. Phys.
– volume: 5
  start-page: 12289
  year: 2017
  end-page: 12297
  ident: b0200
  article-title: Two-dimensional van der Waals heterojunctions for functional materials and devices
  publication-title: J. Mater. Chem. C
– volume: 129
  start-page: 738
  year: 2018
  end-page: 744
  ident: b0115
  article-title: Electric field effects on the electronic and optical properties in C2N/Sb van der Waals heterostructure
  publication-title: Carbon
– volume: 8
  start-page: 3556
  year: 2017
  end-page: 3563
  ident: b0020
  article-title: Pressure-dependent light emission of charged and neutral excitons in monolayer MoSe2
  publication-title: J. Phys. Chem. Lett.
– volume: 139
  start-page: 14090
  year: 2017
  end-page: 14097
  ident: b0050
  article-title: PdSe2: pentagonal two-dimensional layers with high air stability for electronics
  publication-title: J. Am. Chem. Soc.
– volume: 556
  start-page: 43-+
  year: 2018
  ident: b0025
  article-title: Unconventional superconductivity in magic-angle graphene superlattices
  publication-title: Nature
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: b0135
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
– volume: 6
  start-page: 2879
  year: 2014
  end-page: 2886
  ident: b0160
  article-title: MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field
  publication-title: Nanoscale
– volume: 5
  start-page: 9429
  year: 2017
  end-page: 9438
  ident: b0110
  article-title: Strong interfacial interaction and enhanced optical absorption in graphene/InAs and MoS2/InAs heterostructures
  publication-title: J. Mater. Chem. C
– volume: 2
  year: 2018
  ident: b0165
  article-title: Unfolding energy spectra of double-periodicity two-dimensional systems: twisted bilayer graphene and MoS2 on graphene
  publication-title: Phys. Rev. Mater.
– volume: 17
  start-page: 419
  year: 2018
  end-page: 423
  ident: b0035
  article-title: Strain magnitude and direction effect on the energy band structure of hexagonal and orthorhombic monolayer MoS2
  publication-title: IEEE Trans. Nanotechnol.
– volume: 96
  year: 2017
  ident: b0125
  article-title: Determination of low-strain interfaces via geometric matching
  publication-title: Phys. Rev. B
– volume: 105
  year: 2010
  ident: b0150
  article-title: Atomically thin MoS
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 9366
  year: 2016
  end-page: 9374
  ident: b0040
  article-title: Biaxial strain tuned thermoelectric properties in monolayer PtSe2
  publication-title: J. Mater. Chem. C
– volume: 5
  year: 2018
  ident: b0145
  article-title: The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals
  publication-title: 2D Mater.
– year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0080
  article-title: Dirac electrons in a dodecagonal graphene quasicrystal
  publication-title: Science
  doi: 10.1126/science.aar8412
– volume: 9
  start-page: 19131
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0085
  article-title: Twisted MX2/MoS2 heterobilayers: effect of van der Waals interaction on the electronic structure
  publication-title: Nanoscale
  doi: 10.1039/C7NR07746G
– volume: 5
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0145
  article-title: The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aacfc1
– year: 1972
  ident: 10.1016/j.apsusc.2019.01.097_b0175
– volume: 16
  start-page: 3314
  year: 2016
  ident: 10.1016/j.apsusc.2019.01.097_b0205
  article-title: Strain-induced electronic structure changes in stacked van der Waals heterostructures
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00932
– volume: 5
  start-page: 43
  year: 2012
  ident: 10.1016/j.apsusc.2019.01.097_b0170
  article-title: Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2
  publication-title: Nano Res.
  doi: 10.1007/s12274-011-0183-0
– volume: 139
  start-page: 14090
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0050
  article-title: PdSe2: pentagonal two-dimensional layers with high air stability for electronics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04865
– volume: 1
  start-page: 1932
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0065
  article-title: Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00363
– volume: 5
  start-page: 12289
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0200
  article-title: Two-dimensional van der Waals heterojunctions for functional materials and devices
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC04697A
– volume: 10
  start-page: 6612
  year: 2016
  ident: 10.1016/j.apsusc.2019.01.097_b0100
  article-title: Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01486
– volume: 7
  start-page: 699
  year: 2012
  ident: 10.1016/j.apsusc.2019.01.097_b0015
  article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 17
  start-page: 419
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0035
  article-title: Strain magnitude and direction effect on the energy band structure of hexagonal and orthorhombic monolayer MoS2
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2018.2805770
– volume: 96
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0125
  article-title: Determination of low-strain interfaces via geometric matching
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.085306
– volume: 14
  start-page: 3869
  year: 2014
  ident: 10.1016/j.apsusc.2019.01.097_b0210
  article-title: Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist
  publication-title: Nano Lett.
  doi: 10.1021/nl501077m
– volume: 20
  start-page: 1974
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0180
  article-title: Controlling electronic properties of MoS2/graphene oxide heterojunctions for enhancing photocatalytic performance: the role of oxygen
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP07303H
– volume: 8
  start-page: 3556
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0020
  article-title: Pressure-dependent light emission of charged and neutral excitons in monolayer MoSe2
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01374
– volume: 115
  start-page: 6928
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0075
  article-title: Quasicrystalline 30 degrees twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1720865115
– volume: 10
  start-page: 2527
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0010
  article-title: Controlling the luminescence of monolayer MoS2 based on the piezoelectric effect
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1457-y
– volume: 556
  start-page: 43-+
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0025
  article-title: Unconventional superconductivity in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 59
  start-page: 1027
  year: 2016
  ident: 10.1016/j.apsusc.2019.01.097_b0190
  article-title: Design of graphene-like gallium nitride and WS2/WSe2 nanocomposites for photocatalyst applications
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-016-5122-3
– volume: 129
  start-page: 738
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0115
  article-title: Electric field effects on the electronic and optical properties in C2N/Sb van der Waals heterostructure
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.12.076
– volume: 5
  start-page: 13400
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0120
  article-title: A type-II GeSe/SnS heterobilayer with a suitable direct gap, superior optical absorption and broad spectrum for photovoltaic applications
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02109G
– ident: 10.1016/j.apsusc.2019.01.097_b0130
– volume: 101
  start-page: 44
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0030
  article-title: Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2
  publication-title: Phys. E-Low-Dimensional Syst. Nanostruct.
  doi: 10.1016/j.physe.2018.03.016
– volume: 90
  year: 2014
  ident: 10.1016/j.apsusc.2019.01.097_b0140
  article-title: Experimental and theoretical electronic structure of quinacridone
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.075204
– volume: 53
  start-page: 3015
  year: 2014
  ident: 10.1016/j.apsusc.2019.01.097_b0060
  article-title: Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201309280
– volume: 119
  start-page: 4752
  year: 2015
  ident: 10.1016/j.apsusc.2019.01.097_b0090
  article-title: Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp507751p
– volume: 5
  start-page: 9429
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0110
  article-title: Strong interfacial interaction and enhanced optical absorption in graphene/InAs and MoS2/InAs heterostructures
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC03350H
– volume: 353
  year: 2016
  ident: 10.1016/j.apsusc.2019.01.097_b0005
  article-title: 2D materials and van der Waals heterostructures
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 96
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0055
  article-title: Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.060509
– volume: 87
  year: 2013
  ident: 10.1016/j.apsusc.2019.01.097_b0155
  article-title: Electronic properties of the MoS2-WS2 heterojunction
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.075451
– volume: 105
  year: 2010
  ident: 10.1016/j.apsusc.2019.01.097_b0150
  article-title: Atomically thin MoS2: a new direct-gap semiconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 27
  start-page: 1787
  year: 2006
  ident: 10.1016/j.apsusc.2019.01.097_b0135
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 4
  start-page: 9366
  year: 2016
  ident: 10.1016/j.apsusc.2019.01.097_b0040
  article-title: Biaxial strain tuned thermoelectric properties in monolayer PtSe2
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03074B
– volume: 7
  start-page: 45896
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0095
  article-title: Robust quasi-ohmic contact against angle rotation in noble transition-metal-dichalcogenide/graphene heterobilayers
  publication-title: RSC Adv.
  doi: 10.1039/C7RA09945B
– volume: 29
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0045
  article-title: High-electron- mobility and air-stable 2D layered PtSe2 FETs
  publication-title: Adv. Mater.
– volume: 20
  start-page: 12053
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0195
  article-title: Electronic and optical properties of boron phosphide/blue phosphorus heterostructures
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP00994E
– volume: 556
  start-page: 80-+
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0070
  article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26154
– volume: 20
  start-page: 17574
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0185
  article-title: Strain tuned InSe/MoS2 bilayer van der Waals heterostructures for photovoltaics or photocatalysis
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP02997K
– volume: 6
  start-page: 2879
  year: 2014
  ident: 10.1016/j.apsusc.2019.01.097_b0160
  article-title: MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field
  publication-title: Nanoscale
  doi: 10.1039/C3NR06072A
– volume: 3
  year: 2017
  ident: 10.1016/j.apsusc.2019.01.097_b0105
  article-title: Interlayer couplings, Moire patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601459
– volume: 2
  year: 2018
  ident: 10.1016/j.apsusc.2019.01.097_b0165
  article-title: Unfolding energy spectra of double-periodicity two-dimensional systems: twisted bilayer graphene and MoS2 on graphene
  publication-title: Phys. Rev. Mater.
SSID ssj0012873
Score 2.4162433
Snippet [Display omitted] •2D MoS2/PtS2 heterogeneous interface has been simulated using DFT.•Twisting and strain effects are considered in the simulation.•Optical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 308
SubjectTerms MoS2/PtS2 heterogeneous structure
Optical performance
Strain engineering
Twisting angle
Title Study on electronic and optical properties of the twisted and strained MoS2/PtS2 heterogeneous interface
URI https://dx.doi.org/10.1016/j.apsusc.2019.01.097
Volume 476
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1jvuiDeMV5GXnwtfaSdG0fx3BMxSHMwd5CcymbSFu2DvHF3-739TIniIKPKQmEL8nJSXq-E0KuHcO4ihzfCplSFgdGb0lcj0yGSRLLxDGyVPmOe6Mpv5_5sxYZNLkwKKussb_C9BKt6y92HU07XyzsCfqIoPsWUBAHE2Ewg50HKOu7-djIPAB-q7_MUBmzg7wmfa7UeMVwEl2hkaEbleadaP300_a0teUMD8h-zRVpv-rOIWmZ9IjsbTkIHpM56gDfaZbSr_dsaJxqmuXlJTXN8bJ9ia6pNEsosD1avOHI6rLWqnwhAgqP2cSzn4qJR-eoj8lgWplsvaLoJrFMYmVOyHR4-zwYWfXjCZbyWK-wTMSlFxkVwJKDY2gQxtpNJOCi50qPBSEgHXcSDXzRwKI1Pa2ZH2kVJJrBqSTW7JS00yw1Z4TCpq57yndlyBXXbhSGfhBHLjNcxhIYQIewJmZC1c7i2P1X0UjIXkQVaYGRFo4rINIdYm1a5ZWzxh_1g2Y4xLcZIgD8f215_u-WF2QXS6gWcP1L0i6Wa3MFJKSQ3XKWdclO_-5hNP4Ep3zdFQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH8Yn1uQevoUl20yTHUpT6KkIreFuyj6AiSWlTxH_vTB5VQRQ8JtmFZXZ29pvNN98CnLuWCx27gRNxrR2BiN5RtB65itI0UalrVcnyHfWGD-L6MXhcgUFTC0O0yjr2VzG9jNb1m25tze70-bk7Jh0RUt9CCOJSIcwqtEmdSrSg3b-6GY6WPxMwKeCVxHdMBUJ-U0FX0rwSTEbnpGXoxaV-J6k__bRDfdl1Lrdgs4aLrF-NaBtWbLYDG19EBHfhiaiA7yzP2OeVNizJDMun5Tk1m9J5-4yEU1meMgR8rHijyTVlq3l5SQQ-3OVjv3tfjH32RBSZHD3L5os5I0GJWZpouwcPlxeTwdCp709wtM97hWNjofzY6hBXHWaiYZQYL1UYGn1P-TyMMNgJNzUIGS2uW9szhgex0WFqOCYmieH70MryzB4Aw33d9HTgqUhoYbw4ioIwiT1uhUoUgoAO8MZmUtfi4jT8V9mwyF5kZWlJlpauJ9HSHXCWvaaVuMYf7cNmOuQ3J5EY_3_tefjvnmewNpzc3crbq9HNEazTFyIPeMExtIrZwp4gJinUae1zH0M938Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+electronic+and+optical+properties+of+the+twisted+and+strained+MoS2%2FPtS2+heterogeneous+interface&rft.jtitle=Applied+surface+science&rft.au=Deng%2C+Shuo&rft.au=Zhang%2C+Yan&rft.au=Li%2C+Lijie&rft.date=2019-05-15&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=476&rft.spage=308&rft.epage=316&rft_id=info:doi/10.1016%2Fj.apsusc.2019.01.097&rft.externalDocID=S0169433219301126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon