Study on electronic and optical properties of the twisted and strained MoS2/PtS2 heterogeneous interface
[Display omitted] •2D MoS2/PtS2 heterogeneous interface has been simulated using DFT.•Twisting and strain effects are considered in the simulation.•Optical absorption spectrum has been found to be widened by twisting and strain.•Optical absorption peak has been significantly increased for certain tw...
Saved in:
Published in | Applied surface science Vol. 476; pp. 308 - 316 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-4332 1873-5584 |
DOI | 10.1016/j.apsusc.2019.01.097 |
Cover
Loading…
Abstract | [Display omitted]
•2D MoS2/PtS2 heterogeneous interface has been simulated using DFT.•Twisting and strain effects are considered in the simulation.•Optical absorption spectrum has been found to be widened by twisting and strain.•Optical absorption peak has been significantly increased for certain twisting angles.
We report electronic and optical properties of the MoS2/PtS2 heterogeneous interfaces subject to various twisting angles based on the first principles simulation. In order to sustain the structural stability and avoid to have a large size cell, the optimized rotation angles of the MoS2/PtS2 heterogeneous interfaces are 19.1°, 30.0° and 40.9°. It is found from the first principle simulation that the absolute passband amplitude of the refractive index, extinction coefficient, reflectivity and absorption coefficient curves under 30.0° rotation angle are 6–12 times higher than 19.1° and 40.9° rotation angles of the MoS2/PtS2 heterogeneous interfaces. Moreover, under the 30.0° twisting angle, the absorption coefficient in the absorption spectrum can reach to or above 105/cm. The absorption spectrum has a red-shift and a broadening effect with the tensile strain, from roughly 700 nm (0% externally strain) to 1050 nm (5% externally strain). The prominent optical properties of MoS2/PtS2 heterogeneous interface under 30° rotation angle still exist after taking into consideration the spin-orbit coupling (SOC) effect. These results suggest that the MoS2/PtS2 heterogeneous interfaces will have great potential applications in tunable optoelectronic devices. |
---|---|
AbstractList | [Display omitted]
•2D MoS2/PtS2 heterogeneous interface has been simulated using DFT.•Twisting and strain effects are considered in the simulation.•Optical absorption spectrum has been found to be widened by twisting and strain.•Optical absorption peak has been significantly increased for certain twisting angles.
We report electronic and optical properties of the MoS2/PtS2 heterogeneous interfaces subject to various twisting angles based on the first principles simulation. In order to sustain the structural stability and avoid to have a large size cell, the optimized rotation angles of the MoS2/PtS2 heterogeneous interfaces are 19.1°, 30.0° and 40.9°. It is found from the first principle simulation that the absolute passband amplitude of the refractive index, extinction coefficient, reflectivity and absorption coefficient curves under 30.0° rotation angle are 6–12 times higher than 19.1° and 40.9° rotation angles of the MoS2/PtS2 heterogeneous interfaces. Moreover, under the 30.0° twisting angle, the absorption coefficient in the absorption spectrum can reach to or above 105/cm. The absorption spectrum has a red-shift and a broadening effect with the tensile strain, from roughly 700 nm (0% externally strain) to 1050 nm (5% externally strain). The prominent optical properties of MoS2/PtS2 heterogeneous interface under 30° rotation angle still exist after taking into consideration the spin-orbit coupling (SOC) effect. These results suggest that the MoS2/PtS2 heterogeneous interfaces will have great potential applications in tunable optoelectronic devices. |
Author | Li, Lijie Deng, Shuo Zhang, Yan |
Author_xml | – sequence: 1 givenname: Shuo orcidid: 0000-0002-6787-0399 surname: Deng fullname: Deng, Shuo organization: School of Logistic Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 2 givenname: Yan surname: Zhang fullname: Zhang, Yan email: zhangyan@uestc.edu.cn organization: School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 3 givenname: Lijie surname: Li fullname: Li, Lijie email: L.Li@swansea.ac.uk organization: College of Engineering, Swansea University, Swansea SA1 8EN, UK |
BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wEzzM9PMuBCk-AeKQnUd0uSOTRmTIUmVvr2pdeVCV5fDPefA-SZo5LwDhM4pKSmh89mmVEPcRl0yQtuS0JK04giNaSN4UddNNULjbGuLinN2giYxbgihLH_HaL1MW7PD3mHoQafgndVYOYP9kKxWPR6CHyAkCxH7Dqc14PRpYwLz7YopKOuyePRLNntOS4bXkCD4N3DgtxFbl1WnNJyi4071Ec5-7hS93ly_LO6Kh6fb-8XVQ6EZn6cC2mrFWtCCUMF5IxplaLei1ZzRFeOioTWvSGcaQqAWDcyN4XVrtOgMZ5wow6eoOvTq4GMM0Mkh2HcVdpISuaclN_JAS-5pSUJlppVjF79i2iaVrHf7hf1_4ctDGPKwDwtBRm3BaTA2ZKjSePt3wRcH-Iwe |
CitedBy_id | crossref_primary_10_1016_j_carbon_2023_118437 crossref_primary_10_1016_j_apsusc_2019_144530 crossref_primary_10_1515_nanoph_2019_0515 crossref_primary_10_1016_j_chemphys_2020_110679 crossref_primary_10_1063_5_0048975 crossref_primary_10_1088_1361_6463_ad8930 crossref_primary_10_1016_j_solidstatesciences_2021_106736 crossref_primary_10_1007_s10825_020_01512_7 crossref_primary_10_7498_aps_73_20241138 crossref_primary_10_1039_C9CP03639C crossref_primary_10_1016_j_apsusc_2020_148030 crossref_primary_10_1002_pssr_202200235 crossref_primary_10_1016_j_jpcs_2024_112024 crossref_primary_10_1063_5_0110530 crossref_primary_10_1103_PhysRevB_108_075416 crossref_primary_10_1021_acsanm_9b00871 crossref_primary_10_1039_C9NR03611C crossref_primary_10_1016_j_physe_2019_113866 crossref_primary_10_1016_j_apsusc_2020_145901 crossref_primary_10_1515_nanoph_2019_0562 crossref_primary_10_1016_j_cartre_2022_100153 crossref_primary_10_1016_j_spmi_2020_106514 crossref_primary_10_1021_acs_chemmater_1c03166 crossref_primary_10_1016_j_physb_2023_414975 crossref_primary_10_1007_s13204_021_01834_3 crossref_primary_10_1039_D3RA05079C |
Cites_doi | 10.1126/science.aar8412 10.1039/C7NR07746G 10.1088/2053-1583/aacfc1 10.1021/acs.nanolett.6b00932 10.1007/s12274-011-0183-0 10.1021/jacs.7b04865 10.1021/acsanm.8b00363 10.1039/C7TC04697A 10.1021/acsnano.6b01486 10.1038/nnano.2012.193 10.1109/TNANO.2018.2805770 10.1103/PhysRevB.96.085306 10.1021/nl501077m 10.1039/C7CP07303H 10.1021/acs.jpclett.7b01374 10.1073/pnas.1720865115 10.1007/s12274-017-1457-y 10.1038/nature26160 10.1007/s40843-016-5122-3 10.1016/j.carbon.2017.12.076 10.1039/C7TA02109G 10.1016/j.physe.2018.03.016 10.1103/PhysRevB.90.075204 10.1002/anie.201309280 10.1021/jp507751p 10.1039/C7TC03350H 10.1126/science.aac9439 10.1103/PhysRevB.96.060509 10.1103/PhysRevB.87.075451 10.1103/PhysRevLett.105.136805 10.1002/jcc.20495 10.1039/C6TC03074B 10.1039/C7RA09945B 10.1039/C8CP00994E 10.1038/nature26154 10.1039/C8CP02997K 10.1039/C3NR06072A 10.1126/sciadv.1601459 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2019.01.097 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5584 |
EndPage | 316 |
ExternalDocumentID | 10_1016_j_apsusc_2019_01_097 S0169433219301126 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW SSH WUQ |
ID | FETCH-LOGICAL-c236t-e94b29ec701733878ad1fb14621b237815340fd800e578e6dd359dc7fd3230ad3 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Tue Jul 01 02:09:24 EDT 2025 Thu Apr 24 23:10:40 EDT 2025 Fri Feb 23 02:25:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MoS2/PtS2 heterogeneous structure Optical performance Twisting angle Strain engineering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-e94b29ec701733878ad1fb14621b237815340fd800e578e6dd359dc7fd3230ad3 |
ORCID | 0000-0002-6787-0399 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_apsusc_2019_01_097 crossref_citationtrail_10_1016_j_apsusc_2019_01_097 elsevier_sciencedirect_doi_10_1016_j_apsusc_2019_01_097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-15 |
PublicationDateYYYYMMDD | 2019-05-15 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Applied surface science |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lu, Guo, Li, Dai, Wang, Mei, Wu, Zeng (b0160) 2014; 6 Guo (b0040) 2016; 4 Fu, Li, Lin, Gong, Huang, Huang, Han, Zhou, Cui (b0020) 2017; 8 Zhao, Qiao, Yu, Yu, Xu, Lau, Zhou, Liu, Wang, Ji, Chai (b0045) 2017; 29 Mak, Lee, Hone, Shan, Heinz (b0150) 2010; 105 Jelver, Larsen, Stradi, Stokbro, Jacobsen (b0125) 2017; 96 Hou, Han, Wu, Quhe, Lu (b0095) 2017; 7 Wang, Quhe, Cui, Zhi, Huang, An, Dai, Tang, Chen, Wu, Tang (b0115) 2018; 129 Cao, Fatemi, Fang, Watanabe, Taniguchi, Kaxiras, Jarillo-Herrero (b0025) 2018; 556 Oyedele, Yang, Liang, Puretzky, Wang, Zheng, Yu, Pudasaini, Ghosh, Liu, Rouleau, Sumpter, Chisholm, Zhou, Rack, Geohegan, Xiao (b0050) 2017; 139 van der Zande, Kunstrnann, Chernikov, Chenet, You, Zhang, Huang, Berkelbach, Wang, Zhang, Hybertsen, Muller, Reichman, Heinz, Hone (b0210) 2014; 14 Deng, Zhang, Li (b0035) 2018; 17 Ning, Wang, Feng, Tang, Zhang, Chen (b0110) 2017; 5 Kosmider, Fernandez-Rossier (b0155) 2013; 87 Hua, Ma, Hu, He, Xu, Huang, Chen (b0180) 2018; 20 Novoselov, Mishchenko, Carvalho, Neto (b0005) 2016; 353 Grimme (b0135) 2006; 27 Deng, Li, Li (b0030) 2018; 101 Cao, Fatemi, Demir, Fang, Tomarken, Luo, Sanchez-Yamagishi, Watanabe, Taniguchi, Kaxiras, Ashoori, Jarillo-Herrero (b0070) 2018; 556 Zhang, Chuu, Ren, Li, Li, Jin, Chou, Shih (b0105) 2017; 3 Haastrup, Strange, Pandey, Deilmann, Schmidt, Hinsche, Gjerding, Torelli, Larsen, Riis-Jensen, Gath, Jacobsen, Mortensen, Olsen, Thygesen (b0145) 2018; 5 Wang, Chen, Wang (b0090) 2015; 119 Lu, Guo, Zhuo, Wang, Wu, Zeng (b0085) 2017; 9 Miro, Ghorbani-Asl, Heine (b0060) 2014; 53 Wooten (b0175) 1972 Yao, Wang, Bao, Zhang, Zhang, Bao, Chan, Chen, Avila, Asensio, Zhu, Zhou (b0075) 2018; 115 Luftner, Refaely-Abramson, Pachler, Resel, Ramsey, Kronik, Puschnig (b0140) 2014; 90 . Scalise, Houssa, Pourtois, Afanas'ev, Stesmans (b0170) 2012; 5 Li, Zhang (b0010) 2017; 10 Deng, Li, Zhang (b0065) 2018; 1 Matsushita, Nishi, Iwata, Kosugi, Oshiyama (b0165) 2018; 2 Wang, Huang, Tian, Ceballos, Lin, Mahjouri-Samani, Boulesbaa, Puretzky, Rouleau, Yoon, Zhao, Xiao, Duscher, Geohegan (b0100) 2016; 10 Mogulkoc, Modarresi, Mogulkoc, Alkan (b0195) 2018; 20 Hu, Yang (b0200) 2017; 5 He, Yang, Zhang, Gong, Zhou, Hu, Ye, Zhaug, Bianco, Lei, Jin, Zou, Yang, Zhang, Xie, Lou, Yakobson, Vajtai, Li, Ajayan (b0205) 2016; 16 Atomistix ToolKit (ATK) ElGhazali, Naumov, Mirhosseini, Suss, Muchler, Schnelle, Felser, Medvedev (b0055) 2017; 96 Wang, Kalantar-Zadeh, Kis, Coleman, Strano (b0015) 2012; 7 Xia, Du, Xiong, Jia, Wei, Li (b0120) 2017; 5 Ahn, Moon, Kim, Kim, Shin, Kim, Cha, Kahng, Kim, Koshino, Son, Yang, Ahn (b0080) 2018 Zhang, Lang, Zhu, Jiang (b0185) 2018; 20 Meng, Jiang, Liang, Yang, Tan, Sun, Chen (b0190) 2016; 59 Wang (10.1016/j.apsusc.2019.01.097_b0100) 2016; 10 Ahn (10.1016/j.apsusc.2019.01.097_b0080) 2018 Zhang (10.1016/j.apsusc.2019.01.097_b0185) 2018; 20 Guo (10.1016/j.apsusc.2019.01.097_b0040) 2016; 4 Kosmider (10.1016/j.apsusc.2019.01.097_b0155) 2013; 87 Lu (10.1016/j.apsusc.2019.01.097_b0160) 2014; 6 Cao (10.1016/j.apsusc.2019.01.097_b0025) 2018; 556 Novoselov (10.1016/j.apsusc.2019.01.097_b0005) 2016; 353 Mak (10.1016/j.apsusc.2019.01.097_b0150) 2010; 105 Hu (10.1016/j.apsusc.2019.01.097_b0200) 2017; 5 van der Zande (10.1016/j.apsusc.2019.01.097_b0210) 2014; 14 Wooten (10.1016/j.apsusc.2019.01.097_b0175) 1972 Zhao (10.1016/j.apsusc.2019.01.097_b0045) 2017; 29 Deng (10.1016/j.apsusc.2019.01.097_b0030) 2018; 101 Hou (10.1016/j.apsusc.2019.01.097_b0095) 2017; 7 Ning (10.1016/j.apsusc.2019.01.097_b0110) 2017; 5 10.1016/j.apsusc.2019.01.097_b0130 Mogulkoc (10.1016/j.apsusc.2019.01.097_b0195) 2018; 20 Grimme (10.1016/j.apsusc.2019.01.097_b0135) 2006; 27 Deng (10.1016/j.apsusc.2019.01.097_b0065) 2018; 1 Wang (10.1016/j.apsusc.2019.01.097_b0090) 2015; 119 Hua (10.1016/j.apsusc.2019.01.097_b0180) 2018; 20 Meng (10.1016/j.apsusc.2019.01.097_b0190) 2016; 59 Fu (10.1016/j.apsusc.2019.01.097_b0020) 2017; 8 Lu (10.1016/j.apsusc.2019.01.097_b0085) 2017; 9 Scalise (10.1016/j.apsusc.2019.01.097_b0170) 2012; 5 Matsushita (10.1016/j.apsusc.2019.01.097_b0165) 2018; 2 ElGhazali (10.1016/j.apsusc.2019.01.097_b0055) 2017; 96 Cao (10.1016/j.apsusc.2019.01.097_b0070) 2018; 556 Wang (10.1016/j.apsusc.2019.01.097_b0115) 2018; 129 Xia (10.1016/j.apsusc.2019.01.097_b0120) 2017; 5 Miro (10.1016/j.apsusc.2019.01.097_b0060) 2014; 53 Li (10.1016/j.apsusc.2019.01.097_b0010) 2017; 10 Deng (10.1016/j.apsusc.2019.01.097_b0035) 2018; 17 Zhang (10.1016/j.apsusc.2019.01.097_b0105) 2017; 3 Yao (10.1016/j.apsusc.2019.01.097_b0075) 2018; 115 Wang (10.1016/j.apsusc.2019.01.097_b0015) 2012; 7 Jelver (10.1016/j.apsusc.2019.01.097_b0125) 2017; 96 Luftner (10.1016/j.apsusc.2019.01.097_b0140) 2014; 90 He (10.1016/j.apsusc.2019.01.097_b0205) 2016; 16 Oyedele (10.1016/j.apsusc.2019.01.097_b0050) 2017; 139 Haastrup (10.1016/j.apsusc.2019.01.097_b0145) 2018; 5 |
References_xml | – volume: 87 year: 2013 ident: b0155 article-title: Electronic properties of the MoS2-WS2 heterojunction publication-title: Phys. Rev. B – volume: 14 start-page: 3869 year: 2014 end-page: 3875 ident: b0210 article-title: Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist publication-title: Nano Lett. – volume: 59 start-page: 1027 year: 2016 end-page: 1036 ident: b0190 article-title: Design of graphene-like gallium nitride and WS2/WSe2 nanocomposites for photocatalyst applications publication-title: Sci. China Mater. – volume: 353 year: 2016 ident: b0005 article-title: 2D materials and van der Waals heterostructures publication-title: Science – volume: 10 start-page: 2527 year: 2017 end-page: 2534 ident: b0010 article-title: Controlling the luminescence of monolayer MoS2 based on the piezoelectric effect publication-title: Nano Res. – volume: 556 start-page: 80-+ year: 2018 ident: b0070 article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices publication-title: Nature – volume: 29 year: 2017 ident: b0045 article-title: High-electron- mobility and air-stable 2D layered PtSe2 FETs publication-title: Adv. Mater. – reference: Atomistix ToolKit (ATK), – volume: 1 start-page: 1932 year: 2018 end-page: 1939 ident: b0065 article-title: Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices publication-title: ACS Appl. Nano Mater. – volume: 115 start-page: 6928 year: 2018 end-page: 6933 ident: b0075 article-title: Quasicrystalline 30 degrees twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 6612 year: 2016 end-page: 6622 ident: b0100 article-title: Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy publication-title: ACS Nano – volume: 119 start-page: 4752 year: 2015 end-page: 4758 ident: b0090 article-title: Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2 publication-title: J. Phys. Chem. C – volume: 5 start-page: 13400 year: 2017 end-page: 13410 ident: b0120 article-title: A type-II GeSe/SnS heterobilayer with a suitable direct gap, superior optical absorption and broad spectrum for photovoltaic applications publication-title: J. Mater. Chem. A – reference: . . – volume: 9 start-page: 19131 year: 2017 end-page: 19138 ident: b0085 article-title: Twisted MX2/MoS2 heterobilayers: effect of van der Waals interaction on the electronic structure publication-title: Nanoscale – volume: 7 start-page: 699 year: 2012 end-page: 712 ident: b0015 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. – volume: 16 start-page: 3314 year: 2016 end-page: 3320 ident: b0205 article-title: Strain-induced electronic structure changes in stacked van der Waals heterostructures publication-title: Nano Lett. – volume: 20 start-page: 1974 year: 2018 end-page: 1983 ident: b0180 article-title: Controlling electronic properties of MoS2/graphene oxide heterojunctions for enhancing photocatalytic performance: the role of oxygen publication-title: Phys. Chem. Chem. Phys. – volume: 101 start-page: 44 year: 2018 end-page: 49 ident: b0030 article-title: Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2 publication-title: Phys. E-Low-Dimensional Syst. Nanostruct. – volume: 53 start-page: 3015 year: 2014 end-page: 3018 ident: b0060 article-title: Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides publication-title: Angew. Chem. Int. Edit. – volume: 5 start-page: 43 year: 2012 end-page: 48 ident: b0170 article-title: Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 publication-title: Nano Res. – volume: 20 start-page: 12053 year: 2018 end-page: 12060 ident: b0195 article-title: Electronic and optical properties of boron phosphide/blue phosphorus heterostructures publication-title: Phys. Chem. Chem. Phys. – volume: 90 year: 2014 ident: b0140 article-title: Experimental and theoretical electronic structure of quinacridone publication-title: Phys. Rev. B – year: 2018 ident: b0080 article-title: Dirac electrons in a dodecagonal graphene quasicrystal publication-title: Science – volume: 7 start-page: 45896 year: 2017 end-page: 45901 ident: b0095 article-title: Robust quasi-ohmic contact against angle rotation in noble transition-metal-dichalcogenide/graphene heterobilayers publication-title: RSC Adv. – volume: 3 year: 2017 ident: b0105 article-title: Interlayer couplings, Moire patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers publication-title: Sci. Adv. – year: 1972 ident: b0175 article-title: Optical Properties of Solids – volume: 96 year: 2017 ident: b0055 article-title: Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2 publication-title: Phys. Rev. B – volume: 20 start-page: 17574 year: 2018 end-page: 17582 ident: b0185 article-title: Strain tuned InSe/MoS2 bilayer van der Waals heterostructures for photovoltaics or photocatalysis publication-title: Phys. Chem. Chem. Phys. – volume: 5 start-page: 12289 year: 2017 end-page: 12297 ident: b0200 article-title: Two-dimensional van der Waals heterojunctions for functional materials and devices publication-title: J. Mater. Chem. C – volume: 129 start-page: 738 year: 2018 end-page: 744 ident: b0115 article-title: Electric field effects on the electronic and optical properties in C2N/Sb van der Waals heterostructure publication-title: Carbon – volume: 8 start-page: 3556 year: 2017 end-page: 3563 ident: b0020 article-title: Pressure-dependent light emission of charged and neutral excitons in monolayer MoSe2 publication-title: J. Phys. Chem. Lett. – volume: 139 start-page: 14090 year: 2017 end-page: 14097 ident: b0050 article-title: PdSe2: pentagonal two-dimensional layers with high air stability for electronics publication-title: J. Am. Chem. Soc. – volume: 556 start-page: 43-+ year: 2018 ident: b0025 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: b0135 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. – volume: 6 start-page: 2879 year: 2014 end-page: 2886 ident: b0160 article-title: MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field publication-title: Nanoscale – volume: 5 start-page: 9429 year: 2017 end-page: 9438 ident: b0110 article-title: Strong interfacial interaction and enhanced optical absorption in graphene/InAs and MoS2/InAs heterostructures publication-title: J. Mater. Chem. C – volume: 2 year: 2018 ident: b0165 article-title: Unfolding energy spectra of double-periodicity two-dimensional systems: twisted bilayer graphene and MoS2 on graphene publication-title: Phys. Rev. Mater. – volume: 17 start-page: 419 year: 2018 end-page: 423 ident: b0035 article-title: Strain magnitude and direction effect on the energy band structure of hexagonal and orthorhombic monolayer MoS2 publication-title: IEEE Trans. Nanotechnol. – volume: 96 year: 2017 ident: b0125 article-title: Determination of low-strain interfaces via geometric matching publication-title: Phys. Rev. B – volume: 105 year: 2010 ident: b0150 article-title: Atomically thin MoS publication-title: Phys. Rev. Lett. – volume: 4 start-page: 9366 year: 2016 end-page: 9374 ident: b0040 article-title: Biaxial strain tuned thermoelectric properties in monolayer PtSe2 publication-title: J. Mater. Chem. C – volume: 5 year: 2018 ident: b0145 article-title: The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals publication-title: 2D Mater. – year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0080 article-title: Dirac electrons in a dodecagonal graphene quasicrystal publication-title: Science doi: 10.1126/science.aar8412 – volume: 9 start-page: 19131 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0085 article-title: Twisted MX2/MoS2 heterobilayers: effect of van der Waals interaction on the electronic structure publication-title: Nanoscale doi: 10.1039/C7NR07746G – volume: 5 year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0145 article-title: The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals publication-title: 2D Mater. doi: 10.1088/2053-1583/aacfc1 – year: 1972 ident: 10.1016/j.apsusc.2019.01.097_b0175 – volume: 16 start-page: 3314 year: 2016 ident: 10.1016/j.apsusc.2019.01.097_b0205 article-title: Strain-induced electronic structure changes in stacked van der Waals heterostructures publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00932 – volume: 5 start-page: 43 year: 2012 ident: 10.1016/j.apsusc.2019.01.097_b0170 article-title: Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 publication-title: Nano Res. doi: 10.1007/s12274-011-0183-0 – volume: 139 start-page: 14090 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0050 article-title: PdSe2: pentagonal two-dimensional layers with high air stability for electronics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04865 – volume: 1 start-page: 1932 year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0065 article-title: Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00363 – volume: 5 start-page: 12289 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0200 article-title: Two-dimensional van der Waals heterojunctions for functional materials and devices publication-title: J. Mater. Chem. C doi: 10.1039/C7TC04697A – volume: 10 start-page: 6612 year: 2016 ident: 10.1016/j.apsusc.2019.01.097_b0100 article-title: Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy publication-title: ACS Nano doi: 10.1021/acsnano.6b01486 – volume: 7 start-page: 699 year: 2012 ident: 10.1016/j.apsusc.2019.01.097_b0015 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 17 start-page: 419 year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0035 article-title: Strain magnitude and direction effect on the energy band structure of hexagonal and orthorhombic monolayer MoS2 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2018.2805770 – volume: 96 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0125 article-title: Determination of low-strain interfaces via geometric matching publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.085306 – volume: 14 start-page: 3869 year: 2014 ident: 10.1016/j.apsusc.2019.01.097_b0210 article-title: Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist publication-title: Nano Lett. doi: 10.1021/nl501077m – volume: 20 start-page: 1974 year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0180 article-title: Controlling electronic properties of MoS2/graphene oxide heterojunctions for enhancing photocatalytic performance: the role of oxygen publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP07303H – volume: 8 start-page: 3556 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0020 article-title: Pressure-dependent light emission of charged and neutral excitons in monolayer MoSe2 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01374 – volume: 115 start-page: 6928 year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0075 article-title: Quasicrystalline 30 degrees twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1720865115 – volume: 10 start-page: 2527 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0010 article-title: Controlling the luminescence of monolayer MoS2 based on the piezoelectric effect publication-title: Nano Res. doi: 10.1007/s12274-017-1457-y – volume: 556 start-page: 43-+ year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0025 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26160 – volume: 59 start-page: 1027 year: 2016 ident: 10.1016/j.apsusc.2019.01.097_b0190 article-title: Design of graphene-like gallium nitride and WS2/WSe2 nanocomposites for photocatalyst applications publication-title: Sci. China Mater. doi: 10.1007/s40843-016-5122-3 – volume: 129 start-page: 738 year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0115 article-title: Electric field effects on the electronic and optical properties in C2N/Sb van der Waals heterostructure publication-title: Carbon doi: 10.1016/j.carbon.2017.12.076 – volume: 5 start-page: 13400 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0120 article-title: A type-II GeSe/SnS heterobilayer with a suitable direct gap, superior optical absorption and broad spectrum for photovoltaic applications publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02109G – ident: 10.1016/j.apsusc.2019.01.097_b0130 – volume: 101 start-page: 44 year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0030 article-title: Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2 publication-title: Phys. E-Low-Dimensional Syst. Nanostruct. doi: 10.1016/j.physe.2018.03.016 – volume: 90 year: 2014 ident: 10.1016/j.apsusc.2019.01.097_b0140 article-title: Experimental and theoretical electronic structure of quinacridone publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.075204 – volume: 53 start-page: 3015 year: 2014 ident: 10.1016/j.apsusc.2019.01.097_b0060 article-title: Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201309280 – volume: 119 start-page: 4752 year: 2015 ident: 10.1016/j.apsusc.2019.01.097_b0090 article-title: Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2 publication-title: J. Phys. Chem. C doi: 10.1021/jp507751p – volume: 5 start-page: 9429 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0110 article-title: Strong interfacial interaction and enhanced optical absorption in graphene/InAs and MoS2/InAs heterostructures publication-title: J. Mater. Chem. C doi: 10.1039/C7TC03350H – volume: 353 year: 2016 ident: 10.1016/j.apsusc.2019.01.097_b0005 article-title: 2D materials and van der Waals heterostructures publication-title: Science doi: 10.1126/science.aac9439 – volume: 96 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0055 article-title: Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.060509 – volume: 87 year: 2013 ident: 10.1016/j.apsusc.2019.01.097_b0155 article-title: Electronic properties of the MoS2-WS2 heterojunction publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.075451 – volume: 105 year: 2010 ident: 10.1016/j.apsusc.2019.01.097_b0150 article-title: Atomically thin MoS2: a new direct-gap semiconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.apsusc.2019.01.097_b0135 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 4 start-page: 9366 year: 2016 ident: 10.1016/j.apsusc.2019.01.097_b0040 article-title: Biaxial strain tuned thermoelectric properties in monolayer PtSe2 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC03074B – volume: 7 start-page: 45896 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0095 article-title: Robust quasi-ohmic contact against angle rotation in noble transition-metal-dichalcogenide/graphene heterobilayers publication-title: RSC Adv. doi: 10.1039/C7RA09945B – volume: 29 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0045 article-title: High-electron- mobility and air-stable 2D layered PtSe2 FETs publication-title: Adv. Mater. – volume: 20 start-page: 12053 year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0195 article-title: Electronic and optical properties of boron phosphide/blue phosphorus heterostructures publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP00994E – volume: 556 start-page: 80-+ year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0070 article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26154 – volume: 20 start-page: 17574 year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0185 article-title: Strain tuned InSe/MoS2 bilayer van der Waals heterostructures for photovoltaics or photocatalysis publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP02997K – volume: 6 start-page: 2879 year: 2014 ident: 10.1016/j.apsusc.2019.01.097_b0160 article-title: MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field publication-title: Nanoscale doi: 10.1039/C3NR06072A – volume: 3 year: 2017 ident: 10.1016/j.apsusc.2019.01.097_b0105 article-title: Interlayer couplings, Moire patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers publication-title: Sci. Adv. doi: 10.1126/sciadv.1601459 – volume: 2 year: 2018 ident: 10.1016/j.apsusc.2019.01.097_b0165 article-title: Unfolding energy spectra of double-periodicity two-dimensional systems: twisted bilayer graphene and MoS2 on graphene publication-title: Phys. Rev. Mater. |
SSID | ssj0012873 |
Score | 2.4162433 |
Snippet | [Display omitted]
•2D MoS2/PtS2 heterogeneous interface has been simulated using DFT.•Twisting and strain effects are considered in the simulation.•Optical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 308 |
SubjectTerms | MoS2/PtS2 heterogeneous structure Optical performance Strain engineering Twisting angle |
Title | Study on electronic and optical properties of the twisted and strained MoS2/PtS2 heterogeneous interface |
URI | https://dx.doi.org/10.1016/j.apsusc.2019.01.097 |
Volume | 476 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwGA1jvuiDeMV5GXnwtfaSdG0fx3BMxSHMwd5CcymbSFu2DvHF3-739TIniIKPKQmEL8nJSXq-E0KuHcO4ihzfCplSFgdGb0lcj0yGSRLLxDGyVPmOe6Mpv5_5sxYZNLkwKKussb_C9BKt6y92HU07XyzsCfqIoPsWUBAHE2Ewg50HKOu7-djIPAB-q7_MUBmzg7wmfa7UeMVwEl2hkaEbleadaP300_a0teUMD8h-zRVpv-rOIWmZ9IjsbTkIHpM56gDfaZbSr_dsaJxqmuXlJTXN8bJ9ia6pNEsosD1avOHI6rLWqnwhAgqP2cSzn4qJR-eoj8lgWplsvaLoJrFMYmVOyHR4-zwYWfXjCZbyWK-wTMSlFxkVwJKDY2gQxtpNJOCi50qPBSEgHXcSDXzRwKI1Pa2ZH2kVJJrBqSTW7JS00yw1Z4TCpq57yndlyBXXbhSGfhBHLjNcxhIYQIewJmZC1c7i2P1X0UjIXkQVaYGRFo4rINIdYm1a5ZWzxh_1g2Y4xLcZIgD8f215_u-WF2QXS6gWcP1L0i6Wa3MFJKSQ3XKWdclO_-5hNP4Ep3zdFQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH8Yn1uQevoUl20yTHUpT6KkIreFuyj6AiSWlTxH_vTB5VQRQ8JtmFZXZ29pvNN98CnLuWCx27gRNxrR2BiN5RtB65itI0UalrVcnyHfWGD-L6MXhcgUFTC0O0yjr2VzG9jNb1m25tze70-bk7Jh0RUt9CCOJSIcwqtEmdSrSg3b-6GY6WPxMwKeCVxHdMBUJ-U0FX0rwSTEbnpGXoxaV-J6k__bRDfdl1Lrdgs4aLrF-NaBtWbLYDG19EBHfhiaiA7yzP2OeVNizJDMun5Tk1m9J5-4yEU1meMgR8rHijyTVlq3l5SQQ-3OVjv3tfjH32RBSZHD3L5os5I0GJWZpouwcPlxeTwdCp709wtM97hWNjofzY6hBXHWaiYZQYL1UYGn1P-TyMMNgJNzUIGS2uW9szhgex0WFqOCYmieH70MryzB4Aw33d9HTgqUhoYbw4ioIwiT1uhUoUgoAO8MZmUtfi4jT8V9mwyF5kZWlJlpauJ9HSHXCWvaaVuMYf7cNmOuQ3J5EY_3_tefjvnmewNpzc3crbq9HNEazTFyIPeMExtIrZwp4gJinUae1zH0M938Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+electronic+and+optical+properties+of+the+twisted+and+strained+MoS2%2FPtS2+heterogeneous+interface&rft.jtitle=Applied+surface+science&rft.au=Deng%2C+Shuo&rft.au=Zhang%2C+Yan&rft.au=Li%2C+Lijie&rft.date=2019-05-15&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=476&rft.spage=308&rft.epage=316&rft_id=info:doi/10.1016%2Fj.apsusc.2019.01.097&rft.externalDocID=S0169433219301126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |