Automatic recognition of pavement cracks from combined GPR B-scan and C-scan images using multiscale feature fusion deep neural networks

Pavement crack detection is critical for transportation infrastructure assessment using ground penetrating radar (GPR). This paper describes a YOLOv3 model with four-scale detection layers (FDL) to detect combined B-scan and C-scan GPR images subject to poor detection effects and a high missed detec...

Full description

Saved in:
Bibliographic Details
Published inAutomation in construction Vol. 146; p. 104698
Main Authors Liu, Zhen, Gu, Xingyu, Chen, Jiaqi, Wang, Danyu, Chen, Yihan, Wang, Lutai
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pavement crack detection is critical for transportation infrastructure assessment using ground penetrating radar (GPR). This paper describes a YOLOv3 model with four-scale detection layers (FDL) to detect combined B-scan and C-scan GPR images subject to poor detection effects and a high missed detection rate of small crack feature sizes. Multiscale fusion structures, efficient intersection over union (EIoU) loss function, K-means++ clustering, and hyperparameter optimization were used in this proposed model to further improve detection performance. Results indicated that the F1 score and mAP of the YOLOv3-FDL model reached 88.1% and 87.8% and had an 8.8% and 7.5% improvement on the GPR dataset of concealed cracks, respectively, compared with the YOLOv3 model. This illustrated that this model solved the problem of missed crack detection to some extent. Future studies can take these results further, especially the three-dimensional feature analysis of pavement cracks. •B-scan and C-scan were combined to determine concealed crack features in GPR images.•YOLOv3-FDL model with four detection layers was proposed.•EIoU loss function and K-Means++ clustering were used.•Hyperparameter optimization based on evolutionary algorithm was performed.
AbstractList Pavement crack detection is critical for transportation infrastructure assessment using ground penetrating radar (GPR). This paper describes a YOLOv3 model with four-scale detection layers (FDL) to detect combined B-scan and C-scan GPR images subject to poor detection effects and a high missed detection rate of small crack feature sizes. Multiscale fusion structures, efficient intersection over union (EIoU) loss function, K-means++ clustering, and hyperparameter optimization were used in this proposed model to further improve detection performance. Results indicated that the F1 score and mAP of the YOLOv3-FDL model reached 88.1% and 87.8% and had an 8.8% and 7.5% improvement on the GPR dataset of concealed cracks, respectively, compared with the YOLOv3 model. This illustrated that this model solved the problem of missed crack detection to some extent. Future studies can take these results further, especially the three-dimensional feature analysis of pavement cracks. •B-scan and C-scan were combined to determine concealed crack features in GPR images.•YOLOv3-FDL model with four detection layers was proposed.•EIoU loss function and K-Means++ clustering were used.•Hyperparameter optimization based on evolutionary algorithm was performed.
ArticleNumber 104698
Author Wang, Danyu
Liu, Zhen
Chen, Jiaqi
Wang, Lutai
Chen, Yihan
Gu, Xingyu
Author_xml – sequence: 1
  givenname: Zhen
  surname: Liu
  fullname: Liu, Zhen
  organization: Department of Roadway Engineering, School of Transportation, Southeast University, Nanjing 211189, China
– sequence: 2
  givenname: Xingyu
  surname: Gu
  fullname: Gu, Xingyu
  email: guxingyu1976@seu.edu.cn
  organization: Department of Roadway Engineering, School of Transportation, Southeast University, Nanjing 211189, China
– sequence: 3
  givenname: Jiaqi
  surname: Chen
  fullname: Chen, Jiaqi
  organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 4
  givenname: Danyu
  surname: Wang
  fullname: Wang, Danyu
  organization: Department of Roadway Engineering, School of Transportation, Southeast University, Nanjing 211189, China
– sequence: 5
  givenname: Yihan
  surname: Chen
  fullname: Chen, Yihan
  organization: Department of Roadway Engineering, School of Transportation, Southeast University, Nanjing 211189, China
– sequence: 6
  givenname: Lutai
  surname: Wang
  fullname: Wang, Lutai
  organization: Department of Roadway Engineering, School of Transportation, Southeast University, Nanjing 211189, China
BookMark eNqFkM1qGzEUhUVJoHaSN-hCLzCupPnTdBFwTOMUDA0hWQuNdGXkzEhG0jj0DfLYkZmuukhX53Iu58D5lujCeQcIfaNkRQltvh9WckrKuxUjjGWrajr-BS0ob1nR8o5eoAXpWFPUnNRf0TLGAyGkJU23QO_rKflRJqtwAOX3zibrHfYGH-UJRnAJqyDVa8Qm-BErP_bWgcbbxyd8V0QlHZZO48182lHuIeIpWrfH4zQkm-0BsAGZppA1f3K7BjhiB1OQQ5b05sNrvEaXRg4Rbv7qFXq5__m8eSh2v7e_NutdoVjZpAKaWvfQas2JaWmrG0L60nQ1JV3FaN2ZhrOKM8Wrsi9rBiXvSG-U6iWhvIKqvEI_5l4VfIwBjFA2yfPoFKQdBCXizFQcxMxUnJmKmWkOV_-EjyFvDn_-F7udY5CHnSwEEZUFp0DbDD0J7e3nBR_HzJdp
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3512185
crossref_primary_10_3390_s24092816
crossref_primary_10_1088_1742_6596_2887_1_012019
crossref_primary_10_1117_1_JEI_32_5_053006
crossref_primary_10_1016_j_jreng_2024_01_005
crossref_primary_10_3390_app13106270
crossref_primary_10_3390_rs15030814
crossref_primary_10_1109_TITS_2024_3403144
crossref_primary_10_3390_rs15102598
crossref_primary_10_1051_e3sconf_202451203035
crossref_primary_10_1155_atr_7427074
crossref_primary_10_3390_fire6040139
crossref_primary_10_1051_e3sconf_202451203037
crossref_primary_10_1088_1361_6501_ad317d
crossref_primary_10_3390_app13042488
crossref_primary_10_3390_buildings13071752
crossref_primary_10_3390_s23094466
crossref_primary_10_1109_TGRS_2024_3406154
crossref_primary_10_1109_TGRS_2024_3373025
crossref_primary_10_3390_s23146423
crossref_primary_10_3390_rs15051229
crossref_primary_10_1080_10298436_2023_2266098
crossref_primary_10_1109_ACCESS_2024_3481649
crossref_primary_10_3390_rs15143631
crossref_primary_10_1016_j_autcon_2025_106100
crossref_primary_10_1016_j_tust_2024_106275
crossref_primary_10_3390_rs15030549
crossref_primary_10_3390_s24103252
crossref_primary_10_3390_rs15184620
crossref_primary_10_3390_s23167272
crossref_primary_10_1016_j_autcon_2023_105166
crossref_primary_10_1109_JSEN_2023_3325490
crossref_primary_10_1016_j_tust_2024_105873
crossref_primary_10_1109_TITS_2024_3459004
crossref_primary_10_1520_JTE20230209
crossref_primary_10_3390_oral3020016
crossref_primary_10_1016_j_autcon_2024_105569
crossref_primary_10_1109_TGRS_2023_3317846
crossref_primary_10_1061_JPEODX_PVENG_1671
crossref_primary_10_3390_app14156568
crossref_primary_10_1016_j_cscm_2024_e03555
crossref_primary_10_1016_j_dibe_2023_100315
crossref_primary_10_3390_f14020285
crossref_primary_10_3390_su151310397
crossref_primary_10_1109_TGRS_2024_3458452
crossref_primary_10_3390_s23125640
crossref_primary_10_3390_rs16061043
crossref_primary_10_1109_TGRS_2024_3504715
crossref_primary_10_1016_j_autcon_2025_105996
crossref_primary_10_32604_sdhm_2024_042388
crossref_primary_10_3390_ijpb14040087
crossref_primary_10_1016_j_conbuildmat_2024_134893
crossref_primary_10_3390_rs15164019
crossref_primary_10_1016_j_conbuildmat_2024_139026
crossref_primary_10_3390_su15086610
crossref_primary_10_3390_app13116645
crossref_primary_10_3390_app13179847
crossref_primary_10_3390_s24061725
crossref_primary_10_1016_j_measurement_2023_113296
crossref_primary_10_3390_app13010164
crossref_primary_10_1007_s12008_024_01769_3
crossref_primary_10_1080_17538947_2024_2365970
crossref_primary_10_1007_s00371_024_03522_z
crossref_primary_10_1109_TGRS_2025_3546212
crossref_primary_10_3390_app13074399
crossref_primary_10_1109_TITS_2023_3300312
crossref_primary_10_1016_j_jclepro_2023_136255
crossref_primary_10_1109_JSTARS_2024_3380064
crossref_primary_10_1109_TGRS_2025_3540974
crossref_primary_10_1016_j_autcon_2024_105594
crossref_primary_10_1016_j_autcon_2025_105979
crossref_primary_10_1016_j_tust_2024_106073
crossref_primary_10_1155_2023_6932621
crossref_primary_10_3390_vehicles5030051
crossref_primary_10_3390_s23063255
crossref_primary_10_1016_j_cscm_2022_e01749
crossref_primary_10_1109_TGRS_2024_3389009
crossref_primary_10_3390_rs15112751
crossref_primary_10_1016_j_autcon_2024_105629
crossref_primary_10_1016_j_autcon_2024_105902
crossref_primary_10_1016_j_compeleceng_2025_110264
crossref_primary_10_1016_j_undsp_2023_10_008
crossref_primary_10_1080_10298436_2023_2217320
crossref_primary_10_3389_fmats_2023_1347176
crossref_primary_10_1016_j_cscm_2024_e03643
crossref_primary_10_1111_mice_13343
crossref_primary_10_3390_jcm12155075
crossref_primary_10_3390_app13137992
crossref_primary_10_1016_j_autcon_2024_105482
crossref_primary_10_3390_plants12173032
crossref_primary_10_3390_s24144569
crossref_primary_10_1016_j_measurement_2024_116429
crossref_primary_10_1016_j_autcon_2024_105772
crossref_primary_10_1016_j_cscm_2023_e02083
crossref_primary_10_1016_j_measurement_2024_115327
crossref_primary_10_3390_s23084077
crossref_primary_10_1109_TITS_2024_3433002
crossref_primary_10_3390_s23041823
crossref_primary_10_1080_10298436_2024_2434910
crossref_primary_10_3390_rs15082211
crossref_primary_10_1109_TGRS_2024_3446029
crossref_primary_10_3390_infrastructures9020028
crossref_primary_10_1080_10589759_2023_2291429
crossref_primary_10_3390_atmos15050553
crossref_primary_10_3390_app13074265
Cites_doi 10.1016/j.measurement.2022.111248
10.1007/s12205-019-2012-z
10.1007/s10712-019-09556-6
10.1109/TIP.2021.3077144
10.1016/j.conbuildmat.2022.128154
10.1016/j.aci.2018.10.001
10.1109/TII.2020.2995208
10.1016/j.conbuildmat.2020.121949
10.3390/rs14163892
10.1016/j.ndteint.2020.102296
10.1109/TGRS.2018.2862627
10.1109/TII.2020.3024578
10.3390/rs14174190
10.1016/j.isprsjprs.2022.04.014
10.1016/j.autcon.2020.103119
10.1109/TITS.2022.3197712
10.1016/j.autcon.2021.103652
10.3390/rs13061081
10.1016/j.conbuildmat.2018.02.081
10.3390/rs12183056
10.3390/rs13040672
10.1109/TGRS.2015.2411572
10.1016/j.autcon.2021.103934
10.1016/j.autcon.2019.04.025
10.3390/rs14071593
10.1016/j.conbuildmat.2019.117352
10.1016/j.autcon.2020.103279
10.1109/TII.2019.2957379
10.3390/rs11212545
10.1109/TGRS.2020.3030079
10.1109/TITS.2022.3174626
10.1016/j.measurement.2022.111281
10.3390/rs12010044
10.3390/electronics10111269
10.1016/j.autcon.2019.102839
10.1016/j.conbuildmat.2021.126085
10.1177/0361198119841038
10.1016/j.ndteint.2018.08.005
10.1109/TII.2019.2937902
10.1080/10298436.2019.1645846
10.1016/j.atmosenv.2022.119085
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.autcon.2022.104698
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1872-7891
ExternalDocumentID 10_1016_j_autcon_2022_104698
S0926580522005684
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c236t-e65dbe7dd80f717d600b3f9510942159f682482c843b352e3890bfccba0184e43
IEDL.DBID .~1
ISSN 0926-5805
IngestDate Thu Apr 24 23:08:46 EDT 2025
Tue Jul 01 03:18:19 EDT 2025
Fri Feb 23 02:39:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ground penetrating radar
YOLOv3
Multiscale feature fusion
Pavement crack assessment
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-e65dbe7dd80f717d600b3f9510942159f682482c843b352e3890bfccba0184e43
ParticipantIDs crossref_citationtrail_10_1016_j_autcon_2022_104698
crossref_primary_10_1016_j_autcon_2022_104698
elsevier_sciencedirect_doi_10_1016_j_autcon_2022_104698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Automation in construction
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lei, Hou, Xi, Tan, Xu, Jiang, Liu, Gu (bb0080) 2019; 106
Shang, Zhang, Song, Ling, Xiao, Zhang, Qian (bb0115) 2022; 14
Wang, Zhao, Al-Qadi (bb0035) 2020; 41
Yamaguchi, Mizutani, Nagayama (bb0165) 2021; 59
Liu, Lin, Cui, Fan, Xie, Spencer (bb0150) 2020; 118
Liu, Gu, Yang, Wang, Chen, Wang (bb0195) 2022; 23
Liang, Yu, Chen, Jin, Huang (bb0125) 2022; 23
Liu, Chen, Gu, Yeoh, Zhang (bb0175) 2022; 278
Ma, Wu, Zhang, Wu, Jeon, Zhang, Wu (bb0200) 2020; 16
Ma, Liu, Ren, Yu (bb0145) 2020; 12
Liu, Gu, Wu, Zou, Dong, Wang (bb0180) 2022; 197
Tan, Chen, Jiang, Zhong, Du, Qian, Mahalec (bb0095) 2021; 17
Wang, Zhao, Al-Qadi (bb0050) 2018; 100
Wang, Sui, Leng, Jiang, Lu (bb0020) 2022; 344
Liu, Justin, Gu, Qiao, Chen, Wu, Wang, Wang (bib221) 2022
Liu, Wu, Gu, Li, Wang, Zhang (bb0015) 2021; 13
Wang, Liu, Gu, Wu, Chen, Wang (bb0220) 2022; 14
Liu, Xie, Wang, Yang, Sudirman, Zhang, Li, Wang (bb0185) 2021; 17
Kang, An (bb0075) 2020; 12
Kim, Kim, An, Lee (bb0120) 2021; 22
Wang, Al-Qadi (bb0045) 2022; PP(60)
Tong, Yuan, Gao, Wei, Dou (bb0160) 2020; 233
Zhao, Al-Qadi (bb0040) 2019; 57
Wei, Khan, Mehmood, Dou, Bateman, Magee, Cohn (bb0135) 2019; 105
Xu, Lei, Yang (bb0100) 2018; 2018
Wang, Gu, Liu, Wu, Wang (bb0025) 2022; 196
Asadi, Gindy, Alvarez (bb0085) 2019; 23
Luo, Lei, Hou, Wang, Ren, Zhang, Luo, Wang, Xu (bb0155) 2021; 10
Rout, Subudhi, Veerakumar, Chaudhury (bb0205) 2020; 16
Dinh, Gucunski, Tran, Novo, Nguyen (bb0130) 2021; 125
Wang, Al-Qadi, Cao (bb0055) 2020; 115
García-Fernández, Álvarez-Narciandi, Álvarez López, F., Andrés (bb0065) 2022; 189
Zhang, Yang, Li, Zhang, Jia (bb0140) 2020; 113
Peng, Yu (bb0215) 2021; 30
Feng, Yu, Liu, Fehler (bb0090) 2015; 53
Kang, Kim, Im, Lee (bb0060) 2019; 11
Li, Gu, Xu, Xu, Zhang, Liu, Dong (bb0170) 2021; 273
Tong, Gao, Zhang (bb0105) 2018; 169
Zheng, Wang, Liu, Li, Ye, Ren (bb0210) 2020; 34
Wang, Zhao, Al-Qadi (bb0030) 2019; 2673
Travassos, Avila, Ida (bb0070) 2018; 17
Ling, Qian, Shang, Guo, Zhao, Liu (bb0110) 2022; 14
Zhao, Zhang, Xue, Zhou, Huang (bb0190) 2021; 132
Solla, Perez-Gracia, Fontul (bb0005) 2021; 13
Liu, Gu, Wu, Ren, Zhou, Tang (bb0010) 2022; 321
Wang (10.1016/j.autcon.2022.104698_bb0050) 2018; 100
Liu (10.1016/j.autcon.2022.104698_bb0175) 2022; 278
Shang (10.1016/j.autcon.2022.104698_bb0115) 2022; 14
Zheng (10.1016/j.autcon.2022.104698_bb0210) 2020; 34
Tan (10.1016/j.autcon.2022.104698_bb0095) 2021; 17
Liu (10.1016/j.autcon.2022.104698_bb0010) 2022; 321
Ma (10.1016/j.autcon.2022.104698_bb0200) 2020; 16
García-Fernández (10.1016/j.autcon.2022.104698_bb0065) 2022; 189
Tong (10.1016/j.autcon.2022.104698_bb0105) 2018; 169
Peng (10.1016/j.autcon.2022.104698_bb0215) 2021; 30
Wang (10.1016/j.autcon.2022.104698_bb0030) 2019; 2673
Zhang (10.1016/j.autcon.2022.104698_bb0140) 2020; 113
Wang (10.1016/j.autcon.2022.104698_bb0220) 2022; 14
Solla (10.1016/j.autcon.2022.104698_bb0005) 2021; 13
Ma (10.1016/j.autcon.2022.104698_bb0145) 2020; 12
Kim (10.1016/j.autcon.2022.104698_bb0120) 2021; 22
Liang (10.1016/j.autcon.2022.104698_bb0125) 2022; 23
Yamaguchi (10.1016/j.autcon.2022.104698_bb0165) 2021; 59
Wang (10.1016/j.autcon.2022.104698_bb0025) 2022; 196
Wang (10.1016/j.autcon.2022.104698_bb0035) 2020; 41
Liu (10.1016/j.autcon.2022.104698_bib221) 2022
Wei (10.1016/j.autcon.2022.104698_bb0135) 2019; 105
Zhao (10.1016/j.autcon.2022.104698_bb0190) 2021; 132
Wang (10.1016/j.autcon.2022.104698_bb0045) 2022; PP(60)
Kang (10.1016/j.autcon.2022.104698_bb0060) 2019; 11
Lei (10.1016/j.autcon.2022.104698_bb0080) 2019; 106
Ling (10.1016/j.autcon.2022.104698_bb0110) 2022; 14
Liu (10.1016/j.autcon.2022.104698_bb0180) 2022; 197
Rout (10.1016/j.autcon.2022.104698_bb0205) 2020; 16
Travassos (10.1016/j.autcon.2022.104698_bb0070) 2018; 17
Dinh (10.1016/j.autcon.2022.104698_bb0130) 2021; 125
Wang (10.1016/j.autcon.2022.104698_bb0020) 2022; 344
Asadi (10.1016/j.autcon.2022.104698_bb0085) 2019; 23
Zhao (10.1016/j.autcon.2022.104698_bb0040) 2019; 57
Wang (10.1016/j.autcon.2022.104698_bb0055) 2020; 115
Liu (10.1016/j.autcon.2022.104698_bb0195) 2022; 23
Xu (10.1016/j.autcon.2022.104698_bb0100) 2018; 2018
Liu (10.1016/j.autcon.2022.104698_bb0015) 2021; 13
Luo (10.1016/j.autcon.2022.104698_bb0155) 2021; 10
Tong (10.1016/j.autcon.2022.104698_bb0160) 2020; 233
Liu (10.1016/j.autcon.2022.104698_bb0185) 2021; 17
Feng (10.1016/j.autcon.2022.104698_bb0090) 2015; 53
Liu (10.1016/j.autcon.2022.104698_bb0150) 2020; 118
Kang (10.1016/j.autcon.2022.104698_bb0075) 2020; 12
Li (10.1016/j.autcon.2022.104698_bb0170) 2021; 273
References_xml – volume: 14
  year: 2022
  ident: bb0220
  article-title: Automatic detection of pothole distress in asphalt pavement using improved convolutional neural networks
  publication-title: Remote Sens.
– volume: 23
  start-page: 2618
  year: 2019
  end-page: 2627
  ident: bb0085
  article-title: A machine learning based approach for automatic rebar detection and quantification of deterioration in concrete bridge deck ground penetrating radar B-scan images
  publication-title: KSCE J. Civ. Eng.
– volume: 23
  start-page: 22258
  year: 2022
  end-page: 22268
  ident: bb0195
  article-title: Novel YOLOv3 model with structure and hyperparameter optimization for detection of pavement concealed cracks in GPR images
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 106
  year: 2019
  ident: bb0080
  article-title: Automatic hyperbola detection and fitting in GPR B-scan image
  publication-title: Autom. Constr.
– volume: 16
  start-page: 5929
  year: 2020
  end-page: 5937
  ident: bb0200
  article-title: Research on sea clutter reflectivity using deep learning model in industry 4.0
  publication-title: IEEE Trans. Indus. Inform.
– volume: 13
  year: 2021
  ident: bb0015
  article-title: Application of combining YOLO models and 3D GPR images in road detection and maintenance
  publication-title: Remote Sens.
– volume: 125
  year: 2021
  ident: bb0130
  article-title: Full-resolution 3D imaging for concrete structures with dual-polarization GPR
  publication-title: Autom. Constr.
– volume: 14
  year: 2022
  ident: bb0115
  article-title: Fast segmentation and dynamic monitoring of time-lapse 3D GPR data based on U-net
  publication-title: Remote Sens.
– volume: 23
  start-page: 22269
  year: 2022
  end-page: 22277
  ident: bb0125
  article-title: Automatic classification of pavement distress using 3D ground-penetrating radar and deep convolutional neural network
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 22
  start-page: 740
  year: 2021
  end-page: 751
  ident: bb0120
  article-title: A novel 3D GPR image arrangement for deep learning-based underground object classification
  publication-title: Int. J. Pavem. Eng.
– volume: 41
  start-page: 431
  year: 2020
  end-page: 445
  ident: bb0035
  article-title: Real-time density and thickness estimation of thin asphalt pavement overlay during compaction using ground penetrating radar data
  publication-title: Surv. Geophys.
– volume: 197
  year: 2022
  ident: bb0180
  article-title: GPR-based detection of internal cracks in asphalt pavement: a combination method of DeepAugment data and object detection
  publication-title: Measurement
– volume: 17
  start-page: 3303
  year: 2021
  end-page: 3313
  ident: bb0095
  article-title: A circular target feature detection framework based on DCNN for industrial applications
  publication-title: IEEE Trans. Indus. Inform.
– start-page: 104689
  year: 2022
  ident: bib221
  article-title: Automatic pixel-level detection of vertical cracks in asphalt pavement based on GPR investigation and improved mask R-CNN
  publication-title: Automation in Construction
– volume: 30
  start-page: 5032
  year: 2021
  end-page: 5044
  ident: bb0215
  article-title: A systematic IoU-related method: beyond simplified regression for better localization
  publication-title: IEEE Trans. Image Process.
– volume: 11
  year: 2019
  ident: bb0060
  article-title: 3D GPR image-based UcNet for enhancing underground cavity detectability
  publication-title: Remote Sens.
– volume: 13
  year: 2021
  ident: bb0005
  article-title: A review of GPR application on transport infrastructures: troubleshooting and best practices
  publication-title: Remote Sens.
– volume: PP(60)
  start-page: 1
  year: 2022
  end-page: 14
  ident: bb0045
  article-title: Impact and removal of ground-penetrating radar vibration on continuous asphalt concrete pavement density prediction
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  year: 2020
  ident: bb0145
  article-title: Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3
  publication-title: Remote Sens.
– volume: 273
  year: 2021
  ident: bb0170
  article-title: Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm
  publication-title: Constr. Build. Mater.
– volume: 16
  start-page: 5712
  year: 2020
  end-page: 5722
  ident: bb0205
  article-title: Walsh-Hadamard-kernel-based features in particle filter framework for underwater object tracking
  publication-title: IEEE Trans. Indus. Inform.
– volume: 12
  year: 2020
  ident: bb0075
  article-title: Frequency-wavenumber analysis of deep learning-based super resolution 3D GPR images
  publication-title: Remote Sens.
– volume: 53
  start-page: 4852
  year: 2015
  end-page: 4861
  ident: bb0090
  article-title: Combination of H-alpha decomposition and migration for enhancing subsurface target classification of GPR
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 17
  start-page: 7589
  year: 2021
  end-page: 7598
  ident: bb0185
  article-title: Deep learning based automatic multiclass wild pest monitoring approach using hybrid global and local activated features
  publication-title: IEEE Trans. Indus. Inform.
– volume: 132
  year: 2021
  ident: bb0190
  article-title: A deep learning-based approach for refined crack evaluation from shield tunnel lining images
  publication-title: Autom. Constr.
– volume: 118
  year: 2020
  ident: bb0150
  article-title: Detection and localization of rebar in concrete by deep learning using ground penetrating radar
  publication-title: Autom. Constr.
– volume: 233
  year: 2020
  ident: bb0160
  article-title: Pavement-distress detection using ground-penetrating radar and network in networks
  publication-title: Constr. Build. Mater.
– volume: 2018
  year: 2018
  ident: bb0100
  article-title: Railway subgrade defect automatic recognition method based on improved faster R-CNN
  publication-title: Sci. Program.
– volume: 59
  start-page: 6525
  year: 2021
  end-page: 6536
  ident: bb0165
  article-title: Mapping subsurface utility pipes by 3-D convolutional neural network and Kirchhoff migration using GPR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  year: 2021
  ident: bb0155
  article-title: GPR B-scan image denoising via multi-scale convolutional autoencoder with data augmentation
  publication-title: Electronics
– volume: 321
  year: 2022
  ident: bb0010
  article-title: Studies on the validity of strain sensors for pavement monitoring: A case study for a fiber Bragg grating sensor and resistive sensor
  publication-title: Constr. Build. Mater.
– volume: 344
  year: 2022
  ident: bb0020
  article-title: Asphalt pavement density measurement using non-destructive testing methods: current practices, challenges, and future vision
  publication-title: Constr. Build. Mater.
– volume: 169
  start-page: 69
  year: 2018
  end-page: 82
  ident: bb0105
  article-title: Innovative method for recognizing subgrade defects based on a convolutional neural network
  publication-title: Constr. Build. Mater.
– volume: 57
  start-page: 893
  year: 2019
  end-page: 901
  ident: bb0040
  article-title: Super-resolution of 3-D GPR signals to estimate thin asphalt overlay thickness using the XCMP method
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 100
  start-page: 48
  year: 2018
  end-page: 54
  ident: bb0050
  article-title: Continuous real-time monitoring of flexible pavement layer density and thickness using ground penetrating radar
  publication-title: Ndt & E Int.
– volume: 115
  year: 2020
  ident: bb0055
  article-title: Factors impacting monitoring asphalt pavement density by ground penetrating radar
  publication-title: Ndt & E Int.
– volume: 196
  year: 2022
  ident: bb0025
  article-title: Automatic detection of asphalt pavement thickness: a method combining GPR images and improved Canny algorithm
  publication-title: Measurement
– volume: 105
  year: 2019
  ident: bb0135
  article-title: Web-based visualisation for look-ahead ground imaging in tunnel boring machines
  publication-title: Autom. Constr.
– volume: 113
  year: 2020
  ident: bb0140
  article-title: Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method
  publication-title: Autom. Constr.
– volume: 189
  start-page: 128
  year: 2022
  end-page: 142
  ident: bb0065
  article-title: Improvements in GPR-SAR imaging focusing and detection capabilities of UAV-mounted GPR systems
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 34
  start-page: 12993
  year: 2020
  end-page: 13000
  ident: bb0210
  article-title: Distance-IoU loss: faster and better learning for bounding box regression
  publication-title: Thirty-Fourth Aaai Conference on Artificial Intelligence, the Thirty-Second Innovative Applications of Artificial Intelligence Conference and the Tenth Aaai Symposium on Educational Advances in Artificial Intelligence
– volume: 278
  year: 2022
  ident: bb0175
  article-title: Visibility classification and influencing-factors analysis of airport: a deep learning approach
  publication-title: Atmos. Environ.
– volume: 17
  start-page: 296
  year: 2018
  end-page: 308
  ident: bb0070
  article-title: Artificial neural networks and machine learning techniques applied to ground penetrating radar: a review
  publication-title: Appl. Comput. Inform.
– volume: 2673
  start-page: 329
  year: 2019
  end-page: 338
  ident: bb0030
  article-title: Real-time monitoring of asphalt concrete pavement density during construction using ground penetrating radar: theory to practice
  publication-title: Transp. Res. Rec.
– volume: 14
  year: 2022
  ident: bb0110
  article-title: Research on the dynamic monitoring technology of road subgrades with time-lapse full-coverage 3D ground penetrating radar (GPR)
  publication-title: Remote Sens.
– volume: 196
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0025
  article-title: Automatic detection of asphalt pavement thickness: a method combining GPR images and improved Canny algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111248
– volume: 23
  start-page: 2618
  issue: 6
  year: 2019
  ident: 10.1016/j.autcon.2022.104698_bb0085
  article-title: A machine learning based approach for automatic rebar detection and quantification of deterioration in concrete bridge deck ground penetrating radar B-scan images
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-019-2012-z
– volume: 41
  start-page: 431
  issue: 3
  year: 2020
  ident: 10.1016/j.autcon.2022.104698_bb0035
  article-title: Real-time density and thickness estimation of thin asphalt pavement overlay during compaction using ground penetrating radar data
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-019-09556-6
– volume: 30
  start-page: 5032
  year: 2021
  ident: 10.1016/j.autcon.2022.104698_bb0215
  article-title: A systematic IoU-related method: beyond simplified regression for better localization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3077144
– volume: 344
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0020
  article-title: Asphalt pavement density measurement using non-destructive testing methods: current practices, challenges, and future vision
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.128154
– volume: 17
  start-page: 296
  issue: 2
  year: 2018
  ident: 10.1016/j.autcon.2022.104698_bb0070
  article-title: Artificial neural networks and machine learning techniques applied to ground penetrating radar: a review
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.10.001
– volume: 17
  start-page: 7589
  issue: 11
  year: 2021
  ident: 10.1016/j.autcon.2022.104698_bb0185
  article-title: Deep learning based automatic multiclass wild pest monitoring approach using hybrid global and local activated features
  publication-title: IEEE Trans. Indus. Inform.
  doi: 10.1109/TII.2020.2995208
– volume: 273
  year: 2021
  ident: 10.1016/j.autcon.2022.104698_bb0170
  article-title: Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.121949
– volume: 14
  issue: 16
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0220
  article-title: Automatic detection of pothole distress in asphalt pavement using improved convolutional neural networks
  publication-title: Remote Sens.
  doi: 10.3390/rs14163892
– volume: 115
  year: 2020
  ident: 10.1016/j.autcon.2022.104698_bb0055
  article-title: Factors impacting monitoring asphalt pavement density by ground penetrating radar
  publication-title: Ndt & E Int.
  doi: 10.1016/j.ndteint.2020.102296
– volume: 34
  start-page: 12993
  year: 2020
  ident: 10.1016/j.autcon.2022.104698_bb0210
  article-title: Distance-IoU loss: faster and better learning for bounding box regression
– volume: 57
  start-page: 893
  issue: 2
  year: 2019
  ident: 10.1016/j.autcon.2022.104698_bb0040
  article-title: Super-resolution of 3-D GPR signals to estimate thin asphalt overlay thickness using the XCMP method
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2862627
– volume: 17
  start-page: 3303
  issue: 5
  year: 2021
  ident: 10.1016/j.autcon.2022.104698_bb0095
  article-title: A circular target feature detection framework based on DCNN for industrial applications
  publication-title: IEEE Trans. Indus. Inform.
  doi: 10.1109/TII.2020.3024578
– volume: 14
  issue: 17
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0115
  article-title: Fast segmentation and dynamic monitoring of time-lapse 3D GPR data based on U-net
  publication-title: Remote Sens.
  doi: 10.3390/rs14174190
– volume: 189
  start-page: 128
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0065
  article-title: Improvements in GPR-SAR imaging focusing and detection capabilities of UAV-mounted GPR systems
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.04.014
– volume: 113
  year: 2020
  ident: 10.1016/j.autcon.2022.104698_bb0140
  article-title: Automatic detection of moisture damages in asphalt pavements from GPR data with deep CNN and IRS method
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103119
– volume: 23
  start-page: 22269
  issue: 11
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0125
  article-title: Automatic classification of pavement distress using 3D ground-penetrating radar and deep convolutional neural network
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3197712
– volume: 125
  year: 2021
  ident: 10.1016/j.autcon.2022.104698_bb0130
  article-title: Full-resolution 3D imaging for concrete structures with dual-polarization GPR
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103652
– volume: 13
  issue: 6
  year: 2021
  ident: 10.1016/j.autcon.2022.104698_bb0015
  article-title: Application of combining YOLO models and 3D GPR images in road detection and maintenance
  publication-title: Remote Sens.
  doi: 10.3390/rs13061081
– volume: 169
  start-page: 69
  year: 2018
  ident: 10.1016/j.autcon.2022.104698_bb0105
  article-title: Innovative method for recognizing subgrade defects based on a convolutional neural network
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.02.081
– volume: PP(60)
  start-page: 1
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0045
  article-title: Impact and removal of ground-penetrating radar vibration on continuous asphalt concrete pavement density prediction
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  issue: 18
  year: 2020
  ident: 10.1016/j.autcon.2022.104698_bb0075
  article-title: Frequency-wavenumber analysis of deep learning-based super resolution 3D GPR images
  publication-title: Remote Sens.
  doi: 10.3390/rs12183056
– volume: 13
  issue: 4
  year: 2021
  ident: 10.1016/j.autcon.2022.104698_bb0005
  article-title: A review of GPR application on transport infrastructures: troubleshooting and best practices
  publication-title: Remote Sens.
  doi: 10.3390/rs13040672
– volume: 53
  start-page: 4852
  issue: 9
  year: 2015
  ident: 10.1016/j.autcon.2022.104698_bb0090
  article-title: Combination of H-alpha decomposition and migration for enhancing subsurface target classification of GPR
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2411572
– volume: 132
  year: 2021
  ident: 10.1016/j.autcon.2022.104698_bb0190
  article-title: A deep learning-based approach for refined crack evaluation from shield tunnel lining images
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103934
– volume: 105
  year: 2019
  ident: 10.1016/j.autcon.2022.104698_bb0135
  article-title: Web-based visualisation for look-ahead ground imaging in tunnel boring machines
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.04.025
– volume: 14
  issue: 7
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0110
  article-title: Research on the dynamic monitoring technology of road subgrades with time-lapse full-coverage 3D ground penetrating radar (GPR)
  publication-title: Remote Sens.
  doi: 10.3390/rs14071593
– volume: 233
  year: 2020
  ident: 10.1016/j.autcon.2022.104698_bb0160
  article-title: Pavement-distress detection using ground-penetrating radar and network in networks
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117352
– volume: 118
  year: 2020
  ident: 10.1016/j.autcon.2022.104698_bb0150
  article-title: Detection and localization of rebar in concrete by deep learning using ground penetrating radar
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103279
– start-page: 104689
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bib221
  article-title: Automatic pixel-level detection of vertical cracks in asphalt pavement based on GPR investigation and improved mask R-CNN
  publication-title: Automation in Construction
– volume: 16
  start-page: 5929
  issue: 9
  year: 2020
  ident: 10.1016/j.autcon.2022.104698_bb0200
  article-title: Research on sea clutter reflectivity using deep learning model in industry 4.0
  publication-title: IEEE Trans. Indus. Inform.
  doi: 10.1109/TII.2019.2957379
– volume: 11
  issue: 21
  year: 2019
  ident: 10.1016/j.autcon.2022.104698_bb0060
  article-title: 3D GPR image-based UcNet for enhancing underground cavity detectability
  publication-title: Remote Sens.
  doi: 10.3390/rs11212545
– volume: 59
  start-page: 6525
  issue: 8
  year: 2021
  ident: 10.1016/j.autcon.2022.104698_bb0165
  article-title: Mapping subsurface utility pipes by 3-D convolutional neural network and Kirchhoff migration using GPR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3030079
– volume: 23
  start-page: 22258
  issue: 11
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0195
  article-title: Novel YOLOv3 model with structure and hyperparameter optimization for detection of pavement concealed cracks in GPR images
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2022.3174626
– volume: 197
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0180
  article-title: GPR-based detection of internal cracks in asphalt pavement: a combination method of DeepAugment data and object detection
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111281
– volume: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.autcon.2022.104698_bb0145
  article-title: Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3
  publication-title: Remote Sens.
  doi: 10.3390/rs12010044
– volume: 10
  issue: 11
  year: 2021
  ident: 10.1016/j.autcon.2022.104698_bb0155
  article-title: GPR B-scan image denoising via multi-scale convolutional autoencoder with data augmentation
  publication-title: Electronics
  doi: 10.3390/electronics10111269
– volume: 106
  year: 2019
  ident: 10.1016/j.autcon.2022.104698_bb0080
  article-title: Automatic hyperbola detection and fitting in GPR B-scan image
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.102839
– volume: 2018
  year: 2018
  ident: 10.1016/j.autcon.2022.104698_bb0100
  article-title: Railway subgrade defect automatic recognition method based on improved faster R-CNN
  publication-title: Sci. Program.
– volume: 321
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0010
  article-title: Studies on the validity of strain sensors for pavement monitoring: A case study for a fiber Bragg grating sensor and resistive sensor
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.126085
– volume: 2673
  start-page: 329
  issue: 5
  year: 2019
  ident: 10.1016/j.autcon.2022.104698_bb0030
  article-title: Real-time monitoring of asphalt concrete pavement density during construction using ground penetrating radar: theory to practice
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198119841038
– volume: 100
  start-page: 48
  year: 2018
  ident: 10.1016/j.autcon.2022.104698_bb0050
  article-title: Continuous real-time monitoring of flexible pavement layer density and thickness using ground penetrating radar
  publication-title: Ndt & E Int.
  doi: 10.1016/j.ndteint.2018.08.005
– volume: 16
  start-page: 5712
  issue: 9
  year: 2020
  ident: 10.1016/j.autcon.2022.104698_bb0205
  article-title: Walsh-Hadamard-kernel-based features in particle filter framework for underwater object tracking
  publication-title: IEEE Trans. Indus. Inform.
  doi: 10.1109/TII.2019.2937902
– volume: 22
  start-page: 740
  issue: 6
  year: 2021
  ident: 10.1016/j.autcon.2022.104698_bb0120
  article-title: A novel 3D GPR image arrangement for deep learning-based underground object classification
  publication-title: Int. J. Pavem. Eng.
  doi: 10.1080/10298436.2019.1645846
– volume: 278
  year: 2022
  ident: 10.1016/j.autcon.2022.104698_bb0175
  article-title: Visibility classification and influencing-factors analysis of airport: a deep learning approach
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119085
SSID ssj0007069
Score 2.632353
Snippet Pavement crack detection is critical for transportation infrastructure assessment using ground penetrating radar (GPR). This paper describes a YOLOv3 model...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104698
SubjectTerms Ground penetrating radar
Multiscale feature fusion
Object detection
Pavement crack assessment
YOLOv3
Title Automatic recognition of pavement cracks from combined GPR B-scan and C-scan images using multiscale feature fusion deep neural networks
URI https://dx.doi.org/10.1016/j.autcon.2022.104698
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ba9swFBYhO3Q7lC3dWNutvEOvWmxLluVjFpamLS1layA3Y8tPI6NzQuNce-7P7pNlZymMDXozQjKynnjve_L3PjF2apUIhcaQE7YWXJpAckL1yKl7gGhkHqM7Gri6VtOZvJjH8x4bd7UwjlbZ-n7v0xtv3bYM29UcrhaL4Y8gjSh8BgQgnJ6ldpqgUiZul395-EPzSALl9fYixV3vrnyu4Xjlm9plnREFsuZnZ6r_Hp52Qs7kLdtvsSKM_HTesR5WA7bXlRKvB-zNjprgAXscbeplo8AKW1rQsoKlhVXeqILXYO5dST24mhKgL6asGEs4u_kOX_ma1hjyqoSxf1z8Jk-zBseL_wkN7ZCa7xAsNlKgYDfunA1KxBU4UUyaaOUp5ev3bDb5djue8vaiBW4ioWqOKi4LTMpSB5bSu5JAUCGsw16pJEiQWqUjqSOjpSgIsCGBnKCwxhR5QAkiSvGB9atlhR8Z5JRf5aFWsZA55V5xYW1Ib9OJlqkJlT5kolvfzLQq5O4yjLuso5v9yrxVMmeVzFvlkPHtqJVX4fhP_6QzXfZsN2UUKP458ujFI4_Za3cVvWd0f2L9-n6Dnwmw1MVJsyNP2KvR-eX0-glgu-tS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7aFwQG0BUaDtHHq1Nokdr3NcVpTt16qCVuotSpwxWlSyq272P_RndxwnqyIhkLhFlidybGvmjfPmGeDEaRlLQ7FgbC2FspESjOpJcPeIyKoiJX80cDXT01t1fpfebcGkr4XxtMrO9wef3nrrrmXYzeZwOZ8Pv0dZwuEzYgDh9SyNegHbXp0qHcD2-OxiOts45FGkg-ReooU36CvoWppXsW584plwLGv_d2bmzxHqWdQ53YXXHVzEcRjRHmxRvQ87fTXxah9ePRMUfAOP43WzaEVYccMMWtS4cLgsWmHwBu2Dr6pHX1aC_NGcGFOFX6-_4Wex4mnGoq5wEh7nv9jZrNBT439gyzzk5ntCR60aKLq1P2rDimiJXheTB1oHVvnqLdyefrmZTEV314KwidSNIJ1WJY2qykSOM7yKcVApnYdfmWJUkDltEmUSa5QsGbMR45yodNaWRcQ5Iin5Dgb1oqb3gAWnWEVsdCpVwelXWjoX89vMyKjMxtocgOznN7edELm_D-M-7xlnP_OwKrlflTysygGIjdUyCHH8o_-oX7r8tw2Vc6z4q-WH_7Y8hp3pzdVlfnk2u_gIL_3N9IHg_QkGzcOaDhm_NOVRtz-fAHPa7gM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+recognition+of+pavement+cracks+from+combined+GPR+B-scan+and+C-scan+images+using+multiscale+feature+fusion+deep+neural+networks&rft.jtitle=Automation+in+construction&rft.au=Liu%2C+Zhen&rft.au=Gu%2C+Xingyu&rft.au=Chen%2C+Jiaqi&rft.au=Wang%2C+Danyu&rft.date=2023-02-01&rft.issn=0926-5805&rft.volume=146&rft.spage=104698&rft_id=info:doi/10.1016%2Fj.autcon.2022.104698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2022_104698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon