Single image denoising via multi-scale weighted group sparse coding

•We propose a new MS-WGSC model, in which the multi-scale NSS is exploited. Besides, the dictionary in each group is adaptively set via singular value decomposition rather than learning from external corpus.•We develop an alternating minimization method to solve our MS-WGSC model, wherein each of th...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 200; p. 108650
Main Authors Ou, Yang, Swamy, M.N.S., Luo, Jianqiao, Li, Bailin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text
ISSN0165-1684
1872-7557
DOI10.1016/j.sigpro.2022.108650

Cover

Abstract •We propose a new MS-WGSC model, in which the multi-scale NSS is exploited. Besides, the dictionary in each group is adaptively set via singular value decomposition rather than learning from external corpus.•We develop an alternating minimization method to solve our MS-WGSC model, wherein each of the steps has closed-form solution.•We show through extensive denoising experiments the competitiveness of our MS-WGSC model compared with many of the state-of-the-art methods, especially in perceptual quality. Nonlocal self-similarity (NSS) property of natural images, which means that the structure of the image sub-patches will appear repeatedly within a certain area, has been widely exploited as an effective prior to establishing various models in image denoising task. However, most of the existing NSS-based denoising models exploit the NSS prior in single scale only, and for some of the image patches that do not appear repeatedly, undesirable ringing artifacts will occur in the restored image, and even the image content may be lost. Considering the fact that NSS exists both within the same scale and across different scales, in order to better restore the structure and the edges of images contaminated by noise, we propose, in this paper, a novel multi-scale weighted group sparse coding model (MS-WGSC) for image denoising, wherein the patch groups are constructed using multi-scale NSS priors. Furthermore, an alternating minimization method is proposed to obtain the solution for our model. Extensive experiments are conducted that demonstrate the competitiveness of the proposed model compared with that of state-of-the-art methods not only in terms of the quantitative metrics such as PSNR and SSIM, but also in perceptual quality.
AbstractList •We propose a new MS-WGSC model, in which the multi-scale NSS is exploited. Besides, the dictionary in each group is adaptively set via singular value decomposition rather than learning from external corpus.•We develop an alternating minimization method to solve our MS-WGSC model, wherein each of the steps has closed-form solution.•We show through extensive denoising experiments the competitiveness of our MS-WGSC model compared with many of the state-of-the-art methods, especially in perceptual quality. Nonlocal self-similarity (NSS) property of natural images, which means that the structure of the image sub-patches will appear repeatedly within a certain area, has been widely exploited as an effective prior to establishing various models in image denoising task. However, most of the existing NSS-based denoising models exploit the NSS prior in single scale only, and for some of the image patches that do not appear repeatedly, undesirable ringing artifacts will occur in the restored image, and even the image content may be lost. Considering the fact that NSS exists both within the same scale and across different scales, in order to better restore the structure and the edges of images contaminated by noise, we propose, in this paper, a novel multi-scale weighted group sparse coding model (MS-WGSC) for image denoising, wherein the patch groups are constructed using multi-scale NSS priors. Furthermore, an alternating minimization method is proposed to obtain the solution for our model. Extensive experiments are conducted that demonstrate the competitiveness of the proposed model compared with that of state-of-the-art methods not only in terms of the quantitative metrics such as PSNR and SSIM, but also in perceptual quality.
ArticleNumber 108650
Author Swamy, M.N.S.
Li, Bailin
Ou, Yang
Luo, Jianqiao
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-9309-2121
  surname: Ou
  fullname: Ou, Yang
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
– sequence: 2
  givenname: M.N.S.
  orcidid: 0000-0002-3989-5476
  surname: Swamy
  fullname: Swamy, M.N.S.
  email: swamy@ece.concordia.ca
  organization: Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
– sequence: 3
  givenname: Jianqiao
  surname: Luo
  fullname: Luo, Jianqiao
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
– sequence: 4
  givenname: Bailin
  orcidid: 0000-0003-1126-6165
  surname: Li
  fullname: Li, Bailin
  organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
BookMark eNqFkMtOwzAQRS1UJNrCH7DID6SMndiOWSChipdUiQWwtowzCa7SOLLTIv4eV2HFAlYj3bl3HmdBZr3vkZBLCisKVFxtV9G1Q_ArBowlqRIcTsicVpLlknM5I_Nk4zkVVXlGFjFuAYAWAuZk_eL6tsPM7UyLWY29dzEp2cGZbLfvRpdHa1L_E137MWKdtcHvhywOJkTMrK-T-ZycNqaLePFTl-Tt_u51_Zhvnh-e1reb3LJCjLkVYErVpMUFr7hlteUllAaAM64aBlTZSiHnApRRSlAjuS3flZVMUlmDLJaknOba4GMM2OghpLvDl6agjyD0Vk8g9BGEnkCk2PWvmHWjGZ3vx2Bc91_4ZgpjeuzgMOhoHfYWaxfQjrr27u8B3xC1fQ4
CitedBy_id crossref_primary_10_3390_sym15112073
crossref_primary_10_1016_j_sigpro_2022_108926
crossref_primary_10_3390_rs15020445
crossref_primary_10_1007_s00170_025_15214_6
crossref_primary_10_3390_rs15102483
crossref_primary_10_1007_s00034_024_02962_1
crossref_primary_10_1016_j_sigpro_2023_109356
crossref_primary_10_1109_LGRS_2023_3241642
crossref_primary_10_1016_j_sigpro_2023_109284
crossref_primary_10_1016_j_undsp_2024_04_003
crossref_primary_10_1016_j_ins_2023_04_010
crossref_primary_10_3390_electronics12051201
crossref_primary_10_3389_fnins_2023_1293161
crossref_primary_10_1117_1_JEI_32_1_013004
crossref_primary_10_1007_s11042_023_15928_3
crossref_primary_10_3390_math12091412
crossref_primary_10_1016_j_sigpro_2023_109191
crossref_primary_10_1007_s00034_025_03062_4
crossref_primary_10_1016_j_knosys_2024_112275
Cites_doi 10.1109/ACCESS.2019.2901691
10.1109/TIP.2019.2892663
10.1109/TPAMI.2012.271
10.1109/TIP.2018.2811546
10.1109/TIP.2017.2651400
10.1109/TIP.2007.901238
10.1016/j.isatra.2018.10.030
10.1007/s11263-016-0930-5
10.1109/TIP.2019.2912122
10.1109/TCSVT.2015.2416631
10.1007/s00521-020-04717-w
10.1016/j.sigpro.2020.107655
10.1109/TGRS.2020.3014130
10.1016/j.neucom.2017.11.004
10.1109/TIP.2019.2912292
10.1109/TIP.2020.2980116
10.1109/TIP.2019.2922074
10.1016/j.ins.2018.05.001
10.1109/TIP.2020.3015545
10.1109/TNNLS.2014.2387376
10.1016/j.sigpro.2015.12.008
10.1109/TIP.2019.2958309
10.1109/TIP.2020.3021291
10.1016/j.neucom.2017.03.073
10.1109/ACCESS.2020.2964683
10.1007/s11263-015-0808-y
10.1109/TIP.2019.2916976
10.1109/TIP.2015.2499698
10.1109/TIP.2021.3090531
10.1016/j.cviu.2021.103173
10.1109/TPAMI.2016.2596743
10.1109/TIP.2021.3078329
10.1109/TIP.2020.2972109
10.1016/j.sigpro.2021.108124
10.1109/TIP.2003.819861
10.1109/TIP.2021.3086049
10.1109/TIP.2016.2599290
10.1109/TIP.2014.2323127
10.1109/LGRS.2019.2926196
10.1007/s11263-008-0197-6
10.1109/TGRS.2018.2876339
10.1109/TIP.2006.881969
10.1007/s11042-022-12083-z
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2022.108650
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID 10_1016_j_sigpro_2022_108650
S016516842200189X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c236t-c60a49f0133585c2dc5404a005259f2019c89e55609a9961a75c4b9c72717d073
IEDL.DBID AIKHN
ISSN 0165-1684
IngestDate Thu Apr 24 23:08:59 EDT 2025
Tue Jul 01 02:07:33 EDT 2025
Fri Feb 23 02:40:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords weighted group sparse coding
Model-driven method
image denoising
multi-scale self-similarity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-c60a49f0133585c2dc5404a005259f2019c89e55609a9961a75c4b9c72717d073
ORCID 0000-0002-9309-2121
0000-0003-1126-6165
0000-0002-3989-5476
ParticipantIDs crossref_primary_10_1016_j_sigpro_2022_108650
crossref_citationtrail_10_1016_j_sigpro_2022_108650
elsevier_sciencedirect_doi_10_1016_j_sigpro_2022_108650
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kumar, Ahmad, Swamy (bib0011) Jul. 2018; 454
Li, Xie, Fan, Xu, Huffel, Sisson, Mengersen (bib0037) Oct. 2019; 28
Zha, Zhang, Wang, Bai, Chen, Tang (bib0006) Jan. 2018; 275
Gu, Xie, Meng, Zuo, Feng, Zhang (bib0008) Jan. 2017; 121
Hu, Zhang, Ye, Li, He (bib0053) Sep. 2013; 35
Zha, Yuan, Wen, Zhou, Zhang, Zhu (bib0041) Dec. 2020; 29
Xie, Gu, Liu, Zuo, Zhang, Zhang (bib0036) Oct. 2016; 25
Y. Ou, B. Zhang, and B. Li. Multi-scale low-rank approximation method for image denoising, Multimedia Tools and Applications, 2022. https://doi.org/10.1007/s11042-022-12083-z.
Xu, Zhang, Zhang (bib0059) Jun. 2018; 27
Ou, Luo, Li, Swamy (bib0046) Oct. 2020; 72
Niknejad, Bioucas-Dias, Figueiredo (bib0023) Sep. 2019; 28
Zhang, Zhao, Gao (bib0051) Aug. 2014; 23
Zha, Yuan, Zhou, Zhu, Wen (bib0058) 2020; 29
Lu, Shi, Jia (bib0027) Jun. 2013
Zha, Yuan, Wen, Zhang, Zhu (bib0019) Jun. 2021
Zhou, Xu, Guo, He (bib0025) Jun. 2021; 440
M. Shi, F. Zhang, S. Wang, C. Zhang, and X. Li. Detail preservation image denoising with patch-based structure similarity via sparse representation and SVD, Computer Vision and Image Understanding, vol. 206, May 2021. https://doi.org/10.1016/j.cviu.2021.103173.
Dong, Shi, Ma, Li (bib0043) Feb. 2015; 114
Elad, Aharon (bib0002) Dec. 2006; 15
Guo, Zhang, Zhang, Liu (bib0035) May 2016; 26
Papyan, Elad (bib0024) Jan. 2016; 25
Zhang, Kang, Peng, Wang, Zhu, Peng, Liu (bib0038) Aug. 2020; 32
Zha, Yuan, Wen, Zhou, Zhu (bib0048) 2020; 29
Wang, Bovid, Sheikh, Simoncelli (bib0062) Apr. 2004; 13
Buades, Coll, Morel (bib0001) Jun. 2005; 2
Mukherjee, Basu, Seelamantula (bib0028) Jun. 2016; 123
Chen, Pock (bib0060) Jun. 2017; 39
Wen, Guo, Yao, Yan, Sun (bib0007) Jul. 2021; 187
Zha, Yuan, Zhou, Zhu, Wen (bib0033) Aug. 2020; 29
Scetbon, Elad, Milanfar (bib0030) 2021; 30
Yair, Michaeli (bib0057) 2018
Zha, Wen, Yuan, Zhou, Zhu, Kot (bib0032) Feb. 2022
Zha, Yuan, Wen, Zhou, Zhang, Zhu (bib0047) Dec. 2020; 29
Zhao, Meng, Xu, Zuo, Yan (bib0052) Apr. 2015; 26
Sha, Schonfeld, Wang (bib0014) Jul. 2020; 30
Guo, Chen (bib0015) Sep. 2021; 186
Hait-Fraenkel, Gilboa (bib0026) Feb. 2021; 75
Zha, Wen, Yuan, Zhou, Zhou, Zhu (bib0020) Jun. 2021; 30
Zha, Wen, Yuan, Zhou, Zhu (bib0049) 2021; 30
Dabov, Foi, Katkovnik, Egiazarian (bib0003) Aug. 2007; 16
Pang, Cheung (bib0009) Apr. 2017; 26
Xie, Zeng, Jiang, Lu (bib0055) Oct. 2017; 260
A. Kumar, M.O. Ahmad, M.N.S. Swamy. A framework for image denoising using first and second order fractional overlapping group sparsity (HF-OLGS) regularizer, IEEE Access, pp. 26200-26217, Feb. 2019. https://doi.org/10.1109/ACCESS.2019.2901691.
Li, Gui, Cheng (bib0012) Nov. 2020; 176
Li, Ru, Lv (bib0017) 2022; 90
Roth, Black (bib0061) Jan. 2009; 82
Mohan, Fazel (bib0054) Nov. 2012; 13
Guan, Xiang, Tang, Kuang (bib0056) Mar. 2020; 17
Mairal, Bach, Ponce, Sapiro, Zisserman (bib0004) Sep. 2009
Kumar, Ahmad, Swamy (bib0010) Jun. 2019; 28
Zha, Yuan, Wen, Zhou, Zhang, Zhu (bib0034) Mar. 2020; 29
Xu, Zhang, Zuo, Zhang, Feng (bib0042) Dec. 2015
Fan, Li, Fan, Zhang (bib0013) Nov. 2020; 164
Zhao, Liu, Lv, Qin (bib0039) Nov. 2019; 28
Liu, Hu, Li, Zhao, Liu, Zhu (bib0018) May 2019; 57
Guo, Cheng, Xiang, Ou, Li (bib0021) Jan. 2019; 31
Iqbal, Seghouane (bib0029) Nov. 2019; 28
Hou, Xu, Liu, Liu, Liu, Shao (bib0031) 2020; 29
Kumar, Ahmad, Swamy (bib0045) Feb. 2019
Zoran, Weiss (bib0005) Nov. 2011
Liu, Gao, Lei, Wang, Hu, Ma, Zhang (bib0016) May 2021; 59
Zhang, Fan, Liu, Li (bib0040) 2020; 8
Zhang (10.1016/j.sigpro.2022.108650_bib0051) 2014; 23
Zhao (10.1016/j.sigpro.2022.108650_bib0052) 2015; 26
Lu (10.1016/j.sigpro.2022.108650_bib0027) 2013
Zha (10.1016/j.sigpro.2022.108650_bib0006) 2018; 275
Zhao (10.1016/j.sigpro.2022.108650_bib0039) 2019; 28
Zha (10.1016/j.sigpro.2022.108650_bib0034) 2020; 29
Mohan (10.1016/j.sigpro.2022.108650_bib0054) 2012; 13
Zha (10.1016/j.sigpro.2022.108650_bib0020) 2021; 30
10.1016/j.sigpro.2022.108650_bib0022
Pang (10.1016/j.sigpro.2022.108650_bib0009) 2017; 26
Xu (10.1016/j.sigpro.2022.108650_bib0059) 2018; 27
Liu (10.1016/j.sigpro.2022.108650_bib0016) 2021; 59
Zhang (10.1016/j.sigpro.2022.108650_bib0038) 2020; 32
Zhang (10.1016/j.sigpro.2022.108650_bib0040) 2020; 8
Li (10.1016/j.sigpro.2022.108650_bib0012) 2020; 176
Li (10.1016/j.sigpro.2022.108650_bib0017) 2022; 90
Zha (10.1016/j.sigpro.2022.108650_bib0033) 2020; 29
Liu (10.1016/j.sigpro.2022.108650_bib0018) 2019; 57
Zha (10.1016/j.sigpro.2022.108650_bib0019) 2021
Xu (10.1016/j.sigpro.2022.108650_bib0042) 2015
Zha (10.1016/j.sigpro.2022.108650_bib0032) 2022
Zha (10.1016/j.sigpro.2022.108650_bib0049) 2021; 30
Guo (10.1016/j.sigpro.2022.108650_bib0021) 2019; 31
Dabov (10.1016/j.sigpro.2022.108650_bib0003) 2007; 16
Papyan (10.1016/j.sigpro.2022.108650_bib0024) 2016; 25
Ou (10.1016/j.sigpro.2022.108650_bib0046) 2020; 72
Hu (10.1016/j.sigpro.2022.108650_bib0053) 2013; 35
Xie (10.1016/j.sigpro.2022.108650_bib0055) 2017; 260
Iqbal (10.1016/j.sigpro.2022.108650_bib0029) 2019; 28
Wen (10.1016/j.sigpro.2022.108650_bib0007) 2021; 187
Zoran (10.1016/j.sigpro.2022.108650_bib0005) 2011
Sha (10.1016/j.sigpro.2022.108650_bib0014) 2020; 30
Zha (10.1016/j.sigpro.2022.108650_bib0047) 2020; 29
Yair (10.1016/j.sigpro.2022.108650_bib0057) 2018
Chen (10.1016/j.sigpro.2022.108650_bib0060) 2017; 39
Scetbon (10.1016/j.sigpro.2022.108650_bib0030) 2021; 30
Hou (10.1016/j.sigpro.2022.108650_bib0031) 2020; 29
10.1016/j.sigpro.2022.108650_bib0044
Guo (10.1016/j.sigpro.2022.108650_bib0015) 2021; 186
Li (10.1016/j.sigpro.2022.108650_bib0037) 2019; 28
Guan (10.1016/j.sigpro.2022.108650_bib0056) 2020; 17
Elad (10.1016/j.sigpro.2022.108650_bib0002) 2006; 15
Guo (10.1016/j.sigpro.2022.108650_bib0035) 2016; 26
Mairal (10.1016/j.sigpro.2022.108650_bib0004) 2009
Kumar (10.1016/j.sigpro.2022.108650_bib0045) 2019
Fan (10.1016/j.sigpro.2022.108650_bib0013) 2020; 164
Zha (10.1016/j.sigpro.2022.108650_bib0041) 2020; 29
Roth (10.1016/j.sigpro.2022.108650_bib0061) 2009; 82
Wang (10.1016/j.sigpro.2022.108650_bib0062) 2004; 13
Zhou (10.1016/j.sigpro.2022.108650_bib0025) 2021; 440
Kumar (10.1016/j.sigpro.2022.108650_bib0010) 2019; 28
10.1016/j.sigpro.2022.108650_bib0050
Mukherjee (10.1016/j.sigpro.2022.108650_bib0028) 2016; 123
Dong (10.1016/j.sigpro.2022.108650_bib0043) 2015; 114
Zha (10.1016/j.sigpro.2022.108650_bib0058) 2020; 29
Gu (10.1016/j.sigpro.2022.108650_bib0008) 2017; 121
Kumar (10.1016/j.sigpro.2022.108650_bib0011) 2018; 454
Xie (10.1016/j.sigpro.2022.108650_bib0036) 2016; 25
Buades (10.1016/j.sigpro.2022.108650_bib0001) 2005; 2
Zha (10.1016/j.sigpro.2022.108650_bib0048) 2020; 29
Niknejad (10.1016/j.sigpro.2022.108650_bib0023) 2019; 28
Hait-Fraenkel (10.1016/j.sigpro.2022.108650_bib0026) 2021; 75
References_xml – volume: 29
  start-page: 3254
  year: Dec. 2020
  end-page: 3269
  ident: bib0041
  article-title: From rank estimation to rank approximation: rank residual constraint for image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 114
  start-page: 217
  year: Feb. 2015
  end-page: 232
  ident: bib0043
  article-title: Image restoration via simultaneous sparse coding: where structural sparsity meets Gaussian scale mixture
  publication-title: Int. J. Comput. Vis.
– volume: 72
  year: Oct. 2020
  ident: bib0046
  article-title: Gray-scale image denoising with an improved weighted sparse coding
  publication-title: J. Vis. Comun. Image R.
– volume: 8
  start-page: 8157
  year: 2020
  end-page: 8165
  ident: bib0040
  article-title: Image denoising using hybrid singular value thresholding operators
  publication-title: IEEE Access
– volume: 28
  start-page: 5729
  year: Nov. 2019
  end-page: 5739
  ident: bib0029
  article-title: An α-divergence-based approach for robust dictionary learning
  publication-title: IEEE Trans. Image Process.
– volume: 25
  start-page: 4842
  year: Oct. 2016
  end-page: 4857
  ident: bib0036
  article-title: Weighted schatten p-norm minimization for image denoising and background subtraction
  publication-title: IEEE Trans. Image Process.
– volume: 27
  start-page: 2996
  year: Jun. 2018
  end-page: 3010
  ident: bib0059
  article-title: External prior guided internal prior learning for real-word noisy image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 868
  year: May 2016
  end-page: 880
  ident: bib0035
  article-title: An efficient SVD-based method for image denoising
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: Y. Ou, B. Zhang, and B. Li. Multi-scale low-rank approximation method for image denoising, Multimedia Tools and Applications, 2022. https://doi.org/10.1007/s11042-022-12083-z.
– volume: 260
  start-page: 92
  year: Oct. 2017
  end-page: 103
  ident: bib0055
  article-title: Multiscale self-similarity and sparse representation based single image super-resolution
  publication-title: Neurocomputing
– volume: 39
  start-page: 1256
  year: Jun. 2017
  end-page: 1272
  ident: bib0060
  article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 187
  year: Jul. 2021
  ident: bib0007
  article-title: Hybrid BM3D and PDF filtering for non-parametric single image denoising
  publication-title: Signal Processing
– start-page: 479
  year: Nov. 2011
  end-page: 486
  ident: bib0005
  article-title: From learning models of natural image patches to whole image restoration
  publication-title: Proc. IEEE Int. Conf. on Comput. Vis
– volume: 275
  start-page: 2294
  year: Jan. 2018
  end-page: 2306
  ident: bib0006
  article-title: Group sparsity residual constraint for image denoising with external nonlocal self-similarity prior
  publication-title: Neurocomputing
– volume: 13
  start-page: 3441
  year: Nov. 2012
  end-page: 3473
  ident: bib0054
  article-title: Iterative reweighted algorithms for matrix rank minimization
  publication-title: Journal of Machine Learning Research
– volume: 59
  start-page: 3956
  year: May 2021
  end-page: 3966
  ident: bib0016
  article-title: SAR speckle removal using hybrid frequency modulations
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: M. Shi, F. Zhang, S. Wang, C. Zhang, and X. Li. Detail preservation image denoising with patch-based structure similarity via sparse representation and SVD, Computer Vision and Image Understanding, vol. 206, May 2021. https://doi.org/10.1016/j.cviu.2021.103173.
– volume: 75
  year: Feb. 2021
  ident: bib0026
  article-title: Revealing stable and unstable modes of denoisers through nonlinear eigenvalue analysis
  publication-title: J. Vis. Comun. Image R.
– volume: 30
  start-page: 5944
  year: 2021
  end-page: 5955
  ident: bib0030
  article-title: Deep K-SVD denoising
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 1770
  year: Apr. 2017
  end-page: 1785
  ident: bib0009
  article-title: Graph Laplacian regularization for image denoising: analysis in the continuous domain
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 8561
  year: Aug. 2020
  end-page: 8576
  ident: bib0033
  article-title: Image restoration via simultaneous nonlocal self-similarity priors
  publication-title: IEEE Trans. Image Process.
– volume: 30
  start-page: 5819
  year: Jun. 2021
  end-page: 5834
  ident: bib0020
  article-title: Triply Complementary Priors for Image Restoration
  publication-title: IEEE Trans. Image Process.
– reference: A. Kumar, M.O. Ahmad, M.N.S. Swamy. A framework for image denoising using first and second order fractional overlapping group sparsity (HF-OLGS) regularizer, IEEE Access, pp. 26200-26217, Feb. 2019. https://doi.org/10.1109/ACCESS.2019.2901691.
– volume: 29
  start-page: 5094
  year: Mar. 2020
  end-page: 5109
  ident: bib0034
  article-title: A benchmark for sparse coding: when group sparsity meets rank minimization
  publication-title: IEEE Trans. Image Process.
– volume: 28
  start-page: 4899
  year: Oct. 2019
  end-page: 4911
  ident: bib0037
  article-title: Image denoising based on nonlocal Bayesian singular value thresholding and Stein's unbiased risk estimator
  publication-title: IEEE Trans. Image Process.
– volume: 31
  start-page: 5097
  year: Jan. 2019
  end-page: 5108
  ident: bib0021
  article-title: A fast bilateral filtering algorithm based on rising cosine function
  publication-title: Neural Computing and Applications
– volume: 35
  start-page: 2117
  year: Sep. 2013
  end-page: 2130
  ident: bib0053
  article-title: Fast and accurate matrix completion via truncated nuclear norm regularization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 57
  start-page: 2700
  year: May 2019
  end-page: 2708
  ident: bib0018
  article-title: Speckle suppression based on weighted nuclear norm minimization and grey theory
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 28
  start-page: 2921
  year: Jun. 2019
  end-page: 2935
  ident: bib0010
  article-title: Tchebichef and adaptive steerable-based total variation model for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 454
  start-page: 292
  year: Jul. 2018
  end-page: 311
  ident: bib0011
  article-title: An efficient denoising framework using weighted overlapping group sparsity
  publication-title: Inf. Sci.
– volume: 29
  start-page: 8960
  year: 2020
  end-page: 8975
  ident: bib0048
  article-title: Group sparsity residual constraint with non-local prior for image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 176
  year: Nov. 2020
  ident: bib0012
  article-title: From group sparse coding to rank minimization: A novel denoising model for low-level image restoration
  publication-title: Signal Processing
– volume: 26
  start-page: 825
  year: Apr. 2015
  end-page: 839
  ident: bib0052
  article-title: -norm low-rank matrix factorization by variational Bayesian method
  publication-title: IEEE Trans. Neural Networks and Learning Systems
– year: Feb. 2022
  ident: bib0032
  article-title: Low-rankness guided group sparse representation for image restoration
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 23
  start-page: 3336
  year: Aug. 2014
  end-page: 3351
  ident: bib0051
  article-title: Group-based sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 28
  start-page: 5537
  year: Nov. 2019
  end-page: 5551
  ident: bib0039
  article-title: Texture variation adaptive image denoising with nonlocal PCA
  publication-title: IEEE Trans. Image Process.
– start-page: 293
  year: Feb. 2019
  end-page: 304
  ident: bib0045
  article-title: Image denoising via overlapping group sparsity using orthogonal moments as similarity measure
  publication-title: ISA Trans
– volume: 30
  start-page: 2000
  year: Jul. 2020
  end-page: 2014
  ident: bib0014
  article-title: Graph Laplacian regularization with sparse coding for image restoration and representation
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: Jun. 2021
  ident: bib0019
  article-title: Nonconvex structural sparsity residual constraint for image restoration
  publication-title: IEEE Trans. Cyber.
– volume: 121
  start-page: 183
  year: Jan. 2017
  end-page: 208
  ident: bib0008
  article-title: Weighted nuclear norm minimization and its applications to low level vision
  publication-title: Int. J. Comput. Vis.
– volume: 90
  year: 2022
  ident: bib0017
  article-title: Patch-based weighted SCAD prior for Rician noise removal
  publication-title: Journal of Scientific Computing
– volume: 17
  start-page: 421
  year: Mar. 2020
  end-page: 425
  ident: bib0056
  article-title: A SAR image despeckling method using multi-scale nonlocal low-rank model
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 15
  start-page: 3736
  year: Dec. 2006
  end-page: 3745
  ident: bib0002
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
– volume: 32
  start-page: 12575
  year: Aug. 2020
  end-page: 12590
  ident: bib0038
  article-title: Image denoising via structure-constrained low-rank approximation
  publication-title: Neural Comput. Applic.
– volume: 25
  start-page: 249
  year: Jan. 2016
  end-page: 261
  ident: bib0024
  article-title: Multi-scale patch-based image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 123
  start-page: 42
  year: Jun. 2016
  end-page: 52
  ident: bib0028
  article-title: ℓ1-K-SVD: a robust dictionary learning algorithm with simultaneous update
  publication-title: Signal Process
– volume: 28
  start-page: 4460
  year: Sep. 2019
  end-page: 4470
  ident: bib0023
  article-title: External patch-based image restoration using importance sampling
  publication-title: IEEE Trans. Image Process.
– start-page: 244
  year: Dec. 2015
  end-page: 252
  ident: bib0042
  article-title: Patch group based nonlocal self-similarity prior learning for image denoising
  publication-title: Proc. IEEE Int. Conf. Comput. Vis
– start-page: 3165
  year: 2018
  end-page: 3174
  ident: bib0057
  article-title: Multi-scale weighted nuclear norm image restoration
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recogni
– volume: 13
  start-page: 600
  year: Apr. 2004
  end-page: 612
  ident: bib0062
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 164
  year: Nov. 2020
  ident: bib0013
  article-title: An adaptive boosting procedure for low-rank based image denoising
  publication-title: Signal Processing
– volume: 29
  start-page: 5094
  year: Dec. 2020
  end-page: 5109
  ident: bib0047
  article-title: A benchmark for sparse coding: when group sparsity meets rank minimization
  publication-title: IEEE Trans. Image Process.
– volume: 2
  start-page: 60
  year: Jun. 2005
  end-page: 65
  ident: bib0001
  article-title: A non-local algorithm for image denoising
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recogni
– volume: 29
  start-page: 5121
  year: 2020
  end-page: 5135
  ident: bib0031
  article-title: NLH: a blind pixel-level non-local method for real-word image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 8561
  year: 2020
  end-page: 8576
  ident: bib0058
  article-title: Image restoration via simultaneous nonlocal self-similarity priors
  publication-title: IEEE Trans. Image Process.
– volume: 30
  start-page: 5223
  year: 2021
  end-page: 5238
  ident: bib0049
  article-title: Image restoration via reconciliation of group sparsity and low-rank models
  publication-title: IEEE Trans. Image Process.
– volume: 82
  start-page: 205
  year: Jan. 2009
  end-page: 229
  ident: bib0061
  article-title: Fields of Experts
  publication-title: Int. J. Comput. Vis.
– start-page: 2272
  year: Sep. 2009
  end-page: 2279
  ident: bib0004
  article-title: Non-local sparse models for image restoration
  publication-title: Proc. IEEE Int. Conf. on Comput. Vis
– volume: 186
  year: Sep. 2021
  ident: bib0015
  article-title: Image denoising based on nonconvex anisotropic total-variation regularization
  publication-title: Signal Processing
– start-page: 415
  year: Jun. 2013
  end-page: 422
  ident: bib0027
  article-title: Online robust dictionary learning
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recogni
– volume: 16
  start-page: 2080
  year: Aug. 2007
  end-page: 2095
  ident: bib0003
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
– volume: 440
  start-page: 127
  year: Jun. 2021
  end-page: 144
  ident: bib0025
  article-title: Multi-channel expected patch log likelihood for color image denoising
  publication-title: Neurocomputing
– ident: 10.1016/j.sigpro.2022.108650_bib0044
  doi: 10.1109/ACCESS.2019.2901691
– volume: 28
  start-page: 2921
  issue: 6
  year: 2019
  ident: 10.1016/j.sigpro.2022.108650_bib0010
  article-title: Tchebichef and adaptive steerable-based total variation model for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2892663
– volume: 35
  start-page: 2117
  issue: 9
  year: 2013
  ident: 10.1016/j.sigpro.2022.108650_bib0053
  article-title: Fast and accurate matrix completion via truncated nuclear norm regularization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.271
– start-page: 415
  year: 2013
  ident: 10.1016/j.sigpro.2022.108650_bib0027
  article-title: Online robust dictionary learning
– volume: 27
  start-page: 2996
  issue: 6
  year: 2018
  ident: 10.1016/j.sigpro.2022.108650_bib0059
  article-title: External prior guided internal prior learning for real-word noisy image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2811546
– volume: 26
  start-page: 1770
  issue: 4
  year: 2017
  ident: 10.1016/j.sigpro.2022.108650_bib0009
  article-title: Graph Laplacian regularization for image denoising: analysis in the continuous domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2651400
– start-page: 244
  year: 2015
  ident: 10.1016/j.sigpro.2022.108650_bib0042
  article-title: Patch group based nonlocal self-similarity prior learning for image denoising
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 10.1016/j.sigpro.2022.108650_bib0003
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– start-page: 3165
  year: 2018
  ident: 10.1016/j.sigpro.2022.108650_bib0057
  article-title: Multi-scale weighted nuclear norm image restoration
– volume: 440
  start-page: 127
  year: 2021
  ident: 10.1016/j.sigpro.2022.108650_bib0025
  article-title: Multi-channel expected patch log likelihood for color image denoising
  publication-title: Neurocomputing
– start-page: 293
  year: 2019
  ident: 10.1016/j.sigpro.2022.108650_bib0045
  article-title: Image denoising via overlapping group sparsity using orthogonal moments as similarity measure
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2018.10.030
– volume: 121
  start-page: 183
  issue: 2
  year: 2017
  ident: 10.1016/j.sigpro.2022.108650_bib0008
  article-title: Weighted nuclear norm minimization and its applications to low level vision
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-016-0930-5
– volume: 2
  start-page: 60
  year: 2005
  ident: 10.1016/j.sigpro.2022.108650_bib0001
  article-title: A non-local algorithm for image denoising
– volume: 28
  start-page: 4460
  issue: 9
  year: 2019
  ident: 10.1016/j.sigpro.2022.108650_bib0023
  article-title: External patch-based image restoration using importance sampling
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2912122
– volume: 26
  start-page: 868
  issue: 5
  year: 2016
  ident: 10.1016/j.sigpro.2022.108650_bib0035
  article-title: An efficient SVD-based method for image denoising
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2015.2416631
– volume: 32
  start-page: 12575
  issue: 16
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0038
  article-title: Image denoising via structure-constrained low-rank approximation
  publication-title: Neural Comput. Applic.
  doi: 10.1007/s00521-020-04717-w
– volume: 176
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0012
  article-title: From group sparse coding to rank minimization: A novel denoising model for low-level image restoration
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2020.107655
– volume: 59
  start-page: 3956
  issue: 5
  year: 2021
  ident: 10.1016/j.sigpro.2022.108650_bib0016
  article-title: SAR speckle removal using hybrid frequency modulations
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3014130
– volume: 275
  start-page: 2294
  year: 2018
  ident: 10.1016/j.sigpro.2022.108650_bib0006
  article-title: Group sparsity residual constraint for image denoising with external nonlocal self-similarity prior
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.004
– volume: 28
  start-page: 4899
  issue: 10
  year: 2019
  ident: 10.1016/j.sigpro.2022.108650_bib0037
  article-title: Image denoising based on nonlocal Bayesian singular value thresholding and Stein's unbiased risk estimator
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2912292
– volume: 29
  start-page: 5121
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0031
  article-title: NLH: a blind pixel-level non-local method for real-word image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2980116
– volume: 28
  start-page: 5729
  issue: 11
  year: 2019
  ident: 10.1016/j.sigpro.2022.108650_bib0029
  article-title: An α-divergence-based approach for robust dictionary learning
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2922074
– volume: 454
  start-page: 292
  year: 2018
  ident: 10.1016/j.sigpro.2022.108650_bib0011
  article-title: An efficient denoising framework using weighted overlapping group sparsity
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.05.001
– volume: 29
  start-page: 8561
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0058
  article-title: Image restoration via simultaneous nonlocal self-similarity priors
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3015545
– volume: 26
  start-page: 825
  issue: 4
  year: 2015
  ident: 10.1016/j.sigpro.2022.108650_bib0052
  article-title: L1-norm low-rank matrix factorization by variational Bayesian method
  publication-title: IEEE Trans. Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2387376
– volume: 123
  start-page: 42
  year: 2016
  ident: 10.1016/j.sigpro.2022.108650_bib0028
  article-title: ℓ1-K-SVD: a robust dictionary learning algorithm with simultaneous update
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2015.12.008
– volume: 29
  start-page: 3254
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0041
  article-title: From rank estimation to rank approximation: rank residual constraint for image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2958309
– year: 2022
  ident: 10.1016/j.sigpro.2022.108650_bib0032
  article-title: Low-rankness guided group sparse representation for image restoration
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 2272
  year: 2009
  ident: 10.1016/j.sigpro.2022.108650_bib0004
  article-title: Non-local sparse models for image restoration
– volume: 29
  start-page: 8960
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0048
  article-title: Group sparsity residual constraint with non-local prior for image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3021291
– volume: 260
  start-page: 92
  year: 2017
  ident: 10.1016/j.sigpro.2022.108650_bib0055
  article-title: Multiscale self-similarity and sparse representation based single image super-resolution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.073
– volume: 8
  start-page: 8157
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0040
  article-title: Image denoising using hybrid singular value thresholding operators
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964683
– start-page: 479
  year: 2011
  ident: 10.1016/j.sigpro.2022.108650_bib0005
  article-title: From learning models of natural image patches to whole image restoration
– volume: 114
  start-page: 217
  year: 2015
  ident: 10.1016/j.sigpro.2022.108650_bib0043
  article-title: Image restoration via simultaneous sparse coding: where structural sparsity meets Gaussian scale mixture
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0808-y
– volume: 28
  start-page: 5537
  issue: 11
  year: 2019
  ident: 10.1016/j.sigpro.2022.108650_bib0039
  article-title: Texture variation adaptive image denoising with nonlocal PCA
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2916976
– volume: 25
  start-page: 249
  issue: 1
  year: 2016
  ident: 10.1016/j.sigpro.2022.108650_bib0024
  article-title: Multi-scale patch-based image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2499698
– volume: 29
  start-page: 8561
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0033
  article-title: Image restoration via simultaneous nonlocal self-similarity priors
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3015545
– year: 2021
  ident: 10.1016/j.sigpro.2022.108650_bib0019
  article-title: Nonconvex structural sparsity residual constraint for image restoration
  publication-title: IEEE Trans. Cyber.
– volume: 187
  year: 2021
  ident: 10.1016/j.sigpro.2022.108650_bib0007
  article-title: Hybrid BM3D and PDF filtering for non-parametric single image denoising
  publication-title: Signal Processing
– volume: 30
  start-page: 5944
  year: 2021
  ident: 10.1016/j.sigpro.2022.108650_bib0030
  article-title: Deep K-SVD denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3090531
– ident: 10.1016/j.sigpro.2022.108650_bib0050
  doi: 10.1016/j.cviu.2021.103173
– volume: 75
  year: 2021
  ident: 10.1016/j.sigpro.2022.108650_bib0026
  article-title: Revealing stable and unstable modes of denoisers through nonlinear eigenvalue analysis
  publication-title: J. Vis. Comun. Image R.
– volume: 39
  start-page: 1256
  issue: 6
  year: 2017
  ident: 10.1016/j.sigpro.2022.108650_bib0060
  article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2596743
– volume: 30
  start-page: 5223
  year: 2021
  ident: 10.1016/j.sigpro.2022.108650_bib0049
  article-title: Image restoration via reconciliation of group sparsity and low-rank models
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3078329
– volume: 29
  start-page: 5094
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0034
  article-title: A benchmark for sparse coding: when group sparsity meets rank minimization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2972109
– volume: 31
  start-page: 5097
  year: 2019
  ident: 10.1016/j.sigpro.2022.108650_bib0021
  article-title: A fast bilateral filtering algorithm based on rising cosine function
– volume: 164
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0013
  article-title: An adaptive boosting procedure for low-rank based image denoising
  publication-title: Signal Processing
– volume: 186
  year: 2021
  ident: 10.1016/j.sigpro.2022.108650_bib0015
  article-title: Image denoising based on nonconvex anisotropic total-variation regularization
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2021.108124
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.sigpro.2022.108650_bib0062
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 30
  start-page: 5819
  year: 2021
  ident: 10.1016/j.sigpro.2022.108650_bib0020
  article-title: Triply Complementary Priors for Image Restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3086049
– volume: 25
  start-page: 4842
  issue: 10
  year: 2016
  ident: 10.1016/j.sigpro.2022.108650_bib0036
  article-title: Weighted schatten p-norm minimization for image denoising and background subtraction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2599290
– volume: 72
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0046
  article-title: Gray-scale image denoising with an improved weighted sparse coding
  publication-title: J. Vis. Comun. Image R.
– volume: 23
  start-page: 3336
  issue: 8
  year: 2014
  ident: 10.1016/j.sigpro.2022.108650_bib0051
  article-title: Group-based sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2323127
– volume: 17
  start-page: 421
  issue: 3
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0056
  article-title: A SAR image despeckling method using multi-scale nonlocal low-rank model
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2019.2926196
– volume: 82
  start-page: 205
  issue: 2
  year: 2009
  ident: 10.1016/j.sigpro.2022.108650_bib0061
  article-title: Fields of Experts
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-008-0197-6
– volume: 90
  issue: 26
  year: 2022
  ident: 10.1016/j.sigpro.2022.108650_bib0017
  article-title: Patch-based weighted SCAD prior for Rician noise removal
  publication-title: Journal of Scientific Computing
– volume: 57
  start-page: 2700
  issue: 5
  year: 2019
  ident: 10.1016/j.sigpro.2022.108650_bib0018
  article-title: Speckle suppression based on weighted nuclear norm minimization and grey theory
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2876339
– volume: 15
  start-page: 3736
  issue: 12
  year: 2006
  ident: 10.1016/j.sigpro.2022.108650_bib0002
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881969
– volume: 30
  start-page: 2000
  issue: 7
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0014
  article-title: Graph Laplacian regularization with sparse coding for image restoration and representation
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– ident: 10.1016/j.sigpro.2022.108650_bib0022
  doi: 10.1007/s11042-022-12083-z
– volume: 29
  start-page: 5094
  year: 2020
  ident: 10.1016/j.sigpro.2022.108650_bib0047
  article-title: A benchmark for sparse coding: when group sparsity meets rank minimization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2972109
– volume: 13
  start-page: 3441
  year: 2012
  ident: 10.1016/j.sigpro.2022.108650_bib0054
  article-title: Iterative reweighted algorithms for matrix rank minimization
  publication-title: Journal of Machine Learning Research
SSID ssj0001360
Score 2.4716384
Snippet •We propose a new MS-WGSC model, in which the multi-scale NSS is exploited. Besides, the dictionary in each group is adaptively set via singular value...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108650
SubjectTerms image denoising
Model-driven method
multi-scale self-similarity
weighted group sparse coding
Title Single image denoising via multi-scale weighted group sparse coding
URI https://dx.doi.org/10.1016/j.sigpro.2022.108650
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOhBfGJ9lD14XdtNNo89lmKpCr3UQm9hX5FIbUtb9eZvdzaPUkEUPIUNO5B8E76Z3cy3A3AjuiYyXaupx4yh3HqCqthPaco9qy1jrs-Vq7YYhcMJf5gG0xr0Ky2MK6ssub_g9JytyzudEs3OMss6YyfEYe43kisLisW0Dk3PF2HQgGbv_nE42hIy83OxsJtPnUGloMvLvNbZM1IVLhQ9L-865AT4P0WonagzOISDMl0kveKJjqBm58ewv3OI4An0x3iZWZK9IjUQpJFF5tb_5D2TJC8XpGv0gyUf-SaoNSQXchBkktXaEr1wwesUJoO7p_6Qlq0RqPb8cEN12JVcpPhqPub72jMaMy8u3SZvIFIM6kLHwgaYzgiJKxomo0BzJTRmKwx9E_ln0Jgv5vYcCFM2jLjkRknFU6ViKRFNIbjBUaSiFvgVHIkuzw137StmSVUg9pIUICYOxKQAsQV0a7Uszs34Y35UIZ1883-C1P6r5cW_LS9hz40KZeEVNDarN3uNKcZGtaF--8na5Yf0BbT8z9M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4QD-rB-BnxswevFbp1dD0aIkFFLkDCrenXzAwCAdSbv923-1BMjCaelm1tsj1dnvdt9zx9EboUDcttwxkSUGsJc4EgOg4TkrDAGUepr3Pl1Ra9ZmfI7kbRqIJapRfGyyoL7s85PWPr4kq9QLM-S9N63xtxqP-N5GVBsRitoXUWhdzr-q7ev3QeNMyswr418c1L_1wm8lqkj0BUME0MgqzmkLff_xSfVmJOewdtF8kivs6fZxdV3GQPba1sIbiPWn04jB1On4EYMJDINPWzf_yaKpyJBckCRsHht2wJ1Fmc2Tgw8Mh84bCZ-tB1gIbtm0GrQ4rCCMQEYXNJTLOhmEjg1ULI9k1gDeRdTPkl3kgkENKFiYWLIJkRCuYzVPHIMC0M5CoURoaHh6g6mU7cEcJUuyZnilmtNEu0jpUCLIVgFs645jUUlnBIU-wa7otXjGUpD3uSOYjSgyhzEGuIfPaa5btm_NGel0jLb6Mvgdh_7Xn8754XaKMzeOjK7m3v_gRt-ju5x_AUVZfzF3cGycZSn2cf0wdw1tCe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+image+denoising+via+multi-scale+weighted+group+sparse+coding&rft.jtitle=Signal+processing&rft.au=Ou%2C+Yang&rft.au=Swamy%2C+M.N.S.&rft.au=Luo%2C+Jianqiao&rft.au=Li%2C+Bailin&rft.date=2022-11-01&rft.issn=0165-1684&rft.volume=200&rft.spage=108650&rft_id=info:doi/10.1016%2Fj.sigpro.2022.108650&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2022_108650
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon