Single image denoising via multi-scale weighted group sparse coding
•We propose a new MS-WGSC model, in which the multi-scale NSS is exploited. Besides, the dictionary in each group is adaptively set via singular value decomposition rather than learning from external corpus.•We develop an alternating minimization method to solve our MS-WGSC model, wherein each of th...
Saved in:
Published in | Signal processing Vol. 200; p. 108650 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0165-1684 1872-7557 |
DOI | 10.1016/j.sigpro.2022.108650 |
Cover
Abstract | •We propose a new MS-WGSC model, in which the multi-scale NSS is exploited. Besides, the dictionary in each group is adaptively set via singular value decomposition rather than learning from external corpus.•We develop an alternating minimization method to solve our MS-WGSC model, wherein each of the steps has closed-form solution.•We show through extensive denoising experiments the competitiveness of our MS-WGSC model compared with many of the state-of-the-art methods, especially in perceptual quality.
Nonlocal self-similarity (NSS) property of natural images, which means that the structure of the image sub-patches will appear repeatedly within a certain area, has been widely exploited as an effective prior to establishing various models in image denoising task. However, most of the existing NSS-based denoising models exploit the NSS prior in single scale only, and for some of the image patches that do not appear repeatedly, undesirable ringing artifacts will occur in the restored image, and even the image content may be lost. Considering the fact that NSS exists both within the same scale and across different scales, in order to better restore the structure and the edges of images contaminated by noise, we propose, in this paper, a novel multi-scale weighted group sparse coding model (MS-WGSC) for image denoising, wherein the patch groups are constructed using multi-scale NSS priors. Furthermore, an alternating minimization method is proposed to obtain the solution for our model. Extensive experiments are conducted that demonstrate the competitiveness of the proposed model compared with that of state-of-the-art methods not only in terms of the quantitative metrics such as PSNR and SSIM, but also in perceptual quality. |
---|---|
AbstractList | •We propose a new MS-WGSC model, in which the multi-scale NSS is exploited. Besides, the dictionary in each group is adaptively set via singular value decomposition rather than learning from external corpus.•We develop an alternating minimization method to solve our MS-WGSC model, wherein each of the steps has closed-form solution.•We show through extensive denoising experiments the competitiveness of our MS-WGSC model compared with many of the state-of-the-art methods, especially in perceptual quality.
Nonlocal self-similarity (NSS) property of natural images, which means that the structure of the image sub-patches will appear repeatedly within a certain area, has been widely exploited as an effective prior to establishing various models in image denoising task. However, most of the existing NSS-based denoising models exploit the NSS prior in single scale only, and for some of the image patches that do not appear repeatedly, undesirable ringing artifacts will occur in the restored image, and even the image content may be lost. Considering the fact that NSS exists both within the same scale and across different scales, in order to better restore the structure and the edges of images contaminated by noise, we propose, in this paper, a novel multi-scale weighted group sparse coding model (MS-WGSC) for image denoising, wherein the patch groups are constructed using multi-scale NSS priors. Furthermore, an alternating minimization method is proposed to obtain the solution for our model. Extensive experiments are conducted that demonstrate the competitiveness of the proposed model compared with that of state-of-the-art methods not only in terms of the quantitative metrics such as PSNR and SSIM, but also in perceptual quality. |
ArticleNumber | 108650 |
Author | Swamy, M.N.S. Li, Bailin Ou, Yang Luo, Jianqiao |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-9309-2121 surname: Ou fullname: Ou, Yang organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China – sequence: 2 givenname: M.N.S. orcidid: 0000-0002-3989-5476 surname: Swamy fullname: Swamy, M.N.S. email: swamy@ece.concordia.ca organization: Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada – sequence: 3 givenname: Jianqiao surname: Luo fullname: Luo, Jianqiao organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China – sequence: 4 givenname: Bailin orcidid: 0000-0003-1126-6165 surname: Li fullname: Li, Bailin organization: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China |
BookMark | eNqFkMtOwzAQRS1UJNrCH7DID6SMndiOWSChipdUiQWwtowzCa7SOLLTIv4eV2HFAlYj3bl3HmdBZr3vkZBLCisKVFxtV9G1Q_ArBowlqRIcTsicVpLlknM5I_Nk4zkVVXlGFjFuAYAWAuZk_eL6tsPM7UyLWY29dzEp2cGZbLfvRpdHa1L_E137MWKdtcHvhywOJkTMrK-T-ZycNqaLePFTl-Tt_u51_Zhvnh-e1reb3LJCjLkVYErVpMUFr7hlteUllAaAM64aBlTZSiHnApRRSlAjuS3flZVMUlmDLJaknOba4GMM2OghpLvDl6agjyD0Vk8g9BGEnkCk2PWvmHWjGZ3vx2Bc91_4ZgpjeuzgMOhoHfYWaxfQjrr27u8B3xC1fQ4 |
CitedBy_id | crossref_primary_10_3390_sym15112073 crossref_primary_10_1016_j_sigpro_2022_108926 crossref_primary_10_3390_rs15020445 crossref_primary_10_1007_s00170_025_15214_6 crossref_primary_10_3390_rs15102483 crossref_primary_10_1007_s00034_024_02962_1 crossref_primary_10_1016_j_sigpro_2023_109356 crossref_primary_10_1109_LGRS_2023_3241642 crossref_primary_10_1016_j_sigpro_2023_109284 crossref_primary_10_1016_j_undsp_2024_04_003 crossref_primary_10_1016_j_ins_2023_04_010 crossref_primary_10_3390_electronics12051201 crossref_primary_10_3389_fnins_2023_1293161 crossref_primary_10_1117_1_JEI_32_1_013004 crossref_primary_10_1007_s11042_023_15928_3 crossref_primary_10_3390_math12091412 crossref_primary_10_1016_j_sigpro_2023_109191 crossref_primary_10_1007_s00034_025_03062_4 crossref_primary_10_1016_j_knosys_2024_112275 |
Cites_doi | 10.1109/ACCESS.2019.2901691 10.1109/TIP.2019.2892663 10.1109/TPAMI.2012.271 10.1109/TIP.2018.2811546 10.1109/TIP.2017.2651400 10.1109/TIP.2007.901238 10.1016/j.isatra.2018.10.030 10.1007/s11263-016-0930-5 10.1109/TIP.2019.2912122 10.1109/TCSVT.2015.2416631 10.1007/s00521-020-04717-w 10.1016/j.sigpro.2020.107655 10.1109/TGRS.2020.3014130 10.1016/j.neucom.2017.11.004 10.1109/TIP.2019.2912292 10.1109/TIP.2020.2980116 10.1109/TIP.2019.2922074 10.1016/j.ins.2018.05.001 10.1109/TIP.2020.3015545 10.1109/TNNLS.2014.2387376 10.1016/j.sigpro.2015.12.008 10.1109/TIP.2019.2958309 10.1109/TIP.2020.3021291 10.1016/j.neucom.2017.03.073 10.1109/ACCESS.2020.2964683 10.1007/s11263-015-0808-y 10.1109/TIP.2019.2916976 10.1109/TIP.2015.2499698 10.1109/TIP.2021.3090531 10.1016/j.cviu.2021.103173 10.1109/TPAMI.2016.2596743 10.1109/TIP.2021.3078329 10.1109/TIP.2020.2972109 10.1016/j.sigpro.2021.108124 10.1109/TIP.2003.819861 10.1109/TIP.2021.3086049 10.1109/TIP.2016.2599290 10.1109/TIP.2014.2323127 10.1109/LGRS.2019.2926196 10.1007/s11263-008-0197-6 10.1109/TGRS.2018.2876339 10.1109/TIP.2006.881969 10.1007/s11042-022-12083-z |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sigpro.2022.108650 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7557 |
ExternalDocumentID | 10_1016_j_sigpro_2022_108650 S016516842200189X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c236t-c60a49f0133585c2dc5404a005259f2019c89e55609a9961a75c4b9c72717d073 |
IEDL.DBID | AIKHN |
ISSN | 0165-1684 |
IngestDate | Thu Apr 24 23:08:59 EDT 2025 Tue Jul 01 02:07:33 EDT 2025 Fri Feb 23 02:40:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | weighted group sparse coding Model-driven method image denoising multi-scale self-similarity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-c60a49f0133585c2dc5404a005259f2019c89e55609a9961a75c4b9c72717d073 |
ORCID | 0000-0002-9309-2121 0000-0003-1126-6165 0000-0002-3989-5476 |
ParticipantIDs | crossref_primary_10_1016_j_sigpro_2022_108650 crossref_citationtrail_10_1016_j_sigpro_2022_108650 elsevier_sciencedirect_doi_10_1016_j_sigpro_2022_108650 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | Signal processing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kumar, Ahmad, Swamy (bib0011) Jul. 2018; 454 Li, Xie, Fan, Xu, Huffel, Sisson, Mengersen (bib0037) Oct. 2019; 28 Zha, Zhang, Wang, Bai, Chen, Tang (bib0006) Jan. 2018; 275 Gu, Xie, Meng, Zuo, Feng, Zhang (bib0008) Jan. 2017; 121 Hu, Zhang, Ye, Li, He (bib0053) Sep. 2013; 35 Zha, Yuan, Wen, Zhou, Zhang, Zhu (bib0041) Dec. 2020; 29 Xie, Gu, Liu, Zuo, Zhang, Zhang (bib0036) Oct. 2016; 25 Y. Ou, B. Zhang, and B. Li. Multi-scale low-rank approximation method for image denoising, Multimedia Tools and Applications, 2022. https://doi.org/10.1007/s11042-022-12083-z. Xu, Zhang, Zhang (bib0059) Jun. 2018; 27 Ou, Luo, Li, Swamy (bib0046) Oct. 2020; 72 Niknejad, Bioucas-Dias, Figueiredo (bib0023) Sep. 2019; 28 Zhang, Zhao, Gao (bib0051) Aug. 2014; 23 Zha, Yuan, Zhou, Zhu, Wen (bib0058) 2020; 29 Lu, Shi, Jia (bib0027) Jun. 2013 Zha, Yuan, Wen, Zhang, Zhu (bib0019) Jun. 2021 Zhou, Xu, Guo, He (bib0025) Jun. 2021; 440 M. Shi, F. Zhang, S. Wang, C. Zhang, and X. Li. Detail preservation image denoising with patch-based structure similarity via sparse representation and SVD, Computer Vision and Image Understanding, vol. 206, May 2021. https://doi.org/10.1016/j.cviu.2021.103173. Dong, Shi, Ma, Li (bib0043) Feb. 2015; 114 Elad, Aharon (bib0002) Dec. 2006; 15 Guo, Zhang, Zhang, Liu (bib0035) May 2016; 26 Papyan, Elad (bib0024) Jan. 2016; 25 Zhang, Kang, Peng, Wang, Zhu, Peng, Liu (bib0038) Aug. 2020; 32 Zha, Yuan, Wen, Zhou, Zhu (bib0048) 2020; 29 Wang, Bovid, Sheikh, Simoncelli (bib0062) Apr. 2004; 13 Buades, Coll, Morel (bib0001) Jun. 2005; 2 Mukherjee, Basu, Seelamantula (bib0028) Jun. 2016; 123 Chen, Pock (bib0060) Jun. 2017; 39 Wen, Guo, Yao, Yan, Sun (bib0007) Jul. 2021; 187 Zha, Yuan, Zhou, Zhu, Wen (bib0033) Aug. 2020; 29 Scetbon, Elad, Milanfar (bib0030) 2021; 30 Yair, Michaeli (bib0057) 2018 Zha, Wen, Yuan, Zhou, Zhu, Kot (bib0032) Feb. 2022 Zha, Yuan, Wen, Zhou, Zhang, Zhu (bib0047) Dec. 2020; 29 Zhao, Meng, Xu, Zuo, Yan (bib0052) Apr. 2015; 26 Sha, Schonfeld, Wang (bib0014) Jul. 2020; 30 Guo, Chen (bib0015) Sep. 2021; 186 Hait-Fraenkel, Gilboa (bib0026) Feb. 2021; 75 Zha, Wen, Yuan, Zhou, Zhou, Zhu (bib0020) Jun. 2021; 30 Zha, Wen, Yuan, Zhou, Zhu (bib0049) 2021; 30 Dabov, Foi, Katkovnik, Egiazarian (bib0003) Aug. 2007; 16 Pang, Cheung (bib0009) Apr. 2017; 26 Xie, Zeng, Jiang, Lu (bib0055) Oct. 2017; 260 A. Kumar, M.O. Ahmad, M.N.S. Swamy. A framework for image denoising using first and second order fractional overlapping group sparsity (HF-OLGS) regularizer, IEEE Access, pp. 26200-26217, Feb. 2019. https://doi.org/10.1109/ACCESS.2019.2901691. Li, Gui, Cheng (bib0012) Nov. 2020; 176 Li, Ru, Lv (bib0017) 2022; 90 Roth, Black (bib0061) Jan. 2009; 82 Mohan, Fazel (bib0054) Nov. 2012; 13 Guan, Xiang, Tang, Kuang (bib0056) Mar. 2020; 17 Mairal, Bach, Ponce, Sapiro, Zisserman (bib0004) Sep. 2009 Kumar, Ahmad, Swamy (bib0010) Jun. 2019; 28 Zha, Yuan, Wen, Zhou, Zhang, Zhu (bib0034) Mar. 2020; 29 Xu, Zhang, Zuo, Zhang, Feng (bib0042) Dec. 2015 Fan, Li, Fan, Zhang (bib0013) Nov. 2020; 164 Zhao, Liu, Lv, Qin (bib0039) Nov. 2019; 28 Liu, Hu, Li, Zhao, Liu, Zhu (bib0018) May 2019; 57 Guo, Cheng, Xiang, Ou, Li (bib0021) Jan. 2019; 31 Iqbal, Seghouane (bib0029) Nov. 2019; 28 Hou, Xu, Liu, Liu, Liu, Shao (bib0031) 2020; 29 Kumar, Ahmad, Swamy (bib0045) Feb. 2019 Zoran, Weiss (bib0005) Nov. 2011 Liu, Gao, Lei, Wang, Hu, Ma, Zhang (bib0016) May 2021; 59 Zhang, Fan, Liu, Li (bib0040) 2020; 8 Zhang (10.1016/j.sigpro.2022.108650_bib0051) 2014; 23 Zhao (10.1016/j.sigpro.2022.108650_bib0052) 2015; 26 Lu (10.1016/j.sigpro.2022.108650_bib0027) 2013 Zha (10.1016/j.sigpro.2022.108650_bib0006) 2018; 275 Zhao (10.1016/j.sigpro.2022.108650_bib0039) 2019; 28 Zha (10.1016/j.sigpro.2022.108650_bib0034) 2020; 29 Mohan (10.1016/j.sigpro.2022.108650_bib0054) 2012; 13 Zha (10.1016/j.sigpro.2022.108650_bib0020) 2021; 30 10.1016/j.sigpro.2022.108650_bib0022 Pang (10.1016/j.sigpro.2022.108650_bib0009) 2017; 26 Xu (10.1016/j.sigpro.2022.108650_bib0059) 2018; 27 Liu (10.1016/j.sigpro.2022.108650_bib0016) 2021; 59 Zhang (10.1016/j.sigpro.2022.108650_bib0038) 2020; 32 Zhang (10.1016/j.sigpro.2022.108650_bib0040) 2020; 8 Li (10.1016/j.sigpro.2022.108650_bib0012) 2020; 176 Li (10.1016/j.sigpro.2022.108650_bib0017) 2022; 90 Zha (10.1016/j.sigpro.2022.108650_bib0033) 2020; 29 Liu (10.1016/j.sigpro.2022.108650_bib0018) 2019; 57 Zha (10.1016/j.sigpro.2022.108650_bib0019) 2021 Xu (10.1016/j.sigpro.2022.108650_bib0042) 2015 Zha (10.1016/j.sigpro.2022.108650_bib0032) 2022 Zha (10.1016/j.sigpro.2022.108650_bib0049) 2021; 30 Guo (10.1016/j.sigpro.2022.108650_bib0021) 2019; 31 Dabov (10.1016/j.sigpro.2022.108650_bib0003) 2007; 16 Papyan (10.1016/j.sigpro.2022.108650_bib0024) 2016; 25 Ou (10.1016/j.sigpro.2022.108650_bib0046) 2020; 72 Hu (10.1016/j.sigpro.2022.108650_bib0053) 2013; 35 Xie (10.1016/j.sigpro.2022.108650_bib0055) 2017; 260 Iqbal (10.1016/j.sigpro.2022.108650_bib0029) 2019; 28 Wen (10.1016/j.sigpro.2022.108650_bib0007) 2021; 187 Zoran (10.1016/j.sigpro.2022.108650_bib0005) 2011 Sha (10.1016/j.sigpro.2022.108650_bib0014) 2020; 30 Zha (10.1016/j.sigpro.2022.108650_bib0047) 2020; 29 Yair (10.1016/j.sigpro.2022.108650_bib0057) 2018 Chen (10.1016/j.sigpro.2022.108650_bib0060) 2017; 39 Scetbon (10.1016/j.sigpro.2022.108650_bib0030) 2021; 30 Hou (10.1016/j.sigpro.2022.108650_bib0031) 2020; 29 10.1016/j.sigpro.2022.108650_bib0044 Guo (10.1016/j.sigpro.2022.108650_bib0015) 2021; 186 Li (10.1016/j.sigpro.2022.108650_bib0037) 2019; 28 Guan (10.1016/j.sigpro.2022.108650_bib0056) 2020; 17 Elad (10.1016/j.sigpro.2022.108650_bib0002) 2006; 15 Guo (10.1016/j.sigpro.2022.108650_bib0035) 2016; 26 Mairal (10.1016/j.sigpro.2022.108650_bib0004) 2009 Kumar (10.1016/j.sigpro.2022.108650_bib0045) 2019 Fan (10.1016/j.sigpro.2022.108650_bib0013) 2020; 164 Zha (10.1016/j.sigpro.2022.108650_bib0041) 2020; 29 Roth (10.1016/j.sigpro.2022.108650_bib0061) 2009; 82 Wang (10.1016/j.sigpro.2022.108650_bib0062) 2004; 13 Zhou (10.1016/j.sigpro.2022.108650_bib0025) 2021; 440 Kumar (10.1016/j.sigpro.2022.108650_bib0010) 2019; 28 10.1016/j.sigpro.2022.108650_bib0050 Mukherjee (10.1016/j.sigpro.2022.108650_bib0028) 2016; 123 Dong (10.1016/j.sigpro.2022.108650_bib0043) 2015; 114 Zha (10.1016/j.sigpro.2022.108650_bib0058) 2020; 29 Gu (10.1016/j.sigpro.2022.108650_bib0008) 2017; 121 Kumar (10.1016/j.sigpro.2022.108650_bib0011) 2018; 454 Xie (10.1016/j.sigpro.2022.108650_bib0036) 2016; 25 Buades (10.1016/j.sigpro.2022.108650_bib0001) 2005; 2 Zha (10.1016/j.sigpro.2022.108650_bib0048) 2020; 29 Niknejad (10.1016/j.sigpro.2022.108650_bib0023) 2019; 28 Hait-Fraenkel (10.1016/j.sigpro.2022.108650_bib0026) 2021; 75 |
References_xml | – volume: 29 start-page: 3254 year: Dec. 2020 end-page: 3269 ident: bib0041 article-title: From rank estimation to rank approximation: rank residual constraint for image restoration publication-title: IEEE Trans. Image Process. – volume: 114 start-page: 217 year: Feb. 2015 end-page: 232 ident: bib0043 article-title: Image restoration via simultaneous sparse coding: where structural sparsity meets Gaussian scale mixture publication-title: Int. J. Comput. Vis. – volume: 72 year: Oct. 2020 ident: bib0046 article-title: Gray-scale image denoising with an improved weighted sparse coding publication-title: J. Vis. Comun. Image R. – volume: 8 start-page: 8157 year: 2020 end-page: 8165 ident: bib0040 article-title: Image denoising using hybrid singular value thresholding operators publication-title: IEEE Access – volume: 28 start-page: 5729 year: Nov. 2019 end-page: 5739 ident: bib0029 article-title: An α-divergence-based approach for robust dictionary learning publication-title: IEEE Trans. Image Process. – volume: 25 start-page: 4842 year: Oct. 2016 end-page: 4857 ident: bib0036 article-title: Weighted schatten p-norm minimization for image denoising and background subtraction publication-title: IEEE Trans. Image Process. – volume: 27 start-page: 2996 year: Jun. 2018 end-page: 3010 ident: bib0059 article-title: External prior guided internal prior learning for real-word noisy image denoising publication-title: IEEE Trans. Image Process. – volume: 26 start-page: 868 year: May 2016 end-page: 880 ident: bib0035 article-title: An efficient SVD-based method for image denoising publication-title: IEEE Trans. Circuits Syst. Video Technol. – reference: Y. Ou, B. Zhang, and B. Li. Multi-scale low-rank approximation method for image denoising, Multimedia Tools and Applications, 2022. https://doi.org/10.1007/s11042-022-12083-z. – volume: 260 start-page: 92 year: Oct. 2017 end-page: 103 ident: bib0055 article-title: Multiscale self-similarity and sparse representation based single image super-resolution publication-title: Neurocomputing – volume: 39 start-page: 1256 year: Jun. 2017 end-page: 1272 ident: bib0060 article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 187 year: Jul. 2021 ident: bib0007 article-title: Hybrid BM3D and PDF filtering for non-parametric single image denoising publication-title: Signal Processing – start-page: 479 year: Nov. 2011 end-page: 486 ident: bib0005 article-title: From learning models of natural image patches to whole image restoration publication-title: Proc. IEEE Int. Conf. on Comput. Vis – volume: 275 start-page: 2294 year: Jan. 2018 end-page: 2306 ident: bib0006 article-title: Group sparsity residual constraint for image denoising with external nonlocal self-similarity prior publication-title: Neurocomputing – volume: 13 start-page: 3441 year: Nov. 2012 end-page: 3473 ident: bib0054 article-title: Iterative reweighted algorithms for matrix rank minimization publication-title: Journal of Machine Learning Research – volume: 59 start-page: 3956 year: May 2021 end-page: 3966 ident: bib0016 article-title: SAR speckle removal using hybrid frequency modulations publication-title: IEEE Trans. Geosci. Remote Sens. – reference: M. Shi, F. Zhang, S. Wang, C. Zhang, and X. Li. Detail preservation image denoising with patch-based structure similarity via sparse representation and SVD, Computer Vision and Image Understanding, vol. 206, May 2021. https://doi.org/10.1016/j.cviu.2021.103173. – volume: 75 year: Feb. 2021 ident: bib0026 article-title: Revealing stable and unstable modes of denoisers through nonlinear eigenvalue analysis publication-title: J. Vis. Comun. Image R. – volume: 30 start-page: 5944 year: 2021 end-page: 5955 ident: bib0030 article-title: Deep K-SVD denoising publication-title: IEEE Trans. Image Process. – volume: 26 start-page: 1770 year: Apr. 2017 end-page: 1785 ident: bib0009 article-title: Graph Laplacian regularization for image denoising: analysis in the continuous domain publication-title: IEEE Trans. Image Process. – volume: 29 start-page: 8561 year: Aug. 2020 end-page: 8576 ident: bib0033 article-title: Image restoration via simultaneous nonlocal self-similarity priors publication-title: IEEE Trans. Image Process. – volume: 30 start-page: 5819 year: Jun. 2021 end-page: 5834 ident: bib0020 article-title: Triply Complementary Priors for Image Restoration publication-title: IEEE Trans. Image Process. – reference: A. Kumar, M.O. Ahmad, M.N.S. Swamy. A framework for image denoising using first and second order fractional overlapping group sparsity (HF-OLGS) regularizer, IEEE Access, pp. 26200-26217, Feb. 2019. https://doi.org/10.1109/ACCESS.2019.2901691. – volume: 29 start-page: 5094 year: Mar. 2020 end-page: 5109 ident: bib0034 article-title: A benchmark for sparse coding: when group sparsity meets rank minimization publication-title: IEEE Trans. Image Process. – volume: 28 start-page: 4899 year: Oct. 2019 end-page: 4911 ident: bib0037 article-title: Image denoising based on nonlocal Bayesian singular value thresholding and Stein's unbiased risk estimator publication-title: IEEE Trans. Image Process. – volume: 31 start-page: 5097 year: Jan. 2019 end-page: 5108 ident: bib0021 article-title: A fast bilateral filtering algorithm based on rising cosine function publication-title: Neural Computing and Applications – volume: 35 start-page: 2117 year: Sep. 2013 end-page: 2130 ident: bib0053 article-title: Fast and accurate matrix completion via truncated nuclear norm regularization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 57 start-page: 2700 year: May 2019 end-page: 2708 ident: bib0018 article-title: Speckle suppression based on weighted nuclear norm minimization and grey theory publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 28 start-page: 2921 year: Jun. 2019 end-page: 2935 ident: bib0010 article-title: Tchebichef and adaptive steerable-based total variation model for image denoising publication-title: IEEE Trans. Image Process. – volume: 454 start-page: 292 year: Jul. 2018 end-page: 311 ident: bib0011 article-title: An efficient denoising framework using weighted overlapping group sparsity publication-title: Inf. Sci. – volume: 29 start-page: 8960 year: 2020 end-page: 8975 ident: bib0048 article-title: Group sparsity residual constraint with non-local prior for image restoration publication-title: IEEE Trans. Image Process. – volume: 176 year: Nov. 2020 ident: bib0012 article-title: From group sparse coding to rank minimization: A novel denoising model for low-level image restoration publication-title: Signal Processing – volume: 26 start-page: 825 year: Apr. 2015 end-page: 839 ident: bib0052 article-title: -norm low-rank matrix factorization by variational Bayesian method publication-title: IEEE Trans. Neural Networks and Learning Systems – year: Feb. 2022 ident: bib0032 article-title: Low-rankness guided group sparse representation for image restoration publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 23 start-page: 3336 year: Aug. 2014 end-page: 3351 ident: bib0051 article-title: Group-based sparse representation for image restoration publication-title: IEEE Trans. Image Process. – volume: 28 start-page: 5537 year: Nov. 2019 end-page: 5551 ident: bib0039 article-title: Texture variation adaptive image denoising with nonlocal PCA publication-title: IEEE Trans. Image Process. – start-page: 293 year: Feb. 2019 end-page: 304 ident: bib0045 article-title: Image denoising via overlapping group sparsity using orthogonal moments as similarity measure publication-title: ISA Trans – volume: 30 start-page: 2000 year: Jul. 2020 end-page: 2014 ident: bib0014 article-title: Graph Laplacian regularization with sparse coding for image restoration and representation publication-title: IEEE Trans. Circuits Syst. Video Technol. – year: Jun. 2021 ident: bib0019 article-title: Nonconvex structural sparsity residual constraint for image restoration publication-title: IEEE Trans. Cyber. – volume: 121 start-page: 183 year: Jan. 2017 end-page: 208 ident: bib0008 article-title: Weighted nuclear norm minimization and its applications to low level vision publication-title: Int. J. Comput. Vis. – volume: 90 year: 2022 ident: bib0017 article-title: Patch-based weighted SCAD prior for Rician noise removal publication-title: Journal of Scientific Computing – volume: 17 start-page: 421 year: Mar. 2020 end-page: 425 ident: bib0056 article-title: A SAR image despeckling method using multi-scale nonlocal low-rank model publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 15 start-page: 3736 year: Dec. 2006 end-page: 3745 ident: bib0002 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. – volume: 32 start-page: 12575 year: Aug. 2020 end-page: 12590 ident: bib0038 article-title: Image denoising via structure-constrained low-rank approximation publication-title: Neural Comput. Applic. – volume: 25 start-page: 249 year: Jan. 2016 end-page: 261 ident: bib0024 article-title: Multi-scale patch-based image restoration publication-title: IEEE Trans. Image Process. – volume: 123 start-page: 42 year: Jun. 2016 end-page: 52 ident: bib0028 article-title: ℓ1-K-SVD: a robust dictionary learning algorithm with simultaneous update publication-title: Signal Process – volume: 28 start-page: 4460 year: Sep. 2019 end-page: 4470 ident: bib0023 article-title: External patch-based image restoration using importance sampling publication-title: IEEE Trans. Image Process. – start-page: 244 year: Dec. 2015 end-page: 252 ident: bib0042 article-title: Patch group based nonlocal self-similarity prior learning for image denoising publication-title: Proc. IEEE Int. Conf. Comput. Vis – start-page: 3165 year: 2018 end-page: 3174 ident: bib0057 article-title: Multi-scale weighted nuclear norm image restoration publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recogni – volume: 13 start-page: 600 year: Apr. 2004 end-page: 612 ident: bib0062 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – volume: 164 year: Nov. 2020 ident: bib0013 article-title: An adaptive boosting procedure for low-rank based image denoising publication-title: Signal Processing – volume: 29 start-page: 5094 year: Dec. 2020 end-page: 5109 ident: bib0047 article-title: A benchmark for sparse coding: when group sparsity meets rank minimization publication-title: IEEE Trans. Image Process. – volume: 2 start-page: 60 year: Jun. 2005 end-page: 65 ident: bib0001 article-title: A non-local algorithm for image denoising publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recogni – volume: 29 start-page: 5121 year: 2020 end-page: 5135 ident: bib0031 article-title: NLH: a blind pixel-level non-local method for real-word image denoising publication-title: IEEE Trans. Image Process. – volume: 29 start-page: 8561 year: 2020 end-page: 8576 ident: bib0058 article-title: Image restoration via simultaneous nonlocal self-similarity priors publication-title: IEEE Trans. Image Process. – volume: 30 start-page: 5223 year: 2021 end-page: 5238 ident: bib0049 article-title: Image restoration via reconciliation of group sparsity and low-rank models publication-title: IEEE Trans. Image Process. – volume: 82 start-page: 205 year: Jan. 2009 end-page: 229 ident: bib0061 article-title: Fields of Experts publication-title: Int. J. Comput. Vis. – start-page: 2272 year: Sep. 2009 end-page: 2279 ident: bib0004 article-title: Non-local sparse models for image restoration publication-title: Proc. IEEE Int. Conf. on Comput. Vis – volume: 186 year: Sep. 2021 ident: bib0015 article-title: Image denoising based on nonconvex anisotropic total-variation regularization publication-title: Signal Processing – start-page: 415 year: Jun. 2013 end-page: 422 ident: bib0027 article-title: Online robust dictionary learning publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recogni – volume: 16 start-page: 2080 year: Aug. 2007 end-page: 2095 ident: bib0003 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. – volume: 440 start-page: 127 year: Jun. 2021 end-page: 144 ident: bib0025 article-title: Multi-channel expected patch log likelihood for color image denoising publication-title: Neurocomputing – ident: 10.1016/j.sigpro.2022.108650_bib0044 doi: 10.1109/ACCESS.2019.2901691 – volume: 28 start-page: 2921 issue: 6 year: 2019 ident: 10.1016/j.sigpro.2022.108650_bib0010 article-title: Tchebichef and adaptive steerable-based total variation model for image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2892663 – volume: 35 start-page: 2117 issue: 9 year: 2013 ident: 10.1016/j.sigpro.2022.108650_bib0053 article-title: Fast and accurate matrix completion via truncated nuclear norm regularization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.271 – start-page: 415 year: 2013 ident: 10.1016/j.sigpro.2022.108650_bib0027 article-title: Online robust dictionary learning – volume: 27 start-page: 2996 issue: 6 year: 2018 ident: 10.1016/j.sigpro.2022.108650_bib0059 article-title: External prior guided internal prior learning for real-word noisy image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2811546 – volume: 26 start-page: 1770 issue: 4 year: 2017 ident: 10.1016/j.sigpro.2022.108650_bib0009 article-title: Graph Laplacian regularization for image denoising: analysis in the continuous domain publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2651400 – start-page: 244 year: 2015 ident: 10.1016/j.sigpro.2022.108650_bib0042 article-title: Patch group based nonlocal self-similarity prior learning for image denoising – volume: 16 start-page: 2080 issue: 8 year: 2007 ident: 10.1016/j.sigpro.2022.108650_bib0003 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – start-page: 3165 year: 2018 ident: 10.1016/j.sigpro.2022.108650_bib0057 article-title: Multi-scale weighted nuclear norm image restoration – volume: 440 start-page: 127 year: 2021 ident: 10.1016/j.sigpro.2022.108650_bib0025 article-title: Multi-channel expected patch log likelihood for color image denoising publication-title: Neurocomputing – start-page: 293 year: 2019 ident: 10.1016/j.sigpro.2022.108650_bib0045 article-title: Image denoising via overlapping group sparsity using orthogonal moments as similarity measure publication-title: ISA Trans doi: 10.1016/j.isatra.2018.10.030 – volume: 121 start-page: 183 issue: 2 year: 2017 ident: 10.1016/j.sigpro.2022.108650_bib0008 article-title: Weighted nuclear norm minimization and its applications to low level vision publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-016-0930-5 – volume: 2 start-page: 60 year: 2005 ident: 10.1016/j.sigpro.2022.108650_bib0001 article-title: A non-local algorithm for image denoising – volume: 28 start-page: 4460 issue: 9 year: 2019 ident: 10.1016/j.sigpro.2022.108650_bib0023 article-title: External patch-based image restoration using importance sampling publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2912122 – volume: 26 start-page: 868 issue: 5 year: 2016 ident: 10.1016/j.sigpro.2022.108650_bib0035 article-title: An efficient SVD-based method for image denoising publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2015.2416631 – volume: 32 start-page: 12575 issue: 16 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0038 article-title: Image denoising via structure-constrained low-rank approximation publication-title: Neural Comput. Applic. doi: 10.1007/s00521-020-04717-w – volume: 176 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0012 article-title: From group sparse coding to rank minimization: A novel denoising model for low-level image restoration publication-title: Signal Processing doi: 10.1016/j.sigpro.2020.107655 – volume: 59 start-page: 3956 issue: 5 year: 2021 ident: 10.1016/j.sigpro.2022.108650_bib0016 article-title: SAR speckle removal using hybrid frequency modulations publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3014130 – volume: 275 start-page: 2294 year: 2018 ident: 10.1016/j.sigpro.2022.108650_bib0006 article-title: Group sparsity residual constraint for image denoising with external nonlocal self-similarity prior publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.004 – volume: 28 start-page: 4899 issue: 10 year: 2019 ident: 10.1016/j.sigpro.2022.108650_bib0037 article-title: Image denoising based on nonlocal Bayesian singular value thresholding and Stein's unbiased risk estimator publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2912292 – volume: 29 start-page: 5121 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0031 article-title: NLH: a blind pixel-level non-local method for real-word image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2980116 – volume: 28 start-page: 5729 issue: 11 year: 2019 ident: 10.1016/j.sigpro.2022.108650_bib0029 article-title: An α-divergence-based approach for robust dictionary learning publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2922074 – volume: 454 start-page: 292 year: 2018 ident: 10.1016/j.sigpro.2022.108650_bib0011 article-title: An efficient denoising framework using weighted overlapping group sparsity publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.05.001 – volume: 29 start-page: 8561 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0058 article-title: Image restoration via simultaneous nonlocal self-similarity priors publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3015545 – volume: 26 start-page: 825 issue: 4 year: 2015 ident: 10.1016/j.sigpro.2022.108650_bib0052 article-title: L1-norm low-rank matrix factorization by variational Bayesian method publication-title: IEEE Trans. Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2387376 – volume: 123 start-page: 42 year: 2016 ident: 10.1016/j.sigpro.2022.108650_bib0028 article-title: ℓ1-K-SVD: a robust dictionary learning algorithm with simultaneous update publication-title: Signal Process doi: 10.1016/j.sigpro.2015.12.008 – volume: 29 start-page: 3254 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0041 article-title: From rank estimation to rank approximation: rank residual constraint for image restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2958309 – year: 2022 ident: 10.1016/j.sigpro.2022.108650_bib0032 article-title: Low-rankness guided group sparse representation for image restoration publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 2272 year: 2009 ident: 10.1016/j.sigpro.2022.108650_bib0004 article-title: Non-local sparse models for image restoration – volume: 29 start-page: 8960 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0048 article-title: Group sparsity residual constraint with non-local prior for image restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3021291 – volume: 260 start-page: 92 year: 2017 ident: 10.1016/j.sigpro.2022.108650_bib0055 article-title: Multiscale self-similarity and sparse representation based single image super-resolution publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.073 – volume: 8 start-page: 8157 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0040 article-title: Image denoising using hybrid singular value thresholding operators publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964683 – start-page: 479 year: 2011 ident: 10.1016/j.sigpro.2022.108650_bib0005 article-title: From learning models of natural image patches to whole image restoration – volume: 114 start-page: 217 year: 2015 ident: 10.1016/j.sigpro.2022.108650_bib0043 article-title: Image restoration via simultaneous sparse coding: where structural sparsity meets Gaussian scale mixture publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0808-y – volume: 28 start-page: 5537 issue: 11 year: 2019 ident: 10.1016/j.sigpro.2022.108650_bib0039 article-title: Texture variation adaptive image denoising with nonlocal PCA publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2916976 – volume: 25 start-page: 249 issue: 1 year: 2016 ident: 10.1016/j.sigpro.2022.108650_bib0024 article-title: Multi-scale patch-based image restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2499698 – volume: 29 start-page: 8561 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0033 article-title: Image restoration via simultaneous nonlocal self-similarity priors publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3015545 – year: 2021 ident: 10.1016/j.sigpro.2022.108650_bib0019 article-title: Nonconvex structural sparsity residual constraint for image restoration publication-title: IEEE Trans. Cyber. – volume: 187 year: 2021 ident: 10.1016/j.sigpro.2022.108650_bib0007 article-title: Hybrid BM3D and PDF filtering for non-parametric single image denoising publication-title: Signal Processing – volume: 30 start-page: 5944 year: 2021 ident: 10.1016/j.sigpro.2022.108650_bib0030 article-title: Deep K-SVD denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3090531 – ident: 10.1016/j.sigpro.2022.108650_bib0050 doi: 10.1016/j.cviu.2021.103173 – volume: 75 year: 2021 ident: 10.1016/j.sigpro.2022.108650_bib0026 article-title: Revealing stable and unstable modes of denoisers through nonlinear eigenvalue analysis publication-title: J. Vis. Comun. Image R. – volume: 39 start-page: 1256 issue: 6 year: 2017 ident: 10.1016/j.sigpro.2022.108650_bib0060 article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2596743 – volume: 30 start-page: 5223 year: 2021 ident: 10.1016/j.sigpro.2022.108650_bib0049 article-title: Image restoration via reconciliation of group sparsity and low-rank models publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3078329 – volume: 29 start-page: 5094 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0034 article-title: A benchmark for sparse coding: when group sparsity meets rank minimization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2972109 – volume: 31 start-page: 5097 year: 2019 ident: 10.1016/j.sigpro.2022.108650_bib0021 article-title: A fast bilateral filtering algorithm based on rising cosine function – volume: 164 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0013 article-title: An adaptive boosting procedure for low-rank based image denoising publication-title: Signal Processing – volume: 186 year: 2021 ident: 10.1016/j.sigpro.2022.108650_bib0015 article-title: Image denoising based on nonconvex anisotropic total-variation regularization publication-title: Signal Processing doi: 10.1016/j.sigpro.2021.108124 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.sigpro.2022.108650_bib0062 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 30 start-page: 5819 year: 2021 ident: 10.1016/j.sigpro.2022.108650_bib0020 article-title: Triply Complementary Priors for Image Restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3086049 – volume: 25 start-page: 4842 issue: 10 year: 2016 ident: 10.1016/j.sigpro.2022.108650_bib0036 article-title: Weighted schatten p-norm minimization for image denoising and background subtraction publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2599290 – volume: 72 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0046 article-title: Gray-scale image denoising with an improved weighted sparse coding publication-title: J. Vis. Comun. Image R. – volume: 23 start-page: 3336 issue: 8 year: 2014 ident: 10.1016/j.sigpro.2022.108650_bib0051 article-title: Group-based sparse representation for image restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2323127 – volume: 17 start-page: 421 issue: 3 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0056 article-title: A SAR image despeckling method using multi-scale nonlocal low-rank model publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2019.2926196 – volume: 82 start-page: 205 issue: 2 year: 2009 ident: 10.1016/j.sigpro.2022.108650_bib0061 article-title: Fields of Experts publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-008-0197-6 – volume: 90 issue: 26 year: 2022 ident: 10.1016/j.sigpro.2022.108650_bib0017 article-title: Patch-based weighted SCAD prior for Rician noise removal publication-title: Journal of Scientific Computing – volume: 57 start-page: 2700 issue: 5 year: 2019 ident: 10.1016/j.sigpro.2022.108650_bib0018 article-title: Speckle suppression based on weighted nuclear norm minimization and grey theory publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2876339 – volume: 15 start-page: 3736 issue: 12 year: 2006 ident: 10.1016/j.sigpro.2022.108650_bib0002 article-title: Image denoising via sparse and redundant representations over learned dictionaries publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881969 – volume: 30 start-page: 2000 issue: 7 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0014 article-title: Graph Laplacian regularization with sparse coding for image restoration and representation publication-title: IEEE Trans. Circuits Syst. Video Technol. – ident: 10.1016/j.sigpro.2022.108650_bib0022 doi: 10.1007/s11042-022-12083-z – volume: 29 start-page: 5094 year: 2020 ident: 10.1016/j.sigpro.2022.108650_bib0047 article-title: A benchmark for sparse coding: when group sparsity meets rank minimization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2972109 – volume: 13 start-page: 3441 year: 2012 ident: 10.1016/j.sigpro.2022.108650_bib0054 article-title: Iterative reweighted algorithms for matrix rank minimization publication-title: Journal of Machine Learning Research |
SSID | ssj0001360 |
Score | 2.4716384 |
Snippet | •We propose a new MS-WGSC model, in which the multi-scale NSS is exploited. Besides, the dictionary in each group is adaptively set via singular value... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108650 |
SubjectTerms | image denoising Model-driven method multi-scale self-similarity weighted group sparse coding |
Title | Single image denoising via multi-scale weighted group sparse coding |
URI | https://dx.doi.org/10.1016/j.sigpro.2022.108650 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uOhBfGJ9lD14XdtNNo89lmKpCr3UQm9hX5FIbUtb9eZvdzaPUkEUPIUNO5B8E76Z3cy3A3AjuiYyXaupx4yh3HqCqthPaco9qy1jrs-Vq7YYhcMJf5gG0xr0Ky2MK6ssub_g9JytyzudEs3OMss6YyfEYe43kisLisW0Dk3PF2HQgGbv_nE42hIy83OxsJtPnUGloMvLvNbZM1IVLhQ9L-865AT4P0WonagzOISDMl0kveKJjqBm58ewv3OI4An0x3iZWZK9IjUQpJFF5tb_5D2TJC8XpGv0gyUf-SaoNSQXchBkktXaEr1wwesUJoO7p_6Qlq0RqPb8cEN12JVcpPhqPub72jMaMy8u3SZvIFIM6kLHwgaYzgiJKxomo0BzJTRmKwx9E_ln0Jgv5vYcCFM2jLjkRknFU6ViKRFNIbjBUaSiFvgVHIkuzw137StmSVUg9pIUICYOxKQAsQV0a7Uszs34Y35UIZ1883-C1P6r5cW_LS9hz40KZeEVNDarN3uNKcZGtaF--8na5Yf0BbT8z9M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4QD-rB-BnxswevFbp1dD0aIkFFLkDCrenXzAwCAdSbv923-1BMjCaelm1tsj1dnvdt9zx9EboUDcttwxkSUGsJc4EgOg4TkrDAGUepr3Pl1Ra9ZmfI7kbRqIJapRfGyyoL7s85PWPr4kq9QLM-S9N63xtxqP-N5GVBsRitoXUWhdzr-q7ev3QeNMyswr418c1L_1wm8lqkj0BUME0MgqzmkLff_xSfVmJOewdtF8kivs6fZxdV3GQPba1sIbiPWn04jB1On4EYMJDINPWzf_yaKpyJBckCRsHht2wJ1Fmc2Tgw8Mh84bCZ-tB1gIbtm0GrQ4rCCMQEYXNJTLOhmEjg1ULI9k1gDeRdTPkl3kgkENKFiYWLIJkRCuYzVPHIMC0M5CoURoaHh6g6mU7cEcJUuyZnilmtNEu0jpUCLIVgFs645jUUlnBIU-wa7otXjGUpD3uSOYjSgyhzEGuIfPaa5btm_NGel0jLb6Mvgdh_7Xn8754XaKMzeOjK7m3v_gRt-ju5x_AUVZfzF3cGycZSn2cf0wdw1tCe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+image+denoising+via+multi-scale+weighted+group+sparse+coding&rft.jtitle=Signal+processing&rft.au=Ou%2C+Yang&rft.au=Swamy%2C+M.N.S.&rft.au=Luo%2C+Jianqiao&rft.au=Li%2C+Bailin&rft.date=2022-11-01&rft.issn=0165-1684&rft.volume=200&rft.spage=108650&rft_id=info:doi/10.1016%2Fj.sigpro.2022.108650&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2022_108650 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |